Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = silicon nanoholes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3579 KiB  
Article
Si-Cr Nano-Alloys Fabricated by Direct Femtosecond Laser Writing
by Jovan Maksimovic, Haoran Mu, Molong Han, Daniel Smith, Tomas Katkus, Vijayakumar Anand, Yoshiaki Nishijima, Soon Hock Ng and Saulius Juodkazis
Materials 2023, 16(5), 1917; https://doi.org/10.3390/ma16051917 - 25 Feb 2023
Cited by 4 | Viewed by 2005
Abstract
Ultra-short 230 fs laser pulses of 515 nm wavelength were tightly focused into 700 nm focal spots and utilised in opening ∼400 nm nano-holes in a Cr etch mask that was tens-of-nm thick. The ablation threshold was found to be 2.3 nJ/pulse, double [...] Read more.
Ultra-short 230 fs laser pulses of 515 nm wavelength were tightly focused into 700 nm focal spots and utilised in opening ∼400 nm nano-holes in a Cr etch mask that was tens-of-nm thick. The ablation threshold was found to be 2.3 nJ/pulse, double that of plain silicon. Nano-holes irradiated with pulse energies below this threshold produced nano-disks, while higher energies produced nano-rings. Both these structures were not removed by either Cr or Si etch solutions. Subtle sub-1 nJ pulse energy control was harnessed to pattern large surface areas with controlled nano-alloying of Si and Cr. This work demonstrates vacuum-free large area patterning of nanolayers by alloying them at distinct locations with sub-diffraction resolution. Such metal masks with nano-hole opening can be used for formation of random patterns of nano-needles with sub-100 nm separation when applied to dry etching of Si. Full article
Show Figures

Figure 1

12 pages, 3860 KiB  
Article
High-Sensitivity Sensing in All-Dielectric Metasurface Driven by Quasi-Bound States in the Continuum
by Zhao Jing, Wang Jiaxian, Gao Lizhen and Qiu Weibin
Nanomaterials 2023, 13(3), 505; https://doi.org/10.3390/nano13030505 - 27 Jan 2023
Cited by 32 | Viewed by 4592
Abstract
Quasi-bound states in the continuum (quasi-BIC) in all-dielectric metasurfaces provide a crucial platform for sensing due to its ability to enhance strong matter interactions between light-waves and analytes. In this study, a novel high-sensitivity all-dielectric sensor composed of a periodic array of silicon [...] Read more.
Quasi-bound states in the continuum (quasi-BIC) in all-dielectric metasurfaces provide a crucial platform for sensing due to its ability to enhance strong matter interactions between light-waves and analytes. In this study, a novel high-sensitivity all-dielectric sensor composed of a periodic array of silicon (Si) plates with square nanoholes in the continuous near-infrared band is theoretically proposed. By adjusting the position of the square nanohole, the symmetry-protected BIC and Friedrich–Wintgen BIC (FW–BIC) can be excited. The torodial dipole (TD) and electric quadruple (EQ) are demonstrated to play a dominating role in the resonant modes by near-field analysis and multipole decomposition. The results show that the sensitivity, the Q-factor, and the corresponding figure of merit (FOM) can simultaneously reach 399 nm/RIU (RIU is refractive index unit), 4959, and 1281, respectively. Compared with other complex nanostructures, the proposed metasurface is more feasible and practical, which may open up an avenue for the development of ultrasensitive sensors. Full article
(This article belongs to the Topic Advanced Nanomaterials for Sensing Applications)
Show Figures

