Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = small-molecule immunotherapeutic drug

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4543 KiB  
Article
A New Protein–Ligand Trapping System to Rapidly Screen and Discover Small-Molecule Inhibitors of PD-L1 from Natural Products
by Yazhuo Huang, Senfeng Sun, Runxin Yin, Zongtao Lin, Daidong Wang, Wanwan Wang, Xiangyu Fu, Jing Wang, Xinyu Lei, Mimi Sun, Shizhong Chen and Hong Wang
Molecules 2025, 30(8), 1754; https://doi.org/10.3390/molecules30081754 - 14 Apr 2025
Viewed by 713
Abstract
Chinese herbal medicines have played a significant role in the development of new and effective drugs, but how to identify the active ingredients from complex extracts of traditional Chinese herbal medicines was a research difficulty. In recent years, few studies have focused on [...] Read more.
Chinese herbal medicines have played a significant role in the development of new and effective drugs, but how to identify the active ingredients from complex extracts of traditional Chinese herbal medicines was a research difficulty. In recent years, few studies have focused on high-efficiency identification of small-molecule inhibitors of Programmed Death Ligand 1 with lower antigenicity and flexible structure tunability. In order to identify small molecule inhibitors of PD-L1 from complex Chinese herbal extracts, this study established a protein–ligand trapping system based on high-performance liquid chromatography coupled with a photo-diode array detector, ion trap/quadrupole time-of-flight tandem mass spectrometry, and a Programmed Death Ligand 1 affinity chromatography unit (ACPD-L1-HPLC-PDA-IT-TOF (Q-TOF)-MS) to rapidly screen and identify small-molecule inhibitors of Programmed Death Ligand 1 from Toddalia asiatica (L.) Lam. Fourteen components were then identified as PD-L1 binders, and surface plasmon resonance (SPR) validation results showed that six of them—magnoflorine (6), nitidine (22), chelerythrine (24), jatrorrhizine (13), toddaculin (68), and toddanol (45)—displayed PD-L1 binding activity. Laser scanning confocal microscopy results demonstrated that these compounds effectively inhibited the binding of PD-1 to PD-L1 in a dose-dependent manner. Additionally, flow cytometry analysis indicated they could promote human lung cancer cell line (A549) apoptosis when co-cultured with Peripheral Blood Mononuclear Cells (PBMCs). The system’s innovation lies in its first integration of dynamic protein–ligand trapping with multi-dimensional validation, coupled with high-throughput screening capacity for structurally diverse natural products. This workflow overcomes traditional phytochemical screening bottlenecks by preserving native protein conformations during affinity capture while maintaining chromatographic resolution, offering a transformative template for accelerating natural product-derived immunotherapeutics through the PD-1/PD-L1 pathway. Full article
(This article belongs to the Special Issue Anticancer Natural Products)
Show Figures

Figure 1

22 pages, 3826 KiB  
Review
Silicasomes in Oncology: From Conventional Chemotherapy to Combined Immunotherapy
by Alicia Arroyo-Nogales, Guillermo Plaza-Palomo, Javier González-Larre, Sandra Jiménez-Falcao and Alejandro Baeza
Molecules 2025, 30(6), 1257; https://doi.org/10.3390/molecules30061257 - 11 Mar 2025
Cited by 1 | Viewed by 924
Abstract
The use of nanoparticles as drug carriers in oncology has evolved from their traditional role as chemotherapy carriers to their application in immunotherapy, exploiting not only their passive accumulation in solid tumors but also their ability to interact with immune cells. Silicasomes are [...] Read more.
The use of nanoparticles as drug carriers in oncology has evolved from their traditional role as chemotherapy carriers to their application in immunotherapy, exploiting not only their passive accumulation in solid tumors but also their ability to interact with immune cells. Silicasomes are highly versatile nanoplatforms composed of a mesoporous silica core whose external surface is coated with a lipid bilayer that allows the co-delivery of therapeutic agents having different chemical natures (small molecules, proteins, enzymes, or oligonucleotides, among others). Herein, cutting-edge advances carried out in the development and application of silicasomes are presented, providing a general description of the performance of these nanotransporters. Additionally, the specific load of chemotherapeutic drugs is explored, followed by a discussion of the immunotherapeutic application of silicasomes and the combination of different therapeutic strategies, including theragnosis, in a single silicasome platform, highlighting the enormous potential of these nanosystems. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Graphical abstract

