Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (418)

Search Parameters:
Keywords = smart city platform

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 2223 KB  
Article
Modelling the Behavioural Side of Textile Waste Collection: From Individual Habits to Systemic Design
by Francesco Zammori, Francesco Moroni and Giovanni Romagnoli
Information 2025, 16(9), 716; https://doi.org/10.3390/info16090716 - 22 Aug 2025
Viewed by 147
Abstract
This paper contributes to the field of urban waste collection systems, which are crucial for advancing sustainability, urban cleanliness, and the aesthetic quality of cities. Specifically, it introduces a novel framework designed to support planners and decision makers in the design of efficient [...] Read more.
This paper contributes to the field of urban waste collection systems, which are crucial for advancing sustainability, urban cleanliness, and the aesthetic quality of cities. Specifically, it introduces a novel framework designed to support planners and decision makers in the design of efficient and responsive textile waste collection systems, aligned with both environmental objectives and citizen engagement. To this end, the framework exploits a hybrid simulation platform that realistically models the logistics infrastructure in a spatially explicit environment. Also, within the framework, citizens are represented as adaptive agents whose environmental attitudes evolve through personal experience, social influence, and perceived service quality. The behavioural layer is the core element of the framework. It enables dynamic analysis of the two-way feedback between citizen participation and service effectiveness to underscore the often-overlooked role of citizen behaviour in shaping overall system performance. The model was tested in a representative urban scenario under varying operational conditions. The results highlight how policy incentives and smart collection infrastructure can significantly boost participation, while social segregation may hinder the adoption of sustainable practices. The framework ultimately offers a generalisable decision-support tool to explore the behavioural dimension of circular economy initiatives and develop robust, scenario-based strategies. Full article
(This article belongs to the Special Issue Intelligent Agent and Multi-Agent System)
Show Figures

Figure 1

15 pages, 1491 KB  
Opinion
GenPad: A Highly Efficient Roadmap for the Development of a New Rapid, Highly Sensitive, and Portable Point-of-Care Testing System for Nucleic Acid Diagnostics in Japan
by Oleg Gusev
Diagnostics 2025, 15(16), 2020; https://doi.org/10.3390/diagnostics15162020 - 12 Aug 2025
Viewed by 294
Abstract
From the corona virus pandemic in Japan that started with the “Diamond Princess” accident, it became clear that rapid detection, a high sensitivity, multiple diagnostic items, one-step one-base point mutation detection, a fast speed of system development, portability (small size and light weight), [...] Read more.
From the corona virus pandemic in Japan that started with the “Diamond Princess” accident, it became clear that rapid detection, a high sensitivity, multiple diagnostic items, one-step one-base point mutation detection, a fast speed of system development, portability (small size and light weight), full automation, random access, and other conditions are required for future point-of-care testing systems. The Eprimer-SmartAmp technology that was developed possesses characteristics fully aligned with these requirements. Building upon this platform, the “GenPad” system was subsequently established. The GenPad system is widely applicable not only to emerging foreign infectious diseases, but also to cancer, lifestyle-related diseases, and other areas of healthcare through telemedicine and intraoperative nucleic acid diagnoses. In collaboration with telecommunication systems, GenPad is expected to contribute to the establishment of a smart medical city with a countermeasure against emerging foreign infectious diseases, where individuals can check their own health conditions in all healthcare areas. Full article
Show Figures

Figure 1

27 pages, 3200 KB  
Article
IoT-Enhanced Multi-Base Station Networks for Real-Time UAV Surveillance and Tracking
by Zhihua Chen, Tao Zhang and Tao Hong
Drones 2025, 9(8), 558; https://doi.org/10.3390/drones9080558 - 8 Aug 2025
Viewed by 330
Abstract
The proliferation of small, agile unmanned aerial vehicles (UAVs) has exposed the limits of single-sensor surveillance in cluttered airspace. We propose an Internet of Things-enabled integrated sensing and communication (IoT-ISAC) framework that converts cellular base stations into cooperative, edge-intelligent sensing nodes. Within a [...] Read more.
The proliferation of small, agile unmanned aerial vehicles (UAVs) has exposed the limits of single-sensor surveillance in cluttered airspace. We propose an Internet of Things-enabled integrated sensing and communication (IoT-ISAC) framework that converts cellular base stations into cooperative, edge-intelligent sensing nodes. Within a four-layer design—terminal, edge, IoT platform, and cloud—stations exchange raw echoes and low-level features in real time, while adaptive beam registration and cross-correlation timing mitigate spatial and temporal misalignments. A hybrid processing pipeline first produces coarse data-level estimates and then applies symbol-level refinements, sustaining rapid response without sacrificing precision. Simulation evaluations using multi-band ISAC waveforms confirm high detection reliability, sub-frame latency, and energy-aware operation in dense urban clutter, adverse weather, and multi-target scenarios. Preliminary hardware tests validate the feasibility of the proposed signal processing approach. Simulation analysis demonstrates detection accuracy of 85–90% under optimal conditions with processing latency of 15–25 ms and potential energy efficiency improvement of 10–20% through cooperative operation, pending real-world validation. By extending coverage, suppressing blind zones, and supporting dynamic surveillance of fast-moving UAVs, the proposed system provides a scalable path toward smart city air safety networks, cooperative autonomous navigation aids, and other remote-sensing applications that require agile, coordinated situational awareness. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