Figure 1

10 pages, 4035 KiB  
Article
Tunable Antireflection Properties with Self-Assembled Nanopillar and Nanohole Structure
by Tangyou Sun, Furong Shui, Taohua Ning, Wenjing Guo, Zhiping Zhou, Zanhui Chen, Cheng Qian and Qian Li
Nanomaterials 2022, 12(24), 4466; https://doi.org/10.3390/nano12244466 - 15 Dec 2022
Cited by 5 | Viewed by 2125
Abstract
Nanostructure engineering has proven to be one of the most effective strategies to improve the efficiency of photoelectric devices. Herein, we numerically investigate and experimentally demonstrate a self-assembled silicon-based nanopillars and nanoholes structures, to improve the light absorption of photoelectric devices by an [...] Read more.
Nanostructure engineering has proven to be one of the most effective strategies to improve the efficiency of photoelectric devices. Herein, we numerically investigate and experimentally demonstrate a self-assembled silicon-based nanopillars and nanoholes structures, to improve the light absorption of photoelectric devices by an antireflection enhancement. The nanopillars and nanoholes structures are fabricated by the air–liquid interface self-assembly method based on polystyrene (PS) nanospheres. Additionally, the tunable antireflective properties with the different operation wavelength and nanostructures parameters have been discussed based on the Finite-Difference Time-Domain (FDTD) method. The experimental result shows that the self-assembled silicon-based nanopillars and nanoholes structures can achieve the lowest reflectivity of 1.42% (nanopillars) and 5.83% (nanoholes) in the wavelength range of 250–800 nm, which reduced 95.97% and 84.83%, respectively, compared with the plane silicon. The operation mechanism of the tunable antireflective property of self-assembled nanopillars and nanoholes structures is also analyzed in the simulation. Our study suggests that the self-assembled nanopillars and nanoholes structures are potentially attractive as improving efficiency of photoelectric devices. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

9 pages, 2258 KiB  
Article
Plasmonic Near-Infrared Photoconductor Based on Hot Hole Collection in the Metal-Semiconductor-Metal Junction
by Zhiwei Sun, Yongsheng Zhong, Yajin Dong, Qilin Zheng, Xianghong Nan, Zhong Liu, Long Wen and Qin Chen
Molecules 2022, 27(20), 6922; https://doi.org/10.3390/molecules27206922 - 15 Oct 2022
Cited by 7 | Viewed by 3359
Abstract
Harvesting energetic carriers from plasmonic resonance has been a hot topic in the field of photodetection in the last decade. By interfacing a plasmonic metal with a semiconductor, the photoelectric conversion mechanism, based on hot carrier emission, is capable of overcoming the band [...] Read more.
Harvesting energetic carriers from plasmonic resonance has been a hot topic in the field of photodetection in the last decade. By interfacing a plasmonic metal with a semiconductor, the photoelectric conversion mechanism, based on hot carrier emission, is capable of overcoming the band gap limitation imposed by the band-to-band transition of the semiconductor. To date, most of the existing studies focus on plasmonic structural engineering in a single metal-semiconductor (MS) junction system and their responsivities are still quite low in comparison to conventional semiconductor, material-based photodetection platforms. Herein, we propose a new architecture of metal-semiconductor-metal (MSM) junctions on a silicon platform to achieve efficient hot hole collection at infrared wavelengths with a photoconductance gain mechanism. The coplanar interdigitated MSM electrode’s configuration forms a back-to-back Schottky diode and acts simultaneously as the plasmonic absorber/emitter, relying on the hot-spots enriched on the random Au/Si nanoholes structure. The hot hole-mediated photoelectric response was extended far beyond the cut-off wavelength of the silicon. The proposed MSM device with an interdigitated electrode design yields a very high photoconductive gain, leading to a photocurrent responsivity up to several A/W, which is found to be at least 1000 times higher than that of the existing hot carrier based photodetection strategies. Full article
(This article belongs to the Special Issue Nanomaterials for Photonic Device and Light–Energy Conversion)
Show Figures

