Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = side-chain liquid crystalline copolymers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4381 KiB  
Article
Hierarchically Structured Stimuli-Responsive Liquid Crystalline Terpolymer–Rhodamine Dye Conjugates
by Samiksha Vaidya, Meenakshi Sharma, Christian Brückner and Rajeswari M. Kasi
Molecules 2025, 30(2), 401; https://doi.org/10.3390/molecules30020401 - 18 Jan 2025
Viewed by 913
Abstract
Optically responsive materials are applied in sensing, actuators, and optical devices. One such class of material is dye-doped liquid crystal polymers that self-assemble into cholesteric mesophases that reflect visible light. We report here the synthesis and characterization of a family of linear and [...] Read more.
Optically responsive materials are applied in sensing, actuators, and optical devices. One such class of material is dye-doped liquid crystal polymers that self-assemble into cholesteric mesophases that reflect visible light. We report here the synthesis and characterization of a family of linear and mildly crosslinked terpolymers prepared by the ROMP of norbornene-based monomers. The three monomers were composed of (i) rhodamine dye through one or two norbornene end groups utilizing flexible C10-alkane spacers, (ii) a cholesteryl liquid crystal (LC) using C9-alkane spacers, and (iii) PEG side chains. We investigated how these architectural variations in these terpolymers impacted their hierarchically self-assembled mesophase properties. We probed their composition, morphology, thermal, mechanic, photochromic, and mechanochromic properties using, inter alia, 1H NMR spectroscopy, DSC, temperature-dependent SAXS, diffuse reflectance UV-vis spectroscopy, and optical polarization microscopy. The new terpolymers exhibited architecture-dependent thermochromic, mechanochromic, and piezochromic properties arising from LC–rhodamine dye interactions. We found that a compromise between the rigidity and flexibility of the terpolymer architectures needed to be stricken to fully express stimuli-responsive properties. These terpolymers also showed distinctly different properties compared to those of a previously reported structurally related liquid crystalline copolymer made from two monomers. These findings help to define the design principles for optimally stimuli-responsive liquid crystalline polymers. Full article
(This article belongs to the Special Issue Polymeric Liquid Crystals and Applications, 2nd Edition)
Show Figures

Graphical abstract

12 pages, 2881 KiB  
Article
Self-Assembly of the Block Copolymer Containing Discotic Mesogens Driven by Liquid Crystalline Ordering Effect
by Xiaojian Hou, Lingjuan Hu, Huanzhi Yang, Bixin Jin, Yunjun Luo and Xiaoyu Li
Polymers 2024, 16(23), 3339; https://doi.org/10.3390/polym16233339 - 28 Nov 2024
Viewed by 857
Abstract
Block copolymers (BCPs) have attracted considerable attention due to their ability to form a variety of complex assemblies with diverse morphologies and functions in solution. By incorporating liquid crystalline (LC) moieties, the LC side chains significantly affect the morphologies and sizes of BCP [...] Read more.
Block copolymers (BCPs) have attracted considerable attention due to their ability to form a variety of complex assemblies with diverse morphologies and functions in solution. By incorporating liquid crystalline (LC) moieties, the LC side chains significantly affect the morphologies and sizes of BCP assemblies. In this study, we synthesized the copolymer with an LC block containing triphenylene (HAT) discotic mesogen and short methylene side chains. By enhancing the π–π interaction between triphenylene discotic mesogens, and doping the discotic mesogens, the LC orderedness was significantly enhanced and able to dictate the self-assembly behaviors of the BCP in solution. Additionally, the lengths of resultant fibrillar micelles were easily tuned by adjusting the dopant content. More interestingly, two growth modes, nucleation growth and coupling, were observed during the formation of fibrils. Consequently, with long-term aging and sufficient concentration, a large portion of these fibrils underwent end-to-end coupling to form long fibrils, allowing the formation of organogel via inter-fibrillar entanglement. Full article
(This article belongs to the Special Issue New Progress in Polymer Self-Assembly)
Show Figures