22 pages, 4614 KiB  
Review
Biomimetic Nucleic Acid Drug Delivery Systems for Relieving Tumor Immunosuppressive Microenvironment
by Wenlu Yan, Ying Cao, Qi Yin and Yaping Li
Pharmaceutics 2024, 16(8), 1028; https://doi.org/10.3390/pharmaceutics16081028 - 1 Aug 2024
Viewed by 1824
Abstract
Immunotherapy combats tumors by enhancing the body’s immune surveillance and clearance of tumor cells. Various nucleic acid drugs can be used in immunotherapy, such as DNA expressing cytokines, mRNA tumor vaccines, small interfering RNAs (siRNA) knocking down immunosuppressive molecules, and oligonucleotides that can [...] Read more.
Immunotherapy combats tumors by enhancing the body’s immune surveillance and clearance of tumor cells. Various nucleic acid drugs can be used in immunotherapy, such as DNA expressing cytokines, mRNA tumor vaccines, small interfering RNAs (siRNA) knocking down immunosuppressive molecules, and oligonucleotides that can be used as immune adjuvants. Nucleic acid drugs, which are prone to nuclease degradation in the circulation and find it difficult to enter the target cells, typically necessitate developing appropriate vectors for effective in vivo delivery. Biomimetic drug delivery systems, derived from viruses, bacteria, and cells, can protect the cargos from degradation and clearance, and deliver them to the target cells to ensure safety. Moreover, they can activate the immune system through their endogenous activities and active components, thereby improving the efficacy of antitumor immunotherapeutic nucleic acid drugs. In this review, biomimetic nucleic acid delivery systems for relieving a tumor immunosuppressive microenvironment are introduced. Their immune activation mechanisms, including upregulating the proinflammatory cytokines, serving as tumor vaccines, inhibiting immune checkpoints, and modulating intratumoral immune cells, are elaborated. The advantages and disadvantages, as well as possible directions for their clinical translation, are summarized at last. Full article
(This article belongs to the Special Issue Nanomedicines for Overcoming Tumor Immunotherapy Tolerance)
Show Figures

