Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = single-plasmid derivative

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 1459 KiB  
Review
Current Landscape of Preclinical Models for Pediatric Gliomas: Clinical Implications and Future Directions
by Syed M. Faisal, Monika Yadav, Garrett R. Gibson, Adora T. Klinestiver, Ryan M. Sorenson, Evan Cantor, Maria Ghishan, John R. Prensner, Andrea T. Franson, Kevin F. Ginn, Carl Koschmann and Viveka Nand Yadav
Cancers 2025, 17(13), 2221; https://doi.org/10.3390/cancers17132221 - 2 Jul 2025
Viewed by 1249
Abstract
Pediatric high-grade gliomas (pHGGs), particularly diffuse midline gliomas (DMGs), are among the most lethal brain tumors due to poor survival and resistance to therapies. DMGs possess a distinct genetic profile, primarily driven by hallmark mutations such as H3K27M, ACVR1, and PDGFRA mutations/amplifications and [...] Read more.
Pediatric high-grade gliomas (pHGGs), particularly diffuse midline gliomas (DMGs), are among the most lethal brain tumors due to poor survival and resistance to therapies. DMGs possess a distinct genetic profile, primarily driven by hallmark mutations such as H3K27M, ACVR1, and PDGFRA mutations/amplifications and TP53 inactivation, all of which contribute to tumor biology and therapeutic resistance. Developing physiologically relevant preclinical models that replicate both tumor biology and the tumor microenvironment (TME) is critical for advancing effective treatments. This review highlights recent progress in in vitro, ex vivo, and in vivo models, including patient-derived brain organoids, genetically engineered mouse models (GEMMs), and region-specific midline organoids incorporating SHH, BMP, and FGF2/8/19 signaling to model pontine gliomas. Key genetic alterations can now be introduced using lipofectamine-mediated transfection, PiggyBac plasmid systems, and CRISPR-Cas9, allowing the precise study of tumor initiation, progression, and therapy resistance. These models enable the investigation of TME interactions, including immune responses, neuronal infiltration, and therapeutic vulnerabilities. Future advancements involve developing immune-competent organoids, integrating vascularized networks, and applying multi-omics platforms like single-cell RNA sequencing and spatial transcriptomics to dissect tumor heterogeneity and lineage-specific vulnerabilities. These innovative approaches aim to enhance drug screening, identify new therapeutic targets, and accelerate personalized treatments for pediatric gliomas. Full article
Show Figures

Figure 1

25 pages, 1483 KiB  
Article
Cobalt(II) Complexes of 4′–Nitro–Fenamic Acid: Characterization and Biological Evaluation
by Georgios Malis, Antigoni Roussa, Efstathia Aikaterini Papantopoulou, Stavros Kalogiannis, Antonios G. Hatzidimitriou, Konstantina C. Fylaktakidou and George Psomas
Molecules 2025, 30(12), 2621; https://doi.org/10.3390/molecules30122621 - 17 Jun 2025
Viewed by 361
Abstract
A nitro-derivative of fenamic acid (4′–nitro–fenamic acid) was synthesized and used as ligand for the synthesis of four Co(II) complexes in the absence or presence of the N,N′-donors 2,2′–bipyridylamine, 1,10–phenanthroline and 2,9–dimethyl–1,10–phenanthroline. The characterization of the resultant complexes was performed [...] Read more.
A nitro-derivative of fenamic acid (4′–nitro–fenamic acid) was synthesized and used as ligand for the synthesis of four Co(II) complexes in the absence or presence of the N,N′-donors 2,2′–bipyridylamine, 1,10–phenanthroline and 2,9–dimethyl–1,10–phenanthroline. The characterization of the resultant complexes was performed with diverse techniques (elemental analysis, molar conductivity measurements, IR and UV-vis spectroscopy, single-crystal X-ray crystallography). The biological evaluation of the compounds encompassed (i) antioxidant activity via hydrogen peroxide (H2O2) reduction and free radical scavenging; (ii) antimicrobial screening against two Gram-positive and two Gram-negative bacterial strains; (iii) interactions with calf-thymus (CT) DNA; (iv) cleavage of supercoiled pBR322 plasmid DNA (pDNA), in the dark or under UVA/UVB/visible light irradiation; and (v) binding affinity towards bovine and human serum albumins. The antioxidant activity of the compounds against 2,2′–azinobis–(3–ethylbenzothiazoline–6–sulfonic acid) radicals and H2O2 is significant, especially in the case of H2O2. The complexes exhibit adequate antimicrobial activity against the strains tested. The complexes interact with CT DNA through intercalation with binding constants reaching a magnitude of 106 M−1. The compounds have a significantly enhanced pDNA-cleavage ability under irradiation, showing promising potential as photodynamic therapeutic agents. All compounds can bind tightly and reversibly to both albumins tested. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Europe 2025)
Show Figures