19 pages, 1138 KB  
Article
Strategic Socio-Technical Innovation in Urban Living Labs: A Framework for Smart City Evolution
by Augusto Velasquez Mendez, Jorge Lozoya Santos and Jose Fernando Jimenez Vargas
Smart Cities 2025, 8(4), 131; https://doi.org/10.3390/smartcities8040131 - 8 Aug 2025
Viewed by 426
Abstract
Urban Living Labs (ULLs) are pivotal for promoting socio-technical innovation in smart cities, yet their role in achieving sustainable urban development remains underexplored. This study addresses this gap by proposing a systematic literature review (SLR) to develop effective implementation strategies. Unlike previous studies [...] Read more.
Urban Living Labs (ULLs) are pivotal for promoting socio-technical innovation in smart cities, yet their role in achieving sustainable urban development remains underexplored. This study addresses this gap by proposing a systematic literature review (SLR) to develop effective implementation strategies. Unlike previous studies focusing on individual aspects of these labs, our holistic approach emphasizes the orchestration of actors and innovative experiment design to co-create value with citizens. By addressing specific issues in current smart city practices—such as the misalignment between technology and community needs and among stakeholders, limited citizen engagement, and the lack of iterative testing environments—the study explores practical strategies for improvement. The proposed strategies illustrate how Urban Living Labs can serve as essential platforms for achieving sustainable and inclusive urban growth through effective socio-technical innovation integration. Full article
Show Figures

Figure 1

27 pages, 1832 KB  
Review
Breaking the Traffic Code: How MaaS Is Shaping Sustainable Mobility Ecosystems
by Tanweer Alam
Future Transp. 2025, 5(3), 94; https://doi.org/10.3390/futuretransp5030094 - 1 Aug 2025
Viewed by 497
Abstract
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and [...] Read more.
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and improving the user experience. This review critically examines the role of MaaS in fostering sustainable mobility ecosystems. MaaS aims to enhance user-friendliness, service variety, and sustainability by adopting a customer-centric approach to transportation. The findings reveal that successful MaaS systems consistently align with multimodal transport infrastructure, equitable access policies, and strong public-private partnerships. MaaS enhances the management of routes and traffic, effectively mitigating delays and congestion while concurrently reducing energy consumption and fuel usage. In this study, the authors examine MaaS as a new mobility paradigm for a sustainable transportation system in smart cities, observing the challenges and opportunities associated with its implementation. To assess the environmental impact, a sustainability index is calculated based on the use of different modes of transportation. Significant findings indicate that MaaS systems are proliferating in both quantity and complexity, increasingly integrating capabilities such as real-time multimodal planning, dynamic pricing, and personalized user profiles. Full article
Show Figures

Figure 1

23 pages, 4997 KB  
Article
Prediction of Bearing Layer Depth Using Machine Learning Algorithms and Evaluation of Their Performance
by Yuxin Cong, Arisa Katsuumi and Shinya Inazumi
Mach. Learn. Knowl. Extr. 2025, 7(3), 69; https://doi.org/10.3390/make7030069 - 21 Jul 2025
Viewed by 764
Abstract
In earthquake-prone areas such as Tokyo, accurate estimation of bearing stratum depth is crucial for foundation design, liquefaction assessment, and urban disaster mitigation. However, traditional methods such as the standard penetration test (SPT), while reliable, are labor-intensive and have limited spatial distribution. In [...] Read more.
In earthquake-prone areas such as Tokyo, accurate estimation of bearing stratum depth is crucial for foundation design, liquefaction assessment, and urban disaster mitigation. However, traditional methods such as the standard penetration test (SPT), while reliable, are labor-intensive and have limited spatial distribution. In this study, 942 geological survey records from the Tokyo metropolitan area were used to evaluate the performance of three machine learning algorithms, random forest (RF), artificial neural network (ANN), and support vector machine (SVM), in predicting bearing stratum depth. The main input variables included geographic coordinates, elevation, and stratigraphic category. The results showed that the RF model performed well in terms of multiple evaluation indicators and had significantly better prediction accuracy than ANN and SVM. In addition, data density analysis showed that the prediction error was significantly reduced in high-density areas. The results demonstrate the robustness and adaptability of the RF method in foundation soil layer identification, emphasizing the importance of comprehensive input variables and spatial coverage. The proposed method can be used for large-scale, data-driven bearing stratum prediction and has the potential to be integrated into geological risk management systems and smart city platforms. Full article
Show Figures