Graphical abstract

26 pages, 1949 KiB  
Review
Small Molecule Therapeutics in the Pipeline Targeting for Triple-Negative Breast Cancer: Origin, Challenges, Opportunities, and Mechanisms of Action
by Nneoma James, Esther Owusu, Gildardo Rivera and Debasish Bandyopadhyay
Int. J. Mol. Sci. 2024, 25(11), 6285; https://doi.org/10.3390/ijms25116285 - 6 Jun 2024
Cited by 9 | Viewed by 4660
Abstract
Triple-negative breast cancer (TNBC) cells are devoid of estrogen receptors (ERs), progesterone receptor (PRs), and human epidermal growth factor receptor 2 (HER2), and it (TNBC) counts for about 10–15% of all breast cancers. TNBC is highly invasive, having a faster growth rate and [...] Read more.
Triple-negative breast cancer (TNBC) cells are devoid of estrogen receptors (ERs), progesterone receptor (PRs), and human epidermal growth factor receptor 2 (HER2), and it (TNBC) counts for about 10–15% of all breast cancers. TNBC is highly invasive, having a faster growth rate and a higher risk of metastasis and recurrence. Still, chemotherapy is one of the widely used options for treating TNBC. This study reviewed the histological and molecular characterization of TNBC subtypes, signaling pathways that are aberrantly expressed, and small molecules targeting these pathways, as either single agents or in combination with other therapeutic agents like chemotherapeutics, immunotherapeutics, and antibody–drug conjugates; their mechanisms of action, challenges, and future perspectives were also reviewed. A detailed analytical review was carried out using the literature collected from the SciFinder, PubMed, ScienceDirect, Google Scholar, ACS, Springer, and Wiley databases. Several small molecule inhibitors were found to be therapeutics for treating TNBC. The mechanism of action and the different signaling pathways through which the small molecules exert their effects were studied, including clinical trials, if reported. These small molecule inhibitors include buparlisib, everolimus, vandetanib, apatinib, olaparib, salidroside, etc. Some of the signaling pathways involved in TNBC, including the VEGF, PARP, STAT3, MAPK, EGFR, P13K, and SRC pathways, were discussed. Due to the absence of these biomarkers, drug development for treating TNBC is challenging, with chemotherapy being the main therapeutic agent. However, chemotherapy is associated with chemoresistance and a high toxicity to healthy cells as side effects. Hence, there is a continuous demand for small-molecule inhibitors that specifically target several signaling pathways that are abnormally expressed in TNBC. We attempted to include all the recent developments in this field. Any omission is truly unintentional. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 3544 KiB  
Review
Small Molecule Immunomodulators as Next-Generation Therapeutics for Glioblastoma
by Somaya A. Abdel-Rahman and Moustafa Gabr
Cancers 2024, 16(2), 435; https://doi.org/10.3390/cancers16020435 - 19 Jan 2024
Cited by 6 | Viewed by 3725
Abstract
Glioblastoma (GBM), the most aggressive astrocytic glioma, remains a therapeutic challenge despite multimodal approaches. Immunotherapy holds promise, but its efficacy is hindered by the highly immunosuppressive GBM microenvironment. This review underscores the urgent need to comprehend the intricate interactions between glioma and immune [...] Read more.
Glioblastoma (GBM), the most aggressive astrocytic glioma, remains a therapeutic challenge despite multimodal approaches. Immunotherapy holds promise, but its efficacy is hindered by the highly immunosuppressive GBM microenvironment. This review underscores the urgent need to comprehend the intricate interactions between glioma and immune cells, shaping the immunosuppressive tumor microenvironment (TME) in GBM. Immunotherapeutic advancements have shown limited success, prompting exploration of immunomodulatory approaches targeting tumor-associated macrophages (TAMs) and microglia, constituting a substantial portion of the GBM TME. Converting protumor M2-like TAMs to antitumor M1-like phenotypes emerges as a potential therapeutic strategy for GBM. The blood–brain barrier (BBB) poses an additional challenge to successful immunotherapy, restricting drug delivery to GBM TME. Research efforts to enhance BBB permeability have mainly focused on small molecules, which can traverse the BBB more effectively than biologics. Despite over 200 clinical trials for GBM, studies on small molecule immunomodulators within the GBM TME are scarce. Developing small molecules with optimal brain penetration and selectivity against immunomodulatory pathways presents a promising avenue for combination therapies in GBM. This comprehensive review discusses various immunomodulatory pathways in GBM progression with a focus on immune checkpoints and TAM-related targets. The exploration of such molecules, with the capacity to selectively target key immunomodulatory pathways and penetrate the BBB, holds the key to unlocking new combination therapy approaches for GBM. Full article
(This article belongs to the Special Issue Research on Targeted Drugs in Cancer)
Show Figures