Figure 1

22 pages, 17763 KiB  
Article
Plasmid-Based Reverse Genetics System Enabling One-Step Generation of Genotype 3 Hepatitis E Virus
by Tominari Kobayashi, Takashi Nishiyama, Kentaro Yamada, Kazumoto Murata and Hiroaki Okamoto
Viruses 2025, 17(5), 669; https://doi.org/10.3390/v17050669 - 3 May 2025
Viewed by 646
Abstract
Hepatitis E virus (HEV) is a positive-sense, single-stranded RNA virus that poses a significant public health risk, yet its study is hindered by the complexity of conventional RNA-based reverse genetics systems. These systems require multiple steps, including genome cloning, in vitro transcription, and [...] Read more.
Hepatitis E virus (HEV) is a positive-sense, single-stranded RNA virus that poses a significant public health risk, yet its study is hindered by the complexity of conventional RNA-based reverse genetics systems. These systems require multiple steps, including genome cloning, in vitro transcription, and capping, making them labor-intensive and susceptible to RNA degradation. In this study, we developed a single-step, plasmid-based HEV expression system that enabled direct intracellular transcription of the full-length HEV genome under a cytomegalovirus immediate-early (CMV-IE) promoter. The viral genome was flanked by hammerhead (HH) and hepatitis delta virus (HDV) ribozymes to ensure precise self-cleavage and the generation of authentic 5′ and 3′ termini. This system successfully supported HEV genome replication, viral protein expression, and progeny virion production at levels comparable to those obtained using in vitro-transcribed, capped HEV RNA. Additionally, a genetic marker introduced into the plasmid construct was stably retained in progeny virions, demonstrating the feasibility of targeted genetic modifications. However, plasmid-derived HEV exhibited delayed replication kinetics, likely due to the absence of an immediate 5′ cap. Attempts to enhance capping efficiency through co-expression of the vaccinia virus capping enzyme failed to improve HEV replication, suggesting that alternative strategies, such as optimizing the promoter design for capping, may be required. This plasmid-based HEV reverse genetics system simplifies the study of HEV replication and pathogenesis and provides a versatile platform for the genetic engineering of the HEV genome. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

18 pages, 5579 KiB  
Article
The Elongation Factor 1 Alpha Promoter Drives the Functional Expression of Kir2A in Plutella xylostella Cells
by Yinna Wang, Haihao Ma, Zheming Liu, Piao Zhao, Jia Liu, Hang Zhu, Yong Zhou, Yilong Man and Xiaomao Zhou
Int. J. Mol. Sci. 2025, 26(7), 3042; https://doi.org/10.3390/ijms26073042 - 26 Mar 2025
Viewed by 436
Abstract
Cell lines and their corresponding expression plasmids are extensively utilized in the study of insect physiology and pathology. In this research, four single-cell cultured lines (Px4-1 to Px4-4) of Plutella xylostella were established from eggs. The promoter for the P. xylostella elongation factor [...] Read more.
Cell lines and their corresponding expression plasmids are extensively utilized in the study of insect physiology and pathology. In this research, four single-cell cultured lines (Px4-1 to Px4-4) of Plutella xylostella were established from eggs. The promoter for the P. xylostella elongation factor 1α (PxEF1α), known for its high driving activity in cells, was cloned and used to construct expression plasmids. Dual-luciferase activity assays and EGFP expression analyses demonstrated that the PxEF1α promoter exhibited the strongest driving activity in Px4-2 cells, comparable to that of the immediate-early 1 promoter associated with the homologous region 5 enhancer (AcIE1hr5) from the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). In contrast, the driving activity of PxEF1α in cells derived from Spodoptera frugiperda, Trichoplusia ni, and Helicoverpa armigera was lower. Furthermore, the PxEF1α promoter was successfully employed to drive inward rectifier potassium 2A (Kir2A) expression in Px4-2 cells. The electrophysiological properties of the insect Kir2A channel were successfully characterized for the first time. It was observed that the PxKir2A channel possesses typical inward rectifier potassium channel properties and can be inhibited by nanomolar concentrations of VU625 and VU590. This study offers a novel approach for the expression and investigation of foreign gene function in insect cells and provides a valuable tool for the in-depth study of key biomolecules in P. xylostella. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