Figure 1

9 pages, 2937 KiB  
Communication
Theoretical Comparison of Optothermal Absorption in Transmissive Metalenses Composed of Nanobricks and Nanoholes
by Feng Tang, Qingzhi Li, Haichao Yu, Zao Yi and Xin Ye
Photonics 2022, 9(1), 39; https://doi.org/10.3390/photonics9010039 - 11 Jan 2022
Viewed by 2474
Abstract
Background: Optical components with high damage thresholds are very desirable in intense-light systems. Metalenses, being composed of phase-control nanostructures with peculiar properties, are one of the important component candidates in future optical systems. However, the optothermal mechanism in metalenses is still not [...] Read more.
Background: Optical components with high damage thresholds are very desirable in intense-light systems. Metalenses, being composed of phase-control nanostructures with peculiar properties, are one of the important component candidates in future optical systems. However, the optothermal mechanism in metalenses is still not investigated adequately. Methods: In this study, the optothermal absorption in transmissive metalenses made of silicon nanobricks and nanoholes is investigated comparatively to address this issue. Results: The geometrical dependencies of nanostructures’ transmittance, phase difference, and field distribution are calculated numerically via simulations. To demonstrate the optothermal mechanism in metalenses, the mean absorption efficiencies of the selected unit-cells, which would constitute metalenses, are analyzed. The results show that the electric field in the silicon zone would lead to an obvious thermal effect, and the enhancement of the localized electric field also results in the strong absorption of optical energy. Then, two typical metalenses are designed based on these nanobricks and nanoholes. The optothermal simulations show that the nanobrick-based metalens can handle a power density of 0.15 W/µm2, and the density of the nanohole-based design is 0.12 W/µm2. Conclusions: The study analyzes and compares the optothermal absorption in nanobricks and nanoholes, which shows that the electric-field distribution in absorbent materials and the localized-field enhancement are the two key effects that lead to optothermal absorption. This study provides an approach to improve the anti-damage potentials of transmissive metalenses for intense-light systems. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

14 pages, 3257 KiB  
Article
Enhancement of Luminous Intensity Emission from Incoherent LED Light Sources within the Detection Angle of 10° Using Metalenses
by Hanlyun Cho, Heonyeong Jeong, Younghwan Yang, Trevon Badloe and Junsuk Rho
Nanomaterials 2022, 12(1), 153; https://doi.org/10.3390/nano12010153 - 1 Jan 2022
Cited by 6 | Viewed by 4223
Abstract
In this work, we present metalenses (MLs) designed to enhance the luminous intensity of incoherent light-emitting diodes (LEDs) within the detection angles of 0° and 10°. The detection angle of 0° refers to the center of the LED. Because the light emitted from [...] Read more.
In this work, we present metalenses (MLs) designed to enhance the luminous intensity of incoherent light-emitting diodes (LEDs) within the detection angles of 0° and 10°. The detection angle of 0° refers to the center of the LED. Because the light emitted from LEDs is incoherent and expressed as a surface light source, they are numerically described as a set of point sources and calculated using incoherent summation. The titanium dioxide (TiO2) and amorphous silicon (a-Si) nanohole meta-atoms are designed; however, the full 2π phase coverage is not reached. Nevertheless, because the phase modulation at the edge of the ML is important, an ML is successfully designed. The typical phase profile of the ML enhances the luminous intensity at the center, and the phase profile is modified to increase the luminous intensity in the target detection angle region. Far field simulations are conducted to calculate the luminous intensity after 25 m of propagation. We demonstrate an enhancement of the luminous intensity at the center by 8551% and 2115% using TiO2 and a-Si MLs, respectively. Meanwhile, the TiO2 and a-Si MLs with the modified phase profiles enhance the luminous intensity within the detection angle of 10° by 263% and 30%, respectively. Full article
(This article belongs to the Special Issue Metalens: Applications and Manufacturing)
Show Figures