Figure 1

33 pages, 2299 KB  
Review
Edge Intelligence in Urban Landscapes: Reviewing TinyML Applications for Connected and Sustainable Smart Cities
by Athanasios Trigkas, Dimitrios Piromalis and Panagiotis Papageorgas
Electronics 2025, 14(14), 2890; https://doi.org/10.3390/electronics14142890 - 19 Jul 2025
Viewed by 881
Abstract
Tiny Machine Learning (TinyML) extends edge AI capabilities to resource-constrained devices, offering a promising solution for real-time, low-power intelligence in smart cities. This review systematically analyzes 66 peer-reviewed studies from 2019 to 2024, covering applications across urban mobility, environmental monitoring, public safety, waste [...] Read more.
Tiny Machine Learning (TinyML) extends edge AI capabilities to resource-constrained devices, offering a promising solution for real-time, low-power intelligence in smart cities. This review systematically analyzes 66 peer-reviewed studies from 2019 to 2024, covering applications across urban mobility, environmental monitoring, public safety, waste management, and infrastructure health. We examine hardware platforms and machine learning models, with particular attention to power-efficient deployment and data privacy. We review the approaches employed in published studies for deploying machine learning models on resource-constrained hardware, emphasizing the most commonly used communication technologies—while noting the limited uptake of low-power options such as Low Power Wide Area Networks (LPWANs). We also discuss hardware–software co-design strategies that enable sustainable operation. Furthermore, we evaluate the alignment of these deployments with the United Nations Sustainable Development Goals (SDGs), highlighting both their contributions and existing gaps in current practices. This review identifies recurring technical patterns, methodological challenges, and underexplored opportunities, particularly in the areas of hardware provisioning, usage of inherent privacy benefits in relevant applications, communication technologies, and dataset practices, offering a roadmap for future TinyML research and deployment in smart urban systems. Among the 66 studies examined, 29 focused on mobility and transportation, 17 on public safety, 10 on environmental sensing, 6 on waste management, and 4 on infrastructure monitoring. TinyML was deployed on constrained microcontrollers in 32 studies, while 36 used optimized models for resource-limited environments. Energy harvesting, primarily solar, was featured in 6 studies, and low-power communication networks were used in 5. Public datasets were used in 27 studies, custom datasets in 24, and the remainder relied on hybrid or simulated data. Only one study explicitly referenced SDGs, and 13 studies considered privacy in their system design. Full article
(This article belongs to the Special Issue New Advances in Embedded Software and Applications)
Show Figures

Figure 1

40 pages, 17591 KB  
Article
Research and Education in Robotics: A Comprehensive Review, Trends, Challenges, and Future Directions
by Mutaz Ryalat, Natheer Almtireen, Ghaith Al-refai, Hisham Elmoaqet and Nathir Rawashdeh
J. Sens. Actuator Netw. 2025, 14(4), 76; https://doi.org/10.3390/jsan14040076 - 16 Jul 2025
Viewed by 2105
Abstract
Robotics has emerged as a transformative discipline at the intersection of the engineering, computer science, and cognitive sciences. This state-of-the-art review explores the current trends, methodologies, and challenges in both robotics research and education. This paper presents a comprehensive review of the evolution [...] Read more.
Robotics has emerged as a transformative discipline at the intersection of the engineering, computer science, and cognitive sciences. This state-of-the-art review explores the current trends, methodologies, and challenges in both robotics research and education. This paper presents a comprehensive review of the evolution of robotics, tracing its development from early automation to intelligent, autonomous systems. Key enabling technologies, such as Artificial Intelligence (AI), soft robotics, the Internet of Things (IoT), and swarm intelligence, are examined along with real-world applications in healthcare, manufacturing, agriculture, and sustainable smart cities. A central focus is placed on robotics education, where hands-on, interdisciplinary learning is reshaping curricula from K–12 to postgraduate levels. This paper analyzes instructional models including project-based learning, laboratory work, capstone design courses, and robotics competitions, highlighting their effectiveness in developing both technical and creative competencies. Widely adopted platforms such as the Robot Operating System (ROS) are briefly discussed in the context of their educational value and real-world alignment. Through case studies, institutional insights, and synthesis of academic and industry practices, this review underscores the vital role of robotics education in fostering innovation, systems thinking, and workforce readiness. The paper concludes by identifying the key challenges and future directions to guide researchers, educators, industry stakeholders, and policymakers in advancing robotics as both technological and educational frontiers. Full article
Show Figures