26 pages, 22583 KiB  
Article
T6SS-Mediated Molecular Interaction Mechanism of Host Immune Response to Rahnella aquatilis Infection in Fish
by Ge Jin, Xiucai Hu, Yanyan Cao and Aijun Lv
Fishes 2024, 9(12), 525; https://doi.org/10.3390/fishes9120525 - 23 Dec 2024
Cited by 2 | Viewed by 1231
Abstract
Rahnella aquatilis is an emerging pathogen in fish that poses a potential risk to human and public health. However, its pathogenicity and molecular interaction mechanism with the fish host are still poorly understood. For this study, we conducted analyses into the artificial infection, [...] Read more.
Rahnella aquatilis is an emerging pathogen in fish that poses a potential risk to human and public health. However, its pathogenicity and molecular interaction mechanism with the fish host are still poorly understood. For this study, we conducted analyses into the artificial infection, bacterial load, histopathological observation, and molecular characterization of T6SS, as well as its mediated host immune response to R. aquatilis infection. The results showed that the R. aquatilis KCL-5 strain had high pathogenicity in teleosts, such as the cyprinid fish crucian carp Carassius auratus and the zebrafish Danio rerio, as well as a macrophage infection model that was successfully established, both in vivo and in vitro. A significant time-dependent increase in bacterial distribution in the infected tissues of crucian carp was examined using real-time qPCR and immunohistochemical analysis. The recombinant plasmid pET32a-hcp of T6SS was constructed and the fusion protein was of the expected size of 35.9 kD, as shown by SDS-PAGE and Western blot analysis. Moreover, the single-cell identification of kidney-derived Mφ/Mo cells was achieved, defined with the potential cellular marker gene expression in each cell and the genes’ expression of bacterial chemotaxis and flagellar assembly, inflammation, and PRRs, as well as the T6SS-mediated interaction between fish host cells and KCL-5, which was verified by multi-omics analysis. To our knowledge, this is the first report of T6SS/PAMPs-PRRs pathways related to the emerging R. aquatilis pathogen–host interaction mechanism in fish. Full article
(This article belongs to the Special Issue Interactions between Fish and Microbes)
Show Figures

Figure 1

12 pages, 1216 KiB  
Article
Precise and Accurate DNA-3′/5-Ends Polishing with Thermus thermophilus Phage vb_Tt72 DNA Polymerase
by Sebastian Dorawa and Tadeusz Kaczorowski
Int. J. Mol. Sci. 2024, 25(24), 13544; https://doi.org/10.3390/ijms252413544 - 18 Dec 2024
Viewed by 1062
Abstract
Tt72 DNA polymerase is a newly characterized PolA-type thermostable enzyme derived from the Thermus thermophilus phage vB_Tt72. The enzyme demonstrates strong 3′→5′ exonucleolytic proofreading activity, even in the presence of 1 mM dNTPs. In this study, we examined how the exonucleolytic activity of Tt72 [...] Read more.
Tt72 DNA polymerase is a newly characterized PolA-type thermostable enzyme derived from the Thermus thermophilus phage vB_Tt72. The enzyme demonstrates strong 3′→5′ exonucleolytic proofreading activity, even in the presence of 1 mM dNTPs. In this study, we examined how the exonucleolytic activity of Tt72 DNA polymerase affects the fidelity of DNA synthesis. Using a plasmid-based lacZα gene complementation assay, we determined that the enzyme’s mutation frequency was 2.06 × 10−3, corresponding to an error rate of 1.41 × 10−5. For the exonuclease-deficient variant, the mutation frequency increased to 6.23 × 10−3, with an associated error rate of 4.29 × 10−5. The enzyme retained 3′→5′ exonucleolytic activity at temperatures up to 70 °C but lost it after 10 min of incubation at temperatures above 75 °C. Additionally, we demonstrated that Tt72 DNA polymerase efficiently processes 3′/5′-overhangs and removes a single-nucleotide 3′-dA overhang from PCR products at 55 °C. These characteristics make Tt72 DNA polymerase well suited for specialized molecular cloning applications. Full article
(This article belongs to the Special Issue Molecular Enzymology and Biotechnology for Extreme Environments)
Show Figures