Figure 1

36 pages, 516 KiB  
Review
Immunotherapy of Multiple Myeloma: Current Status as Prologue to the Future
by Hanley N. Abramson
Int. J. Mol. Sci. 2023, 24(21), 15674; https://doi.org/10.3390/ijms242115674 - 27 Oct 2023
Cited by 11 | Viewed by 6266
Abstract
The landscape of therapeutic measures to treat multiple myeloma has undergone a seismic shift since the dawn of the current century. This has been driven largely by the introduction of new classes of small molecules, such as proteasome blockers (e.g., bortezomib) and immunomodulators [...] Read more.
The landscape of therapeutic measures to treat multiple myeloma has undergone a seismic shift since the dawn of the current century. This has been driven largely by the introduction of new classes of small molecules, such as proteasome blockers (e.g., bortezomib) and immunomodulators (e.g., lenalidomide), as well as by immunotherapeutic agents starting with the anti-CD38 monoclonal antibody daratumumab in 2015. Recently, other immunotherapies have been added to the armamentarium of drugs available to fight this malignancy. These include the bispecifics teclistamab, talquetamab, and elranatamab, and the chimeric antigen receptor (CAR) T-cell products idecabtagene vicleucel (ide-cel) and ciltacabtagene autoleucel (cilta-cel). While the accumulated benefits of these newer agents have resulted in a more than doubling of the disease’s five-year survival rate to nearly 60% and improved quality of life, the disease remains incurable, as patients become refractory to the drugs and experience relapse. This review covers the current scope of antimyeloma immunotherapeutic agents, both those in clinical use and in development. Included in the discussion are additional monoclonal antibodies (mAbs), antibody–drug conjugates (ADCs), bi- and multitargeted mAbs, and CAR T-cells and emerging natural killer (NK) cells, including products intended for “off-the-shelf” (allogeneic) applications. Emphasis is placed on the benefits of each along with the challenges that need to be surmounted if MM is to be cured. Full article
(This article belongs to the Special Issue Fifty Years of Targeted Therapy in Cancer: Past, Present and Future)
31 pages, 4316 KiB  
Review
Extracellular Vesicles in Triple–Negative Breast Cancer: Immune Regulation, Biomarkers, and Immunotherapeutic Potential
by Kaushik Das, Subhojit Paul, Arnab Ghosh, Saurabh Gupta, Tanmoy Mukherjee, Prem Shankar, Anshul Sharma, Shiva Keshava, Subhash C. Chauhan, Vivek Kumar Kashyap and Deepak Parashar
Cancers 2023, 15(19), 4879; https://doi.org/10.3390/cancers15194879 - 7 Oct 2023
Cited by 23 | Viewed by 4832
Abstract
Triple–negative breast cancer (TNBC) is an aggressive subtype accounting for ~10–20% of all human BC and is characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) amplification. Owing to its unique molecular profile [...] Read more.
Triple–negative breast cancer (TNBC) is an aggressive subtype accounting for ~10–20% of all human BC and is characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) amplification. Owing to its unique molecular profile and limited targeted therapies, TNBC treatment poses significant challenges. Unlike other BC subtypes, TNBC lacks specific molecular targets, rendering endocrine therapies and HER2–targeted treatments ineffective. The chemotherapeutic regimen is the predominant systemic treatment modality for TNBC in current clinical practice. However, the efficacy of chemotherapy in TNBC is variable, with response rates varying between a wide range of patients, and the emerging resistance further adds to the difficulties. Furthermore, TNBC exhibits a higher mutational burden and is acknowledged as the most immunogenic of all BC subtypes. Consequently, the application of immune checkpoint inhibition has been investigated in TNBC, yielding promising outcomes. Recent evidence identified extracellular vesicles (EVs) as an important contributor in the context of TNBC immunotherapy. In view of the extraordinary ability of EVs to transfer bioactive molecules, such as proteins, lipids, DNA, mRNAs, and small miRNAs, between the cells, EVs are considered a promising diagnostic biomarker and novel drug delivery system among the prospects for immunotherapy. The present review provides an in–depth understanding of how EVs influence TNBC progression, its immune regulation, and their contribution as a predictive biomarker for TNBC. The final part of the review focuses on the recent key advances in immunotherapeutic strategies for better understanding the complex interplay between EVs and the immune system in TNBC and further developing EV–based targeted immunotherapies. Full article
(This article belongs to the Special Issue Emerging Trends in Immunotherapy for Triple Negative Breast Cancer)
Show Figures

Figure 1

23 pages, 2986 KiB  
Review
Immunomodulatory Gene-Splicing Dysregulation in Tumorigenesis: Unmasking the Complexity
by Lorraine Tshegofatso Maebele, Thanyani Victor Mulaudzi, Madhavan Yasasve, Zodwa Dlamini and Botle Precious Damane
Molecules 2023, 28(16), 5984; https://doi.org/10.3390/molecules28165984 - 10 Aug 2023
Cited by 3 | Viewed by 2548
Abstract
Cancer is a global health concern with rising incidence, morbidity, and mortality. The interaction between the tumor and immune cells within the tumor microenvironment is facilitated by signaling pathways driven by immunomodulatory proteins. Alternative splicing regulates the production of multiple immunomodulatory proteins with [...] Read more.
Cancer is a global health concern with rising incidence, morbidity, and mortality. The interaction between the tumor and immune cells within the tumor microenvironment is facilitated by signaling pathways driven by immunomodulatory proteins. Alternative splicing regulates the production of multiple immunomodulatory proteins with diverse functionality from a single mRNA transcript. Splicing factors are pivotal in modulating alternative splicing processes but are also subject to regulation. The dysregulation of alternative splicing may result from splicing factor (SF) abnormal expression levels and mutations in the cis and trans-acting elements and small nuclear RNA (snRNA) molecules. Aberrant splicing may generate abnormal mRNA transcripts encoding isoforms with altered functions that contribute to tumorigenesis or cancer progression. This review uncovers the complexity of immunomodulatory genes splicing dysregulation in oncogenesis. Identifying specific immunomodulatory splicing isoforms that contribute to cancer could be utilized to improve current immunotherapeutic drugs or develop novel therapeutic interventions for cancer. Full article
(This article belongs to the Special Issue Targeting of Signaling Pathways for Cancer Therapy, 2nd Edition)
Show Figures