Figure 1

15 pages, 4218 KiB  
Article
Synthesis and Characterization of Side-Chain Liquid-Crystalline Block Copolymers Containing Cyano-Terminated Phenyl Benzoate Moieties
by Kaito Takahashi, Daisuke Taguchi, Takashi Kajitani, Takanori Fukushima, Shoichi Kubo and Atsushi Shishido
Molecules 2023, 28(23), 7849; https://doi.org/10.3390/molecules28237849 - 29 Nov 2023
Cited by 2 | Viewed by 1878
Abstract
Block copolymers, known for their capacity to undergo microphase separation, spontaneously yield various periodic nanostructures. These precisely controlled nanostructures have attracted considerable interest due to their potential applications in microfabrication templates, conducting films, filter membranes, and other areas. However, it is crucial to [...] Read more.
Block copolymers, known for their capacity to undergo microphase separation, spontaneously yield various periodic nanostructures. These precisely controlled nanostructures have attracted considerable interest due to their potential applications in microfabrication templates, conducting films, filter membranes, and other areas. However, it is crucial to acknowledge that microphase-separated structures typically exhibit random alignment, making alignment control a pivotal factor in functional material development. To address this challenge, researchers have explored the use of block copolymers containing liquid-crystalline (LC) polymers, which offer a promising technique for alignment control. The molecular structure and LC behavior of these polymers significantly impact the morphology and alignment of microphase-separated structures. In this study, we synthesized LC diblock copolymers with cyano-terminated phenyl benzoate moieties and evaluated the microphase-separated structures and molecular alignment behaviors. The LC diblock copolymers with a narrow molecular weight distribution were synthesized by atom transfer radical polymerization. Small angle X-ray scattering measurements revealed that the block copolymers exhibit smectic LC phases and form cylinder structures with a lattice period of about 18 nm by microphase separation. The examination of block copolymer films using polarized optical microscopy and polarized UV-visible absorption spectroscopy corroborated that the LC moieties were uniaxially aligned along the alignment treatment direction. Full article
(This article belongs to the Special Issue Smart Polymeric Micro/Nanomaterials)
Show Figures

Graphical abstract

15 pages, 2805 KiB  
Article
Membranes for Cation Transport Based on Dendronized Poly(Epichlorohydrin-Co-Ethylene Oxide). Part 2: Membrane Characterization and Transport Properties
by Alireza Zare, Xavier Montané, José Antonio Reina and Marta Giamberini
Polymers 2021, 13(22), 3915; https://doi.org/10.3390/polym13223915 - 12 Nov 2021
Cited by 2 | Viewed by 2123
Abstract
In this paper, we report on the preparation and characterization of membranes out of two side-chain liquid crystalline copolymers, dendronized at two different extents (20 and 40%, CP20 and CP40, respectively). The membranes were characterized by atomic force microscopy (AFM), field-emission scanning electron [...] Read more.
In this paper, we report on the preparation and characterization of membranes out of two side-chain liquid crystalline copolymers, dendronized at two different extents (20 and 40%, CP20 and CP40, respectively). The membranes were characterized by atomic force microscopy (AFM), field-emission scanning electron microscopy (FESEM), contact angle (CA) analysis, and water uptake. Moreover, transport properties were studied by methanol and proton conductivity experiment and by linear sweep voltammetry (LSV). For the sake of comparison, the behavior of the grafted copolymers was compared with the unmodified copolyether CP0 and with Nafion 117. Results demonstrated that in CP20 and CP40, cation transport depends on the presence of defined cationic channels, not affected by water presence; the comparison between LSV experiments performed with different alkaline cations suggests that CP40 possesses channels with larger diameters and better-defined inner structures. Full article
(This article belongs to the Special Issue High Performance Polymer Membranes)
Show Figures