Figure 1

16 pages, 4939 KiB  
Article
Development and Validation of RAA-CRISPR/Cas12a-Based Assay for Detecting Porcine Rotavirus
by Siyu Huang, Longhuan Du, Song Liu, Qingcheng Yang, Changwei Lei, Hongning Wang, Liu Yang and Xin Yang
Animals 2024, 14(23), 3387; https://doi.org/10.3390/ani14233387 - 25 Nov 2024
Cited by 3 | Viewed by 1808
Abstract
Piglet diarrhea poses significant economic losses to the pig industry, posing a worldwide challenge that urgently needs to be addressed in pig breeding practices. Porcine rotavirus (PoRV) is an important viral diarrhea pathogen in piglets, with a high incidence rate and a tendency [...] Read more.
Piglet diarrhea poses significant economic losses to the pig industry, posing a worldwide challenge that urgently needs to be addressed in pig breeding practices. Porcine rotavirus (PoRV) is an important viral diarrhea pathogen in piglets, with a high incidence rate and a tendency to cause growth retardation. To enhance the sensitivity and specificity of PoRV detection, we sequenced the NSP3 gene of G5 and G9 genotypes of rotavirus A (RVA), enabling simultaneous detection of the two serotypes. Subsequently, we developed a rapid PoRV detection method using a combination of recombinase-aided amplification (RAA) and CRISPR/Cas12a. In this method, Cas12a binds to RAA amplification products, guided by CRISPR-derived RNA (crRNA), which activates its cleavage activity and releases fluorescence by cutting FAM-BHQ-labeled single-stranded DNA (ssDNA). In the optimized reaction system, the recombinant plasmid PoRV can achieve a highly sensitive reaction within 30 min at 37 °C, with a detection limit as low as 2.43 copies/μL, which is ten times higher in sensitivity compared to the qPCR method. Results from specificity testing indicate that no cross-reactivity was observed between the RAA-CRISPR/Cas12a analysis of PoRV and other viral pathogens, including PoRV G3, PoRV G4, porcine epidemic diarrhea virus (PEDV), porcine epidemic diarrhea (PDCoV), and porcine reproductive and respiratory syndrome virus (PRRSV). In the clinical sample detection using the RAA-CRISPR/Cas12a method and qPCR, Cohen’s Kappa value reached as high as 0.952. Furthermore, this approach eliminates the need for large-scale instrumentation, offering a visual result under an ultraviolet lamp through fluorescence signal output. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

14 pages, 2853 KiB  
Article
Whole-Genome Evolutionary Analyses of Non-Endosymbiotic Organelle-Targeting Nuclear Genes Reveal Their Genetic Evolution in 12 Representative Poaceae Species
by Yanan Yu, Yue Yu, Yuefan Dong, Guo Li, Ning Li, Bao Liu, Tianya Wang, Lei Gong and Zhibin Zhang
Agronomy 2024, 14(6), 1177; https://doi.org/10.3390/agronomy14061177 - 30 May 2024
Viewed by 1296
Abstract
Chloroplasts and mitochondria, descendants of ancient prokaryotes via endosymbiosis, occupy a pivotal position in plant growth and development due to their intricate connections with the nuclear genome. Genes encoded by the nuclear genome but relocated to or being functional within these organelles are [...] Read more.
Chloroplasts and mitochondria, descendants of ancient prokaryotes via endosymbiosis, occupy a pivotal position in plant growth and development due to their intricate connections with the nuclear genome. Genes encoded by the nuclear genome but relocated to or being functional within these organelles are commonly referred as organelle-targeting nuclear genes (ONGs). These genes are essential for maintaining cytonuclear coordination, thereby determining the stability of the life cycle. While molecular function and cytonuclear coordination of some endosymbiosis-derived ONGs (E-ONGs) have been extensively studied, the evolutionary history and characteristics from a more widespread range of non-endosymbiosis-derived ONGs (NE-ONGs) remain largely enigmatic. In this study, we focused on 12 representative species within the Poaceae family to systematically identify NE-ONGs and investigated their evolutionary history and functional significance on a phylogenetic timescale. Upon aligning these 12 species’ evolutionary histories, we observed the following phenomena: (i) an exploration of NE-ONGs between the BOP and PACMAD clades unveiled dynamic compositions, potentially influencing their photosynthetic divergence; (ii) the majority of the abundant species-specific NE-ONGs exist in a single-copy status, and functional enrichment analysis further underscored their specialized roles, which could be crucial for species adaptation; and (iii) comparative analyses between plasmid- and mitochondria-related NE-ONGs (pNE-ONGs and mNE-ONGs) revealed a prevalence of pNE-ONGs, indicating tighter control for chloroplast function in Poaceae. In summary, this study offers novel insights into the cytonuclear co-evolutionary dynamics in Poaceae speciation and draws attention to crop improvement by using NE-ONGs. Full article
Show Figures