Graphical abstract

29 pages, 1425 KiB  
Review
Induced Vascular Normalization—Can One Force Tumors to Surrender to a Better Microenvironment?
by Xu Xin Sun, Zeynab Nosrati, Janell Ko, Che-Min Lee, Kevin L. Bennewith and Marcel B. Bally
Pharmaceutics 2023, 15(8), 2022; https://doi.org/10.3390/pharmaceutics15082022 - 26 Jul 2023
Cited by 2 | Viewed by 3621
Abstract
Immunotherapy has changed the way many cancers are being treated. Researchers in the field of immunotherapy and tumor immunology are investigating similar questions: How can the positive benefits achieved with immunotherapies be enhanced? Can this be achieved through combinations with other agents and [...] Read more.
Immunotherapy has changed the way many cancers are being treated. Researchers in the field of immunotherapy and tumor immunology are investigating similar questions: How can the positive benefits achieved with immunotherapies be enhanced? Can this be achieved through combinations with other agents and if so, which ones? In our view, there is an urgent need to improve immunotherapy to make further gains in the overall survival for those patients that should benefit from immunotherapy. While numerous different approaches are being considered, our team believes that drug delivery methods along with appropriately selected small-molecule drugs and drug candidates could help reach the goal of doubling the overall survival rate that is seen in some patients that are given immunotherapeutics. This review article is prepared to address how immunotherapies should be combined with a second treatment using an approach that could realize therapeutic gains 10 years from now. For context, an overview of immunotherapy and cancer angiogenesis is provided. The major targets in angiogenesis that have modulatory effects on the tumor microenvironment and immune cells are highlighted. A combination approach that, for us, has the greatest potential for success involves treatments that will normalize the tumor’s blood vessel structure and alter the immune microenvironment to support the action of immunotherapeutics. So, this is reviewed as well. Our focus is to provide an insight into some strategies that will engender vascular normalization that may be better than previously described approaches. The potential for drug delivery systems to promote tumor blood vessel normalization is considered. Full article
(This article belongs to the Special Issue Immunomodulatory Effects of Drugs for Cancer Immunotherapy)
Show Figures

Figure 1

24 pages, 839 KiB  
Review
Targeting Tyrosine Kinases in Ovarian Cancer: Small Molecule Inhibitor and Monoclonal Antibody, Where Are We Now?
by Aimee Rendell, Isobel Thomas-Bland, Lee McCuish, Christopher Taylor, Mudra Binju and Yu Yu
Biomedicines 2022, 10(9), 2113; https://doi.org/10.3390/biomedicines10092113 - 29 Aug 2022
Cited by 14 | Viewed by 5132
Abstract
Ovarian cancer is one of the most lethal gynaecological malignancies worldwide. Despite high success rates following first time treatment, this heterogenous disease is prone to recurrence. Oncogenic activity of receptor tyrosine kinases is believed to drive the progression of ovarian cancer. Here we [...] Read more.
Ovarian cancer is one of the most lethal gynaecological malignancies worldwide. Despite high success rates following first time treatment, this heterogenous disease is prone to recurrence. Oncogenic activity of receptor tyrosine kinases is believed to drive the progression of ovarian cancer. Here we provide an update on the progress of the therapeutic targeting of receptor tyrosine kinases in ovarian cancer. Broadly, drug classes that inhibit tyrosine kinase/pathways can be classified as small molecule inhibitors, monoclonal antibodies, or immunotherapeutic vaccines. Small molecule inhibitors tested in clinical trials thus far include sorafenib, sunitinib, pazopanib, tivantinib, and erlotinib. Monoclonal antibodies include bevacizumab, cetuximab, pertuzumab, trastuzumab, and seribantumab. While numerous trials have been carried out, the results of monotherapeutic agents have not been satisfactory. For combination with chemotherapy, the monoclonal antibodies appear more effective, though the efficacy is limited by low frequency of target alteration and a lack of useful predictive markers for treatment stratification. There remain critical gaps for the treatment of platinum-resistant ovarian cancers; however, platinum-sensitive tumours may benefit from the combination of tyrosine kinase targeting drugs and PARP inhibitors. Immunotherapeutics such as a peptide B-cell epitope vaccine and plasmid-based DNA vaccine have shown some efficacy both as monotherapeutic agents and in combination therapy, but require further development to validate current findings. In conclusion, the tyrosine kinases remain attractive targets for treating ovarian cancers. Future development will need to consider effective drug combination, frequency of target, and developing predictive biomarker. Full article
(This article belongs to the Special Issue Advanced Molecular Research on Ovarian Cancer)
Show Figures