Graphical abstract

18 pages, 4182 KiB  
Article
Liquid Crystalline Copolymers Containing Sulfonic and Light-Responsive Groups: From Molecular Design to Conductivity
by Sakinah Mohd Alauddin, Nurul Fadhilah Kamalul Aripin, Thamil Selvi Velayutham and Alfonso Martinez-Felipe
Molecules 2020, 25(11), 2579; https://doi.org/10.3390/molecules25112579 - 2 Jun 2020
Cited by 15 | Viewed by 4545
Abstract
In the search for novel smart multifunctional liquid crystalline materials, we report the synthesis, thermal and structural characterisation, and the conductivity, of a set of new block and statistical copolymers, containing light-responsive mesogenic groups (MeOAzB), polar sulfonic acids (AMPS), and methyl(methacrylate) groups (MMA). [...] Read more.
In the search for novel smart multifunctional liquid crystalline materials, we report the synthesis, thermal and structural characterisation, and the conductivity, of a set of new block and statistical copolymers, containing light-responsive mesogenic groups (MeOAzB), polar sulfonic acids (AMPS), and methyl(methacrylate) groups (MMA). By using a cascade of reversible addition-fragmentation chain polymerisations, RAFT, we have tailored different side-chain polymeric structures by controlling monomer composition (MeOAzB/AMPS/MMA) and configuration. We have yielded simultaneous liquid crystalline behaviour and appreciable conductivity in polymers with low concentrations of polar acid groups, by the formation of smectic phases in narrow aggregates. The light-responsiveness of the polymers, via reversible trans-to-cis photoisomerization of azobenzene groups, and the local activation of conductivity at relatively low temperatures, opens the possibility to prepare polymer electrolytes for energy conversion and storage, whose conductivity could be controlled and optimised by external stimuli, including light irradiation. Full article
(This article belongs to the Special Issue Current Advances in Liquid Crystals)
Show Figures

Graphical abstract

12 pages, 3118 KiB  
Article
Sequencing of Side-Chain Liquid Crystalline Copolymers by Matrix-Assisted Laser Desorption/Ionization Tandem Mass Spectrometry
by Savannah R. Snyder, Wei Wei, Huiming Xiong and Chrys Wesdemiotis
Polymers 2019, 11(7), 1118; https://doi.org/10.3390/polym11071118 - 1 Jul 2019
Cited by 6 | Viewed by 5386
Abstract
Polyether based side-chain liquid crystalline (SCLC) copolymers with distinct microstructures were prepared using living anionic polymerization techniques. The composition, end groups, purity, and sequence of the resulting copolymers were elucidated by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and tandem mass spectrometry (MS/MS). MALDI-MS [...] Read more.
Polyether based side-chain liquid crystalline (SCLC) copolymers with distinct microstructures were prepared using living anionic polymerization techniques. The composition, end groups, purity, and sequence of the resulting copolymers were elucidated by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and tandem mass spectrometry (MS/MS). MALDI-MS analysis confirmed the presence of (CH3)3CO– and –H end groups at the initiating (α) and terminating (ω) chain end, respectively, and allowed determination of the molecular weight distribution and comonomer content of the copolymers. The comonomer positions along the polymer chain were identified by MS/MS, from the fragments formed via C–O and C–C bond cleavages in the polyether backbone. Random and block architectures could readily be distinguished by the contiguous fragment series formed in these reactions. Notably, backbone C–C bond scission was promoted by a radical formed via initial C–O bond cleavage in the mesogenic side chain. This result documents the ability of a properly substituted side chain to induce sequence indicative bond cleavages in the polyether backbone. Full article
(This article belongs to the Special Issue Polymer Mass Spectrometry)
Show Figures

Graphical abstract

37 pages, 8129 KiB  
Review
Polysiloxane-Based Side Chain Liquid Crystal Polymers: From Synthesis to Structure–Phase Transition Behavior Relationships
by Lanying Zhang, Wenhuan Yao, Yanzi Gao, Cuihong Zhang and Huai Yang
Polymers 2018, 10(7), 794; https://doi.org/10.3390/polym10070794 - 19 Jul 2018
Cited by 29 | Viewed by 9057
Abstract
Organosilicon polymer materials play an important role in certain applications due to characteristics of much lower glass transition temperatures (Tg), viscosities, surface energy, as well as good mechanical, thermal stabilities, and insulation performance stemming from the higher bond energy and [...] Read more.
Organosilicon polymer materials play an important role in certain applications due to characteristics of much lower glass transition temperatures (Tg), viscosities, surface energy, as well as good mechanical, thermal stabilities, and insulation performance stemming from the higher bond energy and the larger bond angles of the adjacent silicon-oxygen bond. This critical review highlights developments in the synthesis, structure, and phase transition behaviors of polysiloxane-based side chain liquid crystal polymers (PSCLCPs) of linear and cyclic polysiloxanes containing homopolymers and copolymers. Detailed synthetic strategies are elaborated, and the relationship between molecular structures and liquid crystalline phase transition behaviors is systematically discussed, providing theoretical guidance on the molecular design of the materials. Full article
(This article belongs to the Special Issue Liquid Crystalline Polymers)
Show Figures