Figure 1

14 pages, 4958 KiB  
Article
An Efficient CRISPR/Cas9 Genome Editing System for a Ganoderma lucidum Cultivated Strain by Ribonucleoprotein Method
by Yi Tan, Xianglin Yu, Zhigang Zhang, Jialin Tian, Na Feng, Chuanhong Tang, Gen Zou and Jingsong Zhang
J. Fungi 2023, 9(12), 1170; https://doi.org/10.3390/jof9121170 - 5 Dec 2023
Cited by 4 | Viewed by 3220
Abstract
The CRISPR/Cas9 system has become a popular approach to genome editing. Compared with the plasmid-dependent CRISPR system, the ribonucleoprotein (RNP) complex formed by the in vitro assembly of Cas9 and single-guide RNA (sgRNA) has many advantages. However, only a few examples have been [...] Read more.
The CRISPR/Cas9 system has become a popular approach to genome editing. Compared with the plasmid-dependent CRISPR system, the ribonucleoprotein (RNP) complex formed by the in vitro assembly of Cas9 and single-guide RNA (sgRNA) has many advantages. However, only a few examples have been reported and the editing efficiency has been relatively low. In this study, we developed and optimized an RNP-mediated CRISPR/Cas9 genome editing system for the monokaryotic strain L1 from the Ganoderma lucidum cultivar ‘Hunong No. 1’. On selective media containing 5-fluoroorotic acid (5-FOA), the targeting efficiency of the genomic editing reached 100%. The editing efficiency of the orotidine 5′-monophosphate decarboxylase gene (ura3) was greater than 35 mutants/107 protoplasts, surpassing the previously reported G. lucidum CRISPR systems. Through insertion or substitution, 35 mutants introduced new sequences of 10–569 bp near the cleavage site of ura3 in the L1 genome, and the introduced sequences of 22 mutants (62.9%) were derived from the L1 genome itself. Among the 90 mutants, 85 mutants (94.4%) repaired DNA double-strand breaks (DSBs) through non-homologous end joining (NHEJ), and five mutants (5.6%) through microhomology-mediated end joining (MMEJ). This study revealed the repair characteristics of DSBs induced by RNA-programmed nuclease Cas9. Moreover, the G. lucidum genes cyp512a3 and cyp5359n1 have been edited using this system. This study is of significant importance for the targeted breeding and synthetic metabolic regulation of G. lucidum. Full article
(This article belongs to the Special Issue Advances in Edible Fungi)
Show Figures

Figure 1

14 pages, 1544 KiB  
Article
Dual-Species Biofilms: Biomass, Viable Cell Ratio/Cross-Species Interactions, Conjugative Transfer
by Marina V. Kuznetsova, Julia S. Pospelova, Irina L. Maslennikova and Marjanca Starčič Erjavec
Int. J. Mol. Sci. 2023, 24(19), 14497; https://doi.org/10.3390/ijms241914497 - 24 Sep 2023
Cited by 3 | Viewed by 1977
Abstract
Biofilms as a form of adaptation are beneficial for bacterial survival and may be hot spots for horizontal gene transfer, including conjugation. The aim of this research was to characterize the biofilm biomass, viable cell ratios and conjugative transfer of the pOX38 plasmid, [...] Read more.
Biofilms as a form of adaptation are beneficial for bacterial survival and may be hot spots for horizontal gene transfer, including conjugation. The aim of this research was to characterize the biofilm biomass, viable cell ratios and conjugative transfer of the pOX38 plasmid, an F-plasmid derivative, from the Escherichia coli N4i pOX38 strain (donor) into a uropathogenic E. coli DL82 strain (recipient) within dual-species biofilms with one of the following opportunistic pathogenic bacteria: Klebsiella pneumoniae, Enterococcus faecalis or Pseudomonas aeruginosa. Dual-species biofilms of E. coli with K. pneumoniae or P. aeruginosa but not E. faecalis were more massive and possessed more exopolysaccharide matrix compared to single-species biofilms of donor and recipient cells. Correlation between biofilm biomass and exopolysaccharide matrix was rs = 0.888 in dual-species biofilms. In dual-species biofilm with E. faecalis the proportion of E. coli was the highest, while in the biofilm with P. aeruginosa and K. pneumoniae, the E. coli was less abundant. The conjugative frequencies of plasmid transfer in dual-species biofilms of E. coli with E. faecalis and P. aeruginosa were reduced. A decrease in conjugative frequency was also observed when cell-free supernatants (CFSs) of E. faecalis and P. aeruginosa were added to the E. coli conjugation mixture. Further, the activity of the autoinducer AI-2 in the CFSs of the E. coli conjugation mixture was reduced when bacteria or CFSs of E. faecalis and P. aeruginosa were added to the E. coli conjugation mixture. Hence, the intercellular and interspecies interactions in dual-species biofilms depend on the partners involved. Full article
Show Figures