Figure 1

22 pages, 845 KB  
Article
Bridging Cities and Citizens with Generative AI: Public Readiness and Trust in Urban Planning
by Adnan Alshahrani
Buildings 2025, 15(14), 2494; https://doi.org/10.3390/buildings15142494 - 16 Jul 2025
Viewed by 878
Abstract
As part of its modernisation and economic diversification policies, Saudi Arabia is building smart, sustainable cities intended to improve quality of life and meet environmental goals. However, involving the public in urban planning remains complex, with traditional methods often proving expensive, time-consuming, and [...] Read more.
As part of its modernisation and economic diversification policies, Saudi Arabia is building smart, sustainable cities intended to improve quality of life and meet environmental goals. However, involving the public in urban planning remains complex, with traditional methods often proving expensive, time-consuming, and inaccessible to many groups. Integrating artificial intelligence (AI) into public participation may help to address these limitations. This study explores whether Saudi residents are ready to engage with AI-driven tools in urban planning, how they prefer to interact with them, and what ethical concerns may arise. Using a quantitative, survey-based approach, the study collected data from 232 Saudi residents using non-probability stratified sampling. The survey assessed demographic influences on AI readiness, preferred engagement methods, and perceptions of ethical risks. The results showed a strong willingness among participants (200 respondents, 86%)—especially younger and university-educated respondents—to engage through AI platforms. Visual tools such as image and video analysis were the most preferred (96 respondents, 41%), while chatbots were less favoured (16 respondents, 17%). However, concerns were raised about privacy (76 respondents, 33%), bias (52 respondents, 22%), and over-reliance on technology (84 respondents, 36%). By exploring the intersection of generative AI and participatory urban governance, this study contributes directly to the discourse on inclusive smart city development. The research also offers insights into how AI-driven public engagement tools can be integrated into urban planning workflows to enhance the design, governance, and performance of the built environment. The findings suggest that AI has the potential to improve inclusivity and responsiveness in urban planning, but that its success depends on public trust, ethical safeguards, and the thoughtful design of accessible, user-friendly engagement platforms. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

27 pages, 1889 KB  
Article
Advancing Smart City Sustainability Through Artificial Intelligence, Digital Twin and Blockchain Solutions
by Ivica Lukić, Mirko Köhler, Zdravko Krpić and Miljenko Švarcmajer
Technologies 2025, 13(7), 300; https://doi.org/10.3390/technologies13070300 - 11 Jul 2025
Cited by 1 | Viewed by 840
Abstract
This paper presents an integrated Smart City platform that combines digital twin technology, advanced machine learning, and a private blockchain network to enhance data-driven decision making and operational efficiency in both public enterprises and small and medium-sized enterprises (SMEs). The proposed cloud-based business [...] Read more.
This paper presents an integrated Smart City platform that combines digital twin technology, advanced machine learning, and a private blockchain network to enhance data-driven decision making and operational efficiency in both public enterprises and small and medium-sized enterprises (SMEs). The proposed cloud-based business intelligence model automates Extract, Transform, Load (ETL) processes, enables real-time analytics, and secures data integrity and transparency through blockchain-enabled audit trails. By implementing the proposed solution, Smart City and public service providers can significantly improve operational efficiency, including a 15% reduction in costs and a 12% decrease in fuel consumption for waste management, as well as increased citizen engagement and transparency in Smart City governance. The digital twin component facilitated scenario simulations and proactive resource management, while the participatory governance module empowered citizens through transparent, immutable records of proposals and voting. This study also discusses technical, organizational, and regulatory challenges, such as data integration, scalability, and privacy compliance. The results indicate that the proposed approach offers a scalable and sustainable model for Smart City transformation, fostering citizen trust, regulatory compliance, and measurable environmental and social benefits. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