Graphical abstract

17 pages, 3001 KiB  
Article
OATD-02 Validates the Benefits of Pharmacological Inhibition of Arginase 1 and 2 in Cancer
by Marcin Mikołaj Grzybowski, Paulina Seweryna Stańczak, Paulina Pomper, Roman Błaszczyk, Bartłomiej Borek, Anna Gzik, Julita Nowicka, Karol Jędrzejczak, Joanna Brzezińska, Tomasz Rejczak, Nazan Cemre Güner-Chalimoniuk, Agnieszka Kikulska, Michał Mlącki, Jolanta Pęczkowicz-Szyszka, Jacek Olczak, Adam Gołębiowski, Karolina Dzwonek, Paweł Dobrzański and Zbigniew Zasłona
Cancers 2022, 14(16), 3967; https://doi.org/10.3390/cancers14163967 - 17 Aug 2022
Cited by 22 | Viewed by 7026
Abstract
Background: Arginases play essential roles in metabolic pathways, determining the fitness of both immune and tumour cells. Along with the previously validated role of ARG1 in cancer, the particular significance of ARG2 as a therapeutic target has emerged as its levels correlate with [...] Read more.
Background: Arginases play essential roles in metabolic pathways, determining the fitness of both immune and tumour cells. Along with the previously validated role of ARG1 in cancer, the particular significance of ARG2 as a therapeutic target has emerged as its levels correlate with malignant phenotype and poor prognosis. These observations unveil arginases, and specifically ARG2, as well-validated and promising therapeutic targets. OATD-02, a new boronic acid derivative, is the only dual inhibitor, which can address the benefits of pharmacological inhibition of arginase 1 and 2 in cancer. Methods: The inhibitory activity of OATD-02 was determined using recombinant ARG1 and ARG2, as well as in a cellular system using primary hepatocytes and macrophages. In vivo antitumor activity was determined in syngeneic models of colorectal and kidney carcinomas (CT26 and Renca, respectively), as well as in an ARG2-dependent xenograft model of leukaemia (K562). Results: OATD-02 was shown to be a potent dual (ARG1/ARG2) arginase inhibitor with a cellular activity necessary for targeting ARG2. Compared to a reference inhibitor with predominant extracellular activity towards ARG1, we have shown improved and statistically significant antitumor efficacy in the CT26 model and an immunomodulatory effect reflected by Treg inhibition in the Renca model. Importantly, OATD-02 had a superior activity when combined with other immunotherapeutics. Finally, OATD-02 effectively inhibited the proliferation of human K562 leukemic cells both in vitro and in vivo. Conclusions: OATD-02 is a potent small-molecule arginase inhibitor with optimal drug-like properties, including PK/PD profile. Excellent activity against intracellular ARG2 significantly distinguishes OATD-02 from other arginase inhibitors. OATD-02 represents a very promising drug candidate for the combined treatment of tumours, and is the only pharmacological tool that can effectively address the benefits of ARG1/ARG2 inhibition. OATD-02 will enter clinical trials in cancer patients in 2022. Full article
(This article belongs to the Topic Advances in Anti-Cancer Drugs)
Show Figures