Figure 1

17 pages, 4282 KiB  
Article
D,L-Citrullinato-bipyridine Copper Complex: Experimental and Theoretical Characterization
by Diego Ramírez-Contreras, Amalia García-García, Angel Mendoza, Laura E. Serrano-de la Rosa, Brenda L. Sánchez-Gaytán, Francisco J. Melendez, María Eugenia Castro and Enrique González-Vergara
Crystals 2023, 13(9), 1391; https://doi.org/10.3390/cryst13091391 - 19 Sep 2023
Cited by 5 | Viewed by 2103
Abstract
Citrulline is a non-protein amino acid that acts as a metabolic intermediate in the urea cycle and arginine synthesis. It is present in some foods, although its name derives from watermelon (Citrullus vulgaris), from which it was first identified. Under normal [...] Read more.
Citrulline is a non-protein amino acid that acts as a metabolic intermediate in the urea cycle and arginine synthesis. It is present in some foods, although its name derives from watermelon (Citrullus vulgaris), from which it was first identified. Under normal conditions, Citrulline exists as a zwitterion in aqueous solutions since its carboxylic and amine groups can act as Lewis donors to chelate metal cations. In addition, Citrulline possesses in the aliphatic chain a terminal ureide group, which could also coordinate. Although Citrulline is comparable to other classical amino acids, its coordination chemistry has yet to be explored. Only two metal complexes have been reported, and the copper complex is a polymeric and insoluble material. As part of our search for active Casiopeina® analogs, we created a more soluble complex by combining 2,2′-Bipyridine into a new mixed material, resulting in the mononuclear complex [Cu(Bipy)(Citr)(H2O)(NO3)]·H2O. Single-crystal X-ray diffraction, spectroscopic methods (FT-IR, UV-Vis, Raman), and mass spectrometry characterized the material. Interestingly, both isomers of Citrulline, R(D), and S(L) are present in the same crystal. In addition, the molecular structure and electronic properties of the complex were calculated using density functional theory (DFT). Non-covalent interactions were characterized using the atoms-in-molecules (AIM) approach and Hirshfeld surface (HS) analysis. This ternary complex containing Citrulline and 2,2′-Bipyridine will be used for docking calculations and preliminary biological studies using calf thymus DNA (CT-DNA) and plasmid pUC19 as a first approximation to cytotoxic activity against cancer cell lines. Full article
Show Figures