Figure 1

14 pages, 28597 KiB  
Article
Plasmon-Enhanced Photoresponse of Self-Powered Si Nanoholes Photodetector by Metal Nanowires
by Pericle Varasteanu, Antonio Radoi, Oana Tutunaru, Anton Ficai, Razvan Pascu, Mihaela Kusko and Iuliana Mihalache
Nanomaterials 2021, 11(9), 2460; https://doi.org/10.3390/nano11092460 - 21 Sep 2021
Cited by 12 | Viewed by 3622
Abstract
In this work, we report the development of self-powered photodetectors that integrate silicon nanoholes (SiNHs) and four different types of metal nanowires (AgNWs, AuNWs, NiNWs, PtNWs) applied on the SiNHs’ surface using the solution processing method. The effectiveness of the proposed architectures is [...] Read more.
In this work, we report the development of self-powered photodetectors that integrate silicon nanoholes (SiNHs) and four different types of metal nanowires (AgNWs, AuNWs, NiNWs, PtNWs) applied on the SiNHs’ surface using the solution processing method. The effectiveness of the proposed architectures is evidenced through extensive experimental and simulation analysis. The AgNWs/SiNHs device showed the highest photo-to-dark current ratio of 2.1 × 10−4, responsivity of 30 mA/W and detectivity of 2 × 1011 Jones along with the lowest noise equivalent power (NEP) parameter of 2.4 × 10−12 WHz−1/2 in the blue light region. Compared to the bare SiNHs device, the AuNWs/SiNHs device had significantly enhanced responsivity up to 15 mA/W, especially in the red and near-infrared spectral region. Intensity-modulated photovoltage spectroscopy (IMVS) measurements revealed that the AgNWs/SiNHs device generated the longest charge carrier lifetime at 470 nm, whereas the AuNWs/SiNHs showed the slowest recombination rate at 627 nm. Furthermore, numerical simulation confirmed the local field enhancement effects at the MeNWs and SiNHs interface. The study demonstrates a cost-efficient and scalable strategy to combine the superior light harvesting properties of SiNHs with the plasmonic absorption of metallic nanowires (MeNWs) towards enhanced sensitivity and spectral-selective photodetection induced by the local surface plasmon resonance effects. Full article
(This article belongs to the Special Issue Nanomaterials for Photonics: Advances and Applications)
Show Figures

Figure 1

9 pages, 803 KiB  
Article
Near-Infrared Photoresponse in Ge/Si Quantum Dots Enhanced by Photon-Trapping Hole Arrays
by Andrew I. Yakimov, Victor V. Kirienko, Aleksei A. Bloshkin, Dmitrii E. Utkin and Anatoly V. Dvurechenskii
Nanomaterials 2021, 11(9), 2302; https://doi.org/10.3390/nano11092302 - 4 Sep 2021
Cited by 15 | Viewed by 3752
Abstract
Group-IV photonic devices that contain Si and Ge are very attractive due to their compatibility with integrated silicon photonics platforms. Despite the recent progress in fabrication of Ge/Si quantum dot (QD) photodetectors, their low quantum efficiency still remains a major challenge and different [...] Read more.
Group-IV photonic devices that contain Si and Ge are very attractive due to their compatibility with integrated silicon photonics platforms. Despite the recent progress in fabrication of Ge/Si quantum dot (QD) photodetectors, their low quantum efficiency still remains a major challenge and different approaches to improve the QD photoresponse are under investigation. In this paper, we report on the fabrication and optical characterization of Ge/Si QD pin photodiodes integrated with photon-trapping microstructures for near-infrared photodetection. The photon traps represent vertical holes having 2D periodicity with a feature size of about 1 μm on the diode surface, which significantly increase the normal incidence light absorption of Ge/Si QDs due to generation of lateral optical modes in the wide telecommunication wavelength range. For a hole array periodicity of 1700 nm and hole diameter of 1130 nm, the responsivity of the photon-trapping device is found to be enhanced by about 25 times at λ=1.2 μm and by 34 times at λ1.6 μm relative to a bare detector without holes. These results make the micro/nanohole Ge/Si QD photodiodes promising to cover the operation wavelength range from the telecom O-band (1260–1360 nm) up to the L-band (1565–1625 nm). Full article
(This article belongs to the Special Issue Advances in Semiconductor Nano-Structures)
Show Figures