Figure 1

18 pages, 677 KiB  
Review
Future Prospects of Immunotherapy in Non-Small-Cell Lung Cancer Patients: Is There Hope in Other Immune Checkpoints Targeting Molecules?
by Natalia Krzyżanowska, Kamila Wojas-Krawczyk, Janusz Milanowski and Paweł Krawczyk
Int. J. Mol. Sci. 2022, 23(6), 3087; https://doi.org/10.3390/ijms23063087 - 13 Mar 2022
Cited by 9 | Viewed by 3488
Abstract
Currently, one of the leading treatments for non-small-cell lung cancer is immunotherapy involving immune checkpoint inhibitors. These monoclonal antibodies restore the anti-tumour immune response altered by negative immune checkpoint interactions. The most commonly used immunotherapeutics in monotherapy are anti-PD-1 and anti-PD-L1 antibodies. The [...] Read more.
Currently, one of the leading treatments for non-small-cell lung cancer is immunotherapy involving immune checkpoint inhibitors. These monoclonal antibodies restore the anti-tumour immune response altered by negative immune checkpoint interactions. The most commonly used immunotherapeutics in monotherapy are anti-PD-1 and anti-PD-L1 antibodies. The effectiveness of both groups of antibodies has been proven in many clinical trials, which have translated into positive immunotherapeutic registrations for cancer patients worldwide. These antibodies are generally well tolerated, and certain patients achieve durable responses. However, given the resistance of some patients to this form of therapy, along with its other drawbacks, such as adverse events, alternatives are constantly being sought. Specifically, new drugs targeting already known molecules are being tested, and new potential targets are being explored. The aim of this paper is to provide an overview of the latest developments in this area. Full article
(This article belongs to the Special Issue Molecular Immunology of Solid Tumors)
Show Figures

Figure 1

37 pages, 5300 KiB  
Review
Polymeric Hydrogels for Controlled Drug Delivery to Treat Arthritis
by Anuradha Gupta, Jungmi Lee, Torsha Ghosh, Van Quy Nguyen, Anup Dey, Been Yoon, Wooram Um and Jae Hyung Park
Pharmaceutics 2022, 14(3), 540; https://doi.org/10.3390/pharmaceutics14030540 - 28 Feb 2022
Cited by 34 | Viewed by 7919
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are disabling musculoskeletal disorders that affect joints and cartilage and may lead to bone degeneration. Conventional delivery of anti-arthritic agents is limited due to short intra-articular half-life and toxicities. Innovations in polymer chemistry have led to advancements [...] Read more.
Rheumatoid arthritis (RA) and osteoarthritis (OA) are disabling musculoskeletal disorders that affect joints and cartilage and may lead to bone degeneration. Conventional delivery of anti-arthritic agents is limited due to short intra-articular half-life and toxicities. Innovations in polymer chemistry have led to advancements in hydrogel technology, offering a versatile drug delivery platform exhibiting tissue-like properties with tunable drug loading and high residence time properties This review discusses the advantages and drawbacks of polymeric materials along with their modifications as well as their applications for fabricating hydrogels loaded with therapeutic agents (small molecule drugs, immunotherapeutic agents, and cells). Emphasis is given to the biological potentialities of hydrogel hybrid systems/micro-and nanotechnology-integrated hydrogels as promising tools. Applications for facile tuning of therapeutic drug loading, maintaining long-term release, and consequently improving therapeutic outcome and patient compliance in arthritis are detailed. This review also suggests the advantages, challenges, and future perspectives of hydrogels loaded with anti-arthritic agents with high therapeutic potential that may alter the landscape of currently available arthritis treatment modalities. Full article
(This article belongs to the Special Issue Innovative Polymers for Controlled Drug Delivery)
Show Figures