30 pages, 2849 KB  
Article
A Semantic Link Network Model for Supporting Traceability of Logistics on Blockchain
by Xiaoping Sun, Sirui Zhuge and Hai Zhuge
Smart Cities 2025, 8(4), 115; https://doi.org/10.3390/smartcities8040115 - 9 Jul 2025
Viewed by 371
Abstract
Logistics transports of various resources such as production materials, foods, and products support the operation of smart cities. The ability to trace the states of logistics transports requires an efficient storage and retrieval of the states of logistics transports and locations of logistics [...] Read more.
Logistics transports of various resources such as production materials, foods, and products support the operation of smart cities. The ability to trace the states of logistics transports requires an efficient storage and retrieval of the states of logistics transports and locations of logistics objects. However, the restriction of sharing states and locations of logistics objects across organizations makes it hard to deploy a centralized database for supporting traceability in a cross-organization logistics system. This paper proposes a semantic data model on Blockchain to represent a logistics process based on the Semantic Link Network model, where each semantic link represents a logistics transport of a logistics object between two organizations. A state representation model is designed to represent the states of a logistics transport with semantic links. It enables the locations of logistics objects to be derived from the link states. A mapping from the semantic links into the blockchain transactions is designed to enable the schema of semantic links and the states of semantic links to be published in blockchain transactions. To improve the efficiency of tracing a path of semantic links on a blockchain platform, an algorithm is designed to build shortcuts along the path of semantic links to enable a query on the path of a logistics object to reach the target in logarithmic steps on the blockchain platform. A reward–penalty policy is designed to allow participants to confirm the states of links on the blockchain. Analysis and simulation demonstrate the flexibility, effectiveness, and efficiency of the Semantic Link Network on immutable blockchain for implementing logistics traceability. Full article
Show Figures

Figure 1

50 pages, 1773 KB  
Review
Understanding Smart Governance of Sustainable Cities: A Review and Multidimensional Framework
by Abdulaziz I. Almulhim and Tan Yigitcanlar
Smart Cities 2025, 8(4), 113; https://doi.org/10.3390/smartcities8040113 - 8 Jul 2025
Viewed by 1433
Abstract
Smart governance—the integration of digital technologies into urban governance—is increasingly recognized as a transformative approach to addressing complex urban challenges such as rapid urbanization, climate change, social inequality, and resource constraints. As a foundational pillar of the smart city paradigm, it enhances decision-making, [...] Read more.
Smart governance—the integration of digital technologies into urban governance—is increasingly recognized as a transformative approach to addressing complex urban challenges such as rapid urbanization, climate change, social inequality, and resource constraints. As a foundational pillar of the smart city paradigm, it enhances decision-making, service delivery, transparency, and civic participation through data-driven tools, digital platforms, and emerging technologies such as AI, IoT, and blockchain. While often positioned as a pathway toward sustainability and inclusivity, existing research on smart governance remains fragmented, particularly regarding its relationship to urban sustainability. This study addresses that gap through a systematic literature review using the PRISMA methodology, synthesizing theoretical models, empirical findings, and diverse case studies. It identifies key enablers—such as digital infrastructure, data governance, citizen engagement, and institutional capacity—and highlights enduring challenges including digital inequity, data security concerns, and institutional inertia. In response to this, the study proposes a multidimensional framework that integrates governance, technology, and sustainability, offering a holistic lens through which to understand and guide urban transformation. This framework underscores the importance of balancing technological innovation with equity, resilience, and inclusivity, providing actionable insights for policymakers and planners navigating the complexities of smart cities and urban development. By aligning smart governance practices with the United Nations’ sustainable development goals (SDG)—particularly SDG 11 on sustainable cities and communities—the study offers a strategic roadmap for fostering resilient, equitable, and digitally empowered urban futures. Full article
(This article belongs to the Collection Smart Governance and Policy)
Show Figures