Figure 1

11 pages, 3088 KiB  
Article
Fabrication and Characterization of Inverted Silicon Pyramidal Arrays with Randomly Distributed Nanoholes
by Yue Zhao, Kaiping Zhang, Hailiang Li and Changqing Xie
Micromachines 2021, 12(8), 931; https://doi.org/10.3390/mi12080931 - 5 Aug 2021
Cited by 4 | Viewed by 3527
Abstract
We report the fabrication, electromagnetic simulation and measurement of inverted silicon pyramidal arrays with randomly distributed nanoholes that act as an anti-reflectivity coating. The fabrication route combines the advantages of anisotropic wet etching and metal-assisted chemical etching. The former is employed to form [...] Read more.
We report the fabrication, electromagnetic simulation and measurement of inverted silicon pyramidal arrays with randomly distributed nanoholes that act as an anti-reflectivity coating. The fabrication route combines the advantages of anisotropic wet etching and metal-assisted chemical etching. The former is employed to form inverted silicon pyramid arrays, while the latter is used to generate randomly distributed nanoholes on the surface and sidewalls of the generated inverted silicon pyramidal arrays. We demonstrate, numerically and experimentally, that such a structure facilitates the multiple reflection and absorption of photons. The resulting nanostructure can achieve the lowest reflectance of 0.45% at 700 nm and the highest reflectance of 5.86% at 2402 nm. The average reflectance in the UV region (250–400 nm), visible region (400–760 nm) and NIR region (760–2600 nm) are 1.11, 0.63 and 3.76%, respectively. The reflectance at broadband wavelength (250–2600 nm) is 14.4 and 3.4 times lower than silicon wafer and silicon pyramids. In particular, such a structure exhibits high hydrophobicity with a contact angle up to 132.4°. Our method is compatible with well-established silicon planar processes and is promising for practical applications of anti-reflectivity coating. Full article
Show Figures

Figure 1

8 pages, 5250 KiB  
Article
Reflective Meta-Films with Anti-Damage Property via Field Distribution Manipulation
by Haichao Yu, Feng Tang, Jun Chen, Zao Yi, Xin Ye and Yiqun Wang
Coatings 2021, 11(6), 640; https://doi.org/10.3390/coatings11060640 - 27 May 2021
Cited by 2 | Viewed by 2690
Abstract
The reflective optical multi-films with high damage thresholds are widely used in intense-light systems. Metasurfaces, which can manipulate light peculiarly, give a new approach to achieve highly reflective films by a single-layer configuration. In this study, reflective metasurfaces, composed of silicon nanoholes, are [...] Read more.
The reflective optical multi-films with high damage thresholds are widely used in intense-light systems. Metasurfaces, which can manipulate light peculiarly, give a new approach to achieve highly reflective films by a single-layer configuration. In this study, reflective metasurfaces, composed of silicon nanoholes, are numerically investigated to achieve high damage thresholds. These nanoholes can confine the strongest electric field into the air zone, and, subsequently, the in-air electric field does not interact directly with silicon, attenuating the optothermal effect that causes damage. Firstly, the geometrical dependencies of silicon nanoholes’ reflectance and field distribution are investigated. Then, the excitation states of electric/magnetic dipoles in nanostructures are analyzed to explain the electromagnetic mechanism. Furthermore, the reflection dependences of the nanostructures on wavelength and incident angle are investigated. Finally, for a typical reflective meta-film, some optothermal simulations are conducted, in which a maximum laser density of 0.27 W/µm2 can be handled. The study provides an approach to improve the laser damage threshold of reflective nanofilms, which can be exploited in many intense-light applications. Full article
(This article belongs to the Special Issue Micro-Nano Optics and Its Applications)
Show Figures

Graphical abstract

10 pages, 4690 KiB  
Article
Enhanced Microsphere-Assisted Picosecond Laser Processing for Nanohole Fabrication on Silicon via Thin Gold Coating
by Qiuling Wen, Xinyu Wei, Pengcheng Zhang, Jing Lu, Feng Jiang and Xizhao Lu
Micromachines 2021, 12(6), 611; https://doi.org/10.3390/mi12060611 - 26 May 2021
Cited by 1 | Viewed by 3445
Abstract
The nanohole arrays on the silicon substrate can effectively enhance the light absorption in thin film silicon solar cells. In order to optimize the solar energy absorption, polystyrene microspheres with diameters of 1 μm are used to assist picosecond laser with a wavelength [...] Read more.
The nanohole arrays on the silicon substrate can effectively enhance the light absorption in thin film silicon solar cells. In order to optimize the solar energy absorption, polystyrene microspheres with diameters of 1 μm are used to assist picosecond laser with a wavelength of 1064 nm to fabricate nanohole arrays on silicon substrate. The experimental results show that the morphology and size of the silicon nanoholes strongly depend on the laser fluence. At 1.19–1.59 J/cm2 laser fluences, well-ordered arrays of nanoholes were fabricated on silicon substrate, with diameters domain from 250 to 549 nm and depths ranging from 60 to 99 nm. However, large amounts of sputtered nanoparticles appeared around the silicon nanoholes. To improve the surface morphology of silicon nanoholes, a nanolayered gold coating is applied on silicon surface to assist laser processing. The results show that, for gold-coated silicon substrate, sputtered nanoparticles around the nanoholes are almost invisible and the cross-sectional profiles of the nanoholes are smoother. Moreover, the ablation rate of the nanoholes on the gold-coated silicon substrate have increased compared to that of the nanoholes on the uncoated one. This simple method allows fast fabrication of well-ordered nanoholes on silicon substrate without sputtered nanoparticles and with smooth inner surface. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Graphical abstract