Graphical abstract

29 pages, 13767 KiB  
Article
Effects of Lateral and Terminal Chains of X-Shaped Bolapolyphiles with Oligo(phenylene ethynylene) Cores on Self-Assembly Behaviour. Part 1: Transition between Amphiphilic and Polyphilic Self-Assembly in the Bulk
by Silvio Poppe, Marco Poppe, Helgard Ebert, Marko Prehm, Changlong Chen, Feng Liu, Stefan Werner, Kirsten Bacia and Carsten Tschierske
Polymers 2017, 9(10), 471; https://doi.org/10.3390/polym9100471 - 26 Sep 2017
Cited by 20 | Viewed by 8352
Abstract
Polyphilic self-assembly leads to compartmentalization of space and development of complex structures in soft matter on different length scales, reaching from the morphologies of block copolymers to the liquid crystalline (LC) phases of small molecules. Whereas block copolymers are known to form membranes [...] Read more.
Polyphilic self-assembly leads to compartmentalization of space and development of complex structures in soft matter on different length scales, reaching from the morphologies of block copolymers to the liquid crystalline (LC) phases of small molecules. Whereas block copolymers are known to form membranes and interact with phospholipid bilayers, liquid crystals have been less investigated in this respect. Here, series of bolapolyphilic X-shaped molecules were synthesized and investigated with respect to the effect of molecular structural parameters on the formation of LC phases (part 1), and on domain formation in phospholipid bilayer membranes (part 2). The investigated bolapolyphiles are based on a rod-like π-conjugated oligo(phenylene ethynylene) (OPE) core with two glycerol groups being either directly attached or separated by additional ethylene oxide (EO) units to both ends. The X-shape is provided by two lateral alkyl chains attached at opposite sides of the OPE core, being either linear, branched, or semiperfluorinated. In this report, the focus is on the transition from polyphilic (triphilic or tetraphilic) to binary amphiphilic self-assembly. Polyphilic self-assembly, i.e., segregation of all three or four incorporated units into separate nano-compartments, leads to the formation of hexagonal columnar LC phases, representing triangular honeycombs. A continuous transition from the well-defined triangular honeycomb structures to simple hexagonal columnar phases, dominated by the arrangement of polar columns on a hexagonal lattice in a mixed continuum formed by the lipophilic chains and the OPE rods, i.e., to amphiphilic self-assembly, was observed by reducing the length and volume of the lateral alkyl chains. A similar transition was found upon increasing the length of the EO units involved in the polar groups. If the lateral alkyl chains are enlarged or replaced by semiperfluorinated chains, then the segregation of lateral chains and rod-like cores is retained, even for enlarged polar groups, i.e., the transition from polyphilic to amphiphilic self-assembly is suppressed. Full article
(This article belongs to the Special Issue From Amphiphilic to Polyphilic Polymers)
Show Figures

Graphical abstract

16 pages, 795 KiB  
Article
Liquid Crystalline π-Conjugated Copolymers Bearing a Pyrimidine Type Mesogenic Group
by Kohsuke Kawabata and Hiromasa Goto
Materials 2009, 2(1), 22-37; https://doi.org/10.3390/ma2010022 - 16 Jan 2009
Cited by 15 | Viewed by 12903 | Correction
Abstract
Phenylene-thiophene-based liquid crystalline π-conjugated copolymers bearing mesogenic groups as side chains were synthesized via a Stille polycondensation reaction and confirmed to exhibit a nematic liquid crystal phase at appropriate temperatures. The formation of a nematic phase, but not a smectic phase indicates cooperation [...] Read more.
Phenylene-thiophene-based liquid crystalline π-conjugated copolymers bearing mesogenic groups as side chains were synthesized via a Stille polycondensation reaction and confirmed to exhibit a nematic liquid crystal phase at appropriate temperatures. The formation of a nematic phase, but not a smectic phase indicates cooperation of the main chain and side chain in the formation of a nematic main-chain/side-chain liquid crystal phase. The generation of polarons in the main chain as charge carriers during in-situ vapor doping of iodine is confirmed to increase with a doping progresses, exhibiting Dysonian paramagnetic behavior typical of conductive polymers. Full article
(This article belongs to the Special Issue Liquid Crystals)
Show Figures

Figure 1

Back to TopTop