Figure 1

13 pages, 1165 KiB  
Article
Comparative Genomics of Staphylococcus rostri, an Undescribed Bacterium Isolated from Dairy Mastitis
by Desiree Corvera Kløve, Michael Farre, Mikael Lenz Strube and Lærke Boye Astrup
Vet. Sci. 2023, 10(9), 530; https://doi.org/10.3390/vetsci10090530 - 22 Aug 2023
Cited by 2 | Viewed by 1961
Abstract
This study characterizes 81 S. rostri isolates from bovine mastitis (of which 80 were subclinical). The isolates were first identified as S. microti by MALDI-TOF MS, but later whole genome sequencing analysis allowed reclassification as S. rostri. The isolates were derived from 52 [...] Read more.
This study characterizes 81 S. rostri isolates from bovine mastitis (of which 80 were subclinical). The isolates were first identified as S. microti by MALDI-TOF MS, but later whole genome sequencing analysis allowed reclassification as S. rostri. The isolates were derived from 52 cows and nine dairy herds in Denmark. To describe the pathogenicity of S. rostri, we used whole genome sequencing to infer the distribution of genes associated with virulence, antibiotic resistance, and mobile genetic elements. Also, we performed a core-genome phylogeny analysis to study the genetic relatedness among the isolates. All 81 isolates expressed the same virulence profile comprising two putative virulence genes, clpP and clpC. Three isolates carried a resistance gene encoding streptomycin (str) or lincomycin (lnuA) resistance. The distribution of plasmids suggested the detected antibiotic resistance genes to be plasmid-mediated. Phages were abundant among the isolates, and the single isolate from clinical mastitis acquired a phage disparate from the rest, which potentially could be involved with virulence in S. rostri. The core genome phylogeny revealed a strong genetic intra-herd conservation, which indicates the source of introduction being herd-specific and might further imply the ability of S. rostri to adapt to the bovine niche and spread from cow-to-cow in a contagious manner. With this study, we aim to acquaint clinicians and professionals with the existence of S. rostri which might have been overlooked so far. Full article
(This article belongs to the Special Issue Spotlight on Mastitis of Dairy Cows)
Show Figures

Figure 1

12 pages, 1587 KiB  
Article
QUIRMIA—A Phenotype-Based Algorithm for the Inference of Quinolone Resistance Mechanisms in Escherichia coli
by Frank Imkamp, Elias Bodendoerfer and Stefano Mancini
Antibiotics 2023, 12(7), 1119; https://doi.org/10.3390/antibiotics12071119 - 28 Jun 2023
Cited by 5 | Viewed by 1899
Abstract
Objectives: Quinolone resistance in Escherichia coli occurs mainly as a result of mutations in the quinolone-resistance-determining regions of gyrA and parC, which encode the drugs’ primary targets. Mutational alterations affecting drug permeability or efflux as well as plasmid-based resistance mechanisms can also [...] Read more.
Objectives: Quinolone resistance in Escherichia coli occurs mainly as a result of mutations in the quinolone-resistance-determining regions of gyrA and parC, which encode the drugs’ primary targets. Mutational alterations affecting drug permeability or efflux as well as plasmid-based resistance mechanisms can also contribute to resistance, albeit to a lesser extent. Simplifying and generalizing complex evolutionary trajectories, low-level resistance towards fluoroquinolones arises from a single mutation in gyrA, while clinical high-level resistance is associated with two mutations in gyrA plus one mutation in parC. Both low- and high-level resistance can be detected phenotypically using nalidixic acid and fluoroquinolones such as ciprofloxacin, respectively. The aim of this study was to develop a decision tree based on disc diffusion data and to define epidemiological cut-offs to infer resistance mechanisms and to predict clinical resistance in E. coli. This diagnostic algorithm should provide a coherent genotype/phenotype classification, which separates the wildtype from any non-wildtype and further differentiates within the non-wildtype. Methods: Phenotypic susceptibility of 553 clinical E. coli isolates towards nalidixic acid, ciprofloxacin, norfloxacin and levofloxacin was determined by disc diffusion, and the genomes were sequenced. Based on epidemiological cut-offs, we developed a QUInolone Resistance Mechanisms Inference Algorithm (QUIRMIA) to infer the underlying resistance mechanisms responsible for the corresponding phenotypes, resulting in the categorization as “susceptible” (wildtype), “low-level resistance” (non-wildtype) and “high-level resistance” (non-wildtype). The congruence of phenotypes and whole genome sequencing (WGS)-derived genotypes was then assigned using QUIRMIA- and EUCAST-based AST interpretation. Results: QUIRMIA-based inference of resistance mechanisms and sequencing data were highly congruent (542/553, 98%). In contrast, EUCAST-based classification with its binary classification into “susceptible” and “resistant” isolates failed to recognize and properly categorize low-level resistant isolates. Conclusions: QUIRMIA provides a coherent genotype/phenotype categorization and may be integrated in the EUCAST expert rule set, thereby enabling reliable detection of low-level resistant isolates, which may help to better predict outcome and to prevent the emergence of clinical resistance. Full article
Show Figures