8 pages, 2515 KiB  
Communication
Meta-Deflectors Made of Dielectric Nanohole Arrays with Anti-Damage Potential
by Haichao Yu, Feng Tang, Jingjun Wu, Zao Yi, Xin Ye and Yiqun Wang
Photonics 2021, 8(4), 107; https://doi.org/10.3390/photonics8040107 - 6 Apr 2021
Cited by 3 | Viewed by 2705
Abstract
In intense-light systems, the traditional discrete optical components lead to high complexity and high cost. Metasurfaces, which have received increasing attention due to the ability to locally manipulate the amplitude, phase, and polarization of light, are promising for addressing this issue. In the [...] Read more.
In intense-light systems, the traditional discrete optical components lead to high complexity and high cost. Metasurfaces, which have received increasing attention due to the ability to locally manipulate the amplitude, phase, and polarization of light, are promising for addressing this issue. In the study, a metasurface-based reflective deflector is investigated which is composed of silicon nanohole arrays that confine the strongest electric field in the air zone. Subsequently, the in-air electric field does not interact with the silicon material directly, attenuating the optothermal effect that causes laser damage. The highest reflectance of nanoholes can be above 99% while the strongest electric fields are tuned into the air zone. One presentative deflector is designed based on these nanoholes with in-air-hole field confinement and anti-damage potential. The 1st order of the meta-deflector has the highest reflectance of 55.74%, and the reflectance sum of all the orders of the meta-deflector is 92.38%. The optothermal simulations show that the meta-deflector can theoretically handle a maximum laser density of 0.24 W/µm2. The study provides an approach to improving the anti-damage property of the reflective phase-control metasurfaces for intense-light systems, which can be exploited in many applications, such as laser scalpels, laser cutting devices, etc. Full article
(This article belongs to the Special Issue Advanced Metamaterials and Metadevices)
Show Figures

Graphical abstract

15 pages, 3645 KiB  
Article
An Optically Tunable THz Modulator Based on Nanostructures of Silicon Substrates
by Chen Mo, Jingbo Liu, Dongshan Wei, Honglei Wu, Qiye Wen and Dongxiong Ling
Sensors 2020, 20(8), 2198; https://doi.org/10.3390/s20082198 - 13 Apr 2020
Cited by 1 | Viewed by 3084
Abstract
Nanostructures can induce light multireflection, enabling strong light absorption and efficient photocarrier generation. In this work, silicon nanostructures, including nanocylinders, nanotips, and nanoholes, were proposed as all-optical broadband THz modulators. The modulation properties of these modulators were simulated and compared with finite element [...] Read more.
Nanostructures can induce light multireflection, enabling strong light absorption and efficient photocarrier generation. In this work, silicon nanostructures, including nanocylinders, nanotips, and nanoholes, were proposed as all-optical broadband THz modulators. The modulation properties of these modulators were simulated and compared with finite element method calculations. It is interesting to note that the light reflectance values from all nanostructure were greatly suppressed, showing values of 26.22%, 21.04%, and 0.63% for nanocylinder, nanohole, and nanotip structures, respectively, at 2 THz. The calculated results show that under 808 nm illumination light, the best modulation performance is achieved in the nanotip modulator, which displays a modulation depth of 91.63% with a pumping power of 60 mW/mm2 at 2 THz. However, under shorter illumination wavelengths, such as 532 nm, the modulation performance for all modulators deteriorates and the best performance is found with the nanohole-based modulator rather than the nanotip-based one. To further clarify the effects of the nanostructure and wavelength on the THz modulation, a graded index layer model was established and the simulation results were explained. This work may provide a further theoretical guide for the design of optically tunable broadband THz modulators. Full article
(This article belongs to the Special Issue Laser-Spectroscopy Based Sensing Technologies)
Show Figures