Figure 1

28 pages, 1056 KB  
Review
SDI-Enabled Smart Governance: A Review (2015–2025) of IoT, AI and Geospatial Technologies—Applications and Challenges
by Sofianos Sofianopoulos, Antigoni Faka and Christos Chalkias
Land 2025, 14(7), 1399; https://doi.org/10.3390/land14071399 - 3 Jul 2025
Viewed by 972
Abstract
This paper presents a systematic, narrative review of 62 academic publications (2015–2025) that explore the integration of spatial data infrastructures (SDIs) with emerging smart city technologies to improve local governance. SDIs provide a structured framework for managing geospatial data and, in combination with [...] Read more.
This paper presents a systematic, narrative review of 62 academic publications (2015–2025) that explore the integration of spatial data infrastructures (SDIs) with emerging smart city technologies to improve local governance. SDIs provide a structured framework for managing geospatial data and, in combination with IoT sensors, geospatial and 3D platforms, cloud computing and AI-powered analytics, enable real-time data-driven decision-making. The review identifies four key technology areas: IoT and sensor technologies, geospatial and 3D mapping platforms, cloud-based data infrastructures, and AI analytics that uniquely contribute to smart governance through improved monitoring, prediction, visualization, and automation. Opportunities include improved urban resilience, public service delivery, environmental monitoring and citizen engagement. However, challenges remain in terms of interoperability, data protection, institutional barriers and unequal access to technologies. To fully realize the potential of integrated SDIs in smart government, the report highlights the need for open standards, ethical frameworks, cross-sector collaboration and citizen-centric design. Ultimately, this synthesis provides a comprehensive basis for promoting inclusive, adaptive and accountable local governance systems through spatially enabled smart technologies. Full article
Show Figures

Graphical abstract

33 pages, 2091 KB  
Review
Blockchain and Smart Cities: Co-Word Analysis and BERTopic Modeling
by Abderahman Rejeb, Karim Rejeb, Heba F. Zaher and Steve Simske
Smart Cities 2025, 8(4), 111; https://doi.org/10.3390/smartcities8040111 - 1 Jul 2025
Viewed by 1203
Abstract
This paper explores the intersection of blockchain technology and smart cities to support the transition toward decentralized, secure, and sustainable urban systems. Drawing on co-word analysis and BERTopic modeling applied to the literature published between 2016 and 2025, this study maps the thematic [...] Read more.
This paper explores the intersection of blockchain technology and smart cities to support the transition toward decentralized, secure, and sustainable urban systems. Drawing on co-word analysis and BERTopic modeling applied to the literature published between 2016 and 2025, this study maps the thematic and technological evolution of blockchain in urban environments. The co-word analysis reveals blockchain’s foundational role in enabling secure and interoperable infrastructures, particularly through its integration with IoT, edge computing, and smart contracts. These systems underpin critical urban services such as transportation, healthcare, energy trading, and waste management by enhancing data privacy, authentication, and system resilience. The application of BERTopic modeling further uncovers a shift from general technological exploration to more specialized and sector-specific applications. These include real-time mobility systems, decentralized healthcare platforms, peer-to-peer energy exchanges, and blockchain-enabled drone coordination. The results demonstrate that blockchain increasingly supports cross-sectoral innovation, enabling transparency, trust, and circular flows in urban systems. Overall, the current study identifies blockchain as both a technological backbone and an ethical infrastructure for smart cities that supports secure, adaptive, and sustainable urban development. Full article
Show Figures

Figure 1

25 pages, 2409 KB  
Article
A Study on Imbalances in Urban Internal Spatial Capacity Allocation Based on High-Precision Population and Land Value Distribution Data
by Peiru Wu, Maojun Zhai and Lingzhu Zhang
Smart Cities 2025, 8(4), 110; https://doi.org/10.3390/smartcities8040110 - 1 Jul 2025
Viewed by 669
Abstract
In the context of intelligent and fine-grained urban governance, the coordinated configuration of spatial capacity and locational value has become a key proposition for optimizing urban resource utilization. Using Shanghai as a case study, this paper represents spatial capacity with population density and [...] Read more.
In the context of intelligent and fine-grained urban governance, the coordinated configuration of spatial capacity and locational value has become a key proposition for optimizing urban resource utilization. Using Shanghai as a case study, this paper represents spatial capacity with population density and locational value with land values. By quantifying the degree of spatial mismatch between population density and land values, the study reveals the imbalance between spatial capacity and locational value. First, the research calibrates the population grid data to obtain the population distribution within the study area; subsequently, a composite land value prediction model is constructed to compute the land value distribution across the study region; finally, the spatial mismatch index is calculated using the regression residual method to quantify the degree to which population density deviates from land values. The results indicate that there is a significant spatial mismatch between population density and land values in Shanghai, which unveils an imbalance in the allocation of spatial capacity within the city. This framework can be integrated into smart city digital twins and real-time monitoring platforms, providing 100 m resolution decision support for spatial resource optimization. Full article
Show Figures

Figure 1

Back to TopTop