Figure 1

13 pages, 2671 KiB  
Article
A Phase 1 Two-Arm, Randomized, Double-Blind, Active-Controlled Study of Live, Oral Plasmid-Derived Adenovirus Type 4 and Type 7 Vaccines in Seronegative Adults
by Shannon Beaty, Natalie Collins, Nicos Karasavvas, Robert Kuschner, Jun Hang, Anima Adhikari, Irina Maljkovic Berry, Christian Fung, Shannon Walls, Elena Betancourt, Jason Mendy, Michael Lock, Emma Gierman, Sean Bennett, Paul Shabram and Kelly Warfield
Vaccines 2023, 11(6), 1091; https://doi.org/10.3390/vaccines11061091 - 12 Jun 2023
Cited by 1 | Viewed by 2048
Abstract
PXVX0047 is an investigational vaccine developed for active immunization to prevent febrile acute respiratory disease (ARD) caused by adenovirus serotypes 4 (Ad4) and 7 (Ad7). PXVX0047 consists of a modernized, plasmid-derived vaccine that was generated using a virus isolated from Wyeth Ad4 and [...] Read more.
PXVX0047 is an investigational vaccine developed for active immunization to prevent febrile acute respiratory disease (ARD) caused by adenovirus serotypes 4 (Ad4) and 7 (Ad7). PXVX0047 consists of a modernized, plasmid-derived vaccine that was generated using a virus isolated from Wyeth Ad4 and Ad7 vaccine tablets. A phase 1 two-arm, randomized, double-blind, active-controlled study was conducted to evaluate the safety profile and immunogenicity of the investigational adenovirus vaccines. The two components of PXVX0047 were administered orally together in a single dose to 11 subjects. For comparison, three additional subjects received the Ad4/Ad7 vaccine that is currently in use by the US military. The results of this study show that the tolerability and immunogenicity of the PXVX0047 Ad7 component are comparable with that of the control Ad4/Ad7 vaccine; however, the immunogenicity of the PXVX0047 Ad4 component was lower than expected. Clinical trial number NCT03160339. Full article
Show Figures

Figure 1

13 pages, 2422 KiB  
Article
Control of Bacterial Phenotype and Chromosomal Gene Expression by Single Plasmids of Lactococcus lactis IL594
by Katarzyna Kosiorek, Anna Koryszewska-Bagińska, Marek Skoneczny and Tamara Aleksandrzak-Piekarczyk
Int. J. Mol. Sci. 2023, 24(12), 9877; https://doi.org/10.3390/ijms24129877 - 8 Jun 2023
Cited by 1 | Viewed by 1753
Abstract
Plasmid-free Lactococcus lactis IL1403 is one of the best-characterized representatives of lactic acid bacteria (LAB), intensively used in broad microbiology worldwide. Its parent strain, L. lactis IL594, contains seven plasmids (pIL1–pIL7) with resolved DNA sequences and an indicated role for overall plasmid load [...] Read more.
Plasmid-free Lactococcus lactis IL1403 is one of the best-characterized representatives of lactic acid bacteria (LAB), intensively used in broad microbiology worldwide. Its parent strain, L. lactis IL594, contains seven plasmids (pIL1–pIL7) with resolved DNA sequences and an indicated role for overall plasmid load in enhancing host-adaptive potential. To determine how individual plasmids manipulate the expression of phenotypes and chromosomal genes, we conducted global comparative phenotypic analyses combined with transcriptomic studies in plasmid-free L. lactis IL1403, multiplasmid L. lactis IL594, and its single-plasmid derivatives. The presence of pIL2, pIL4, and pIL5 led to the most pronounced phenotypic differences in the metabolism of several carbon sources, including some β-glycosides and organic acids. The pIL5 plasmid also contributed to increased tolerance to some antimicrobial compounds and heavy metal ions, especially those in the toxic cation group. Comparative transcriptomics showed significant variation in the expression levels of up to 189 chromosomal genes due to the presence of single plasmids and 435 unique chromosomal genes that were resultant of the activity of all plasmids, which may suggest that the observed phenotypic changes are not only the result of a direct action of their own genes but also originate from indirect actions through crosstalk between plasmids and the chromosome. The data obtained here indicate that plasmid maintenance leads to the development of important mechanisms of global gene regulation that provide changes in the central metabolic pathways and adaptive properties of L. lactis and suggest the possibility of a similar phenomenon among other groups of bacteria. Full article
(This article belongs to the Special Issue Molecular Advances in Microbial Metabolism 2.0)
Show Figures

Figure 1

Back to TopTop