Figure 1

8 pages, 2895 KiB  
Article
Fabrication of Si Micropore and Graphene Nanohole Structures by Focused Ion Beam
by Nik Noor Nabilah Md Ibrahim and Abdul Manaf Hashim
Sensors 2020, 20(6), 1572; https://doi.org/10.3390/s20061572 - 12 Mar 2020
Cited by 5 | Viewed by 3969
Abstract
A biosensor formed by a combination of silicon (Si) micropore and graphene nanohole technology is expected to act as a promising device structure to interrogate single molecule biopolymers, such as deoxyribonucleic acid (DNA). This paper reports a novel technique of using a focused [...] Read more.
A biosensor formed by a combination of silicon (Si) micropore and graphene nanohole technology is expected to act as a promising device structure to interrogate single molecule biopolymers, such as deoxyribonucleic acid (DNA). This paper reports a novel technique of using a focused ion beam (FIB) as a tool for direct fabrication of both conical-shaped micropore in Si3N4/Si and a nanohole in graphene to act as a fluidic channel and sensing membrane, respectively. The thinning of thick Si substrate down to 50 µm has been performed prior to a multi-step milling of the conical-shaped micropore with final pore size of 3 µm. A transfer of graphene onto the fabricated conical-shaped micropore with little or no defect was successfully achieved using a newly developed all-dry transfer method. A circular shape graphene nanohole with diameter of about 30 nm was successfully obtained at beam exposure time of 0.1 s. This study opens a breakthrough in fabricating an integrated graphene nanohole and conical-shaped Si micropore structure for biosensor applications. Full article
(This article belongs to the Special Issue Sensors and Actuators for Wearable and Implantable Devices)
Show Figures

Figure 1

8 pages, 3092 KiB  
Article
Time-Efficient High-Resolution Large-Area Nano-Patterning of Silicon Dioxide
by Li Lin, Yiyu Ou, Martin Aagesen, Flemming Jensen, Berit Herstrøm and Haiyan Ou
Micromachines 2017, 8(1), 13; https://doi.org/10.3390/mi8010013 - 4 Jan 2017
Cited by 4 | Viewed by 6328
Abstract
A nano-patterning approach on silicon dioxide (SiO2) material, which could be used for the selective growth of III-V nanowires in photovoltaic applications, is demonstrated. In this process, a silicon (Si) stamp with nanopillar structures was first fabricated using electron-beam lithography (EBL) [...] Read more.
A nano-patterning approach on silicon dioxide (SiO2) material, which could be used for the selective growth of III-V nanowires in photovoltaic applications, is demonstrated. In this process, a silicon (Si) stamp with nanopillar structures was first fabricated using electron-beam lithography (EBL) followed by a dry etching process. Afterwards, the Si stamp was employed in nanoimprint lithography (NIL) assisted with a dry etching process to produce nanoholes on the SiO2 layer. The demonstrated approach has advantages such as a high resolution in nanoscale by EBL and good reproducibility by NIL. In addition, high time efficiency can be realized by one-spot electron-beam exposure in the EBL process combined with NIL for mass production. Furthermore, the one-spot exposure enables the scalability of the nanostructures for different application requirements by tuning only the exposure dose. The size variation of the nanostructures resulting from exposure parameters in EBL, the pattern transfer during nanoimprint in NIL, and subsequent etching processes of SiO2 were also studied quantitatively. By this method, a hexagonal arranged hole array in SiO2 with a hole diameter ranging from 45 to 75 nm and a pitch of 600 nm was demonstrated on a four-inch wafer. Full article
(This article belongs to the Special Issue Scalable Micro/Nano Patterning)
Show Figures

Figure 1

Back to TopTop