Figure 1

23 pages, 2596 KiB  
Review
miRNAs in the Regulation of Cancer Immune Response: Effect of miRNAs on Cancer Immunotherapy
by Faheem Hyder Pottoo, Ashif Iqubal, Mohammad Kashif Iqubal, Mohammed Salahuddin, Jawad Ur Rahman, Noora AlHajri and Mustafa Shehadeh
Cancers 2021, 13(23), 6145; https://doi.org/10.3390/cancers13236145 - 6 Dec 2021
Cited by 16 | Viewed by 4211
Abstract
In the last few decades, carcinogenesis has been extensively explored and substantial research has identified immunogenic involvement in various types of cancers. As a result, immune checkpoint blockers and other immune-based therapies were developed as novel immunotherapeutic strategies. However, despite being a promising [...] Read more.
In the last few decades, carcinogenesis has been extensively explored and substantial research has identified immunogenic involvement in various types of cancers. As a result, immune checkpoint blockers and other immune-based therapies were developed as novel immunotherapeutic strategies. However, despite being a promising therapeutic option, immunotherapy has significant constraints such as a high cost of treatment, unpredictable toxicity, and clinical outcomes. miRNAs are non-coding, small RNAs actively involved in modulating the immune system’s multiple signalling pathways by binding to the 3′-UTR of target genes. miRNAs possess a unique advantage in modulating multiple targets of either the same or different signalling pathways. Therefore, miRNA follows a ‘one drug multiple target’ hypothesis. Attempts are made to explore the therapeutic promise of miRNAs in cancer so that it can be transported from bench to bedside for successful immunotherapeutic results. Therefore, in the current manuscript, we discussed, in detail, the mechanism and role of miRNAs in different types of cancers relating to the immune system, its diagnostic and therapeutic aspect, the effect on immune escape, immune-checkpoint molecules, and the tumour microenvironment. We have also discussed the existing limitations, clinical success and the prospective use of miRNAs in cancer. Full article
(This article belongs to the Collection miRNAs: New Insights in Tumor Biology)
Show Figures

Figure 1

15 pages, 3356 KiB  
Article
Pro-Apoptotic and Immunotherapeutic Effects of Carbon Nanotubes Functionalized with Recombinant Human Surfactant Protein D on Leukemic Cells
by Haseeb A. Khan, Uday Kishore, Hamed M. Alsulami and Salman H. Alrokayan
Int. J. Mol. Sci. 2021, 22(19), 10445; https://doi.org/10.3390/ijms221910445 - 28 Sep 2021
Cited by 5 | Viewed by 2577
Abstract
Nanoparticles are efficient drug delivery vehicles for targeting specific organs as well as systemic therapy for a range of diseases, including cancer. However, their interaction with the immune system offers an intriguing challenge. Due to the unique physico-chemical properties, carbon nanotubes (CNTs) are [...] Read more.
Nanoparticles are efficient drug delivery vehicles for targeting specific organs as well as systemic therapy for a range of diseases, including cancer. However, their interaction with the immune system offers an intriguing challenge. Due to the unique physico-chemical properties, carbon nanotubes (CNTs) are considered as nanocarriers of considerable interest in cancer diagnosis and therapy. CNTs, as a promising nanomaterial, are capable of both detecting as well as delivering drugs or small therapeutic molecules to tumour cells. In this study, we coupled a recombinant fragment of human surfactant protein D (rfhSP-D) with carboxymethyl-cellulose (CMC) CNTs (CMC-CNT, 10–20 nm diameter) for augmenting their apoptotic and immunotherapeutic properties using two leukemic cell lines. The cell viability of AML14.3D10 or K562 cancer cell lines was reduced when cultured with CMC-mwCNT-coupled-rfhSP-D (CNT + rfhSP-D) at 24 h. Increased levels of caspase 3, 7 and cleaved caspase 9 in CNT + rfhSP-D treated AML14.3D10 and K562 cells suggested an involvement of an intrinsic pathway of apoptosis. CNT + rfhSP-D treated leukemic cells also showed higher mRNA expression of p53 and cell cycle inhibitors (p21 and p27). This suggested a likely reduction in cdc2-cyclin B1, causing G2/M cell cycle arrest and p53-dependent apoptosis in AML14.3D10 cells, while p53-independent mechanisms appeared to be in operation in K562 cells. We suggest that CNT + rfhSP-D has therapeutic potential in targeting leukemic cells, irrespective of their p53 status, and thus, it is worth setting up pre-clinical trials in animal models. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Healthcare)
Show Figures

Figure 1

Back to TopTop