Membranes for Cation Transport Based on Dendronized Poly(Epichlorohydrin-Co-Ethylene Oxide). Part 2: Membrane Characterization and Transport Properties
Abstract
:1. Introduction
- -
- The chemical composition of the polymer backbone, emphasizing which type of electron-withdrawing atom is present in polymer main chains.
- -
- The amount of grafted mesogenic groups into the polymer backbone.
- -
- The method (or combined methods) employed to favor the homeotropic alignment of the polymeric columns (thermal or light treatment, shearing, spinning) [22].
2. Materials and Methods
2.1. Materials
2.2. Membrane Preparation and Characterizations
3. Results
3.1. Morphological Characterization, Wettability and Water Uptake
3.2. Transport Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berardi, S.; Drouet, S.; Francàs, L.; Gimbert-Suriñach, C.; Guttentag, M.; Richmond, C.; Stoll, T.; Llobet, A. Molecular artificial photosynthesis. Chem. Soc. Rev. 2014, 43, 7501–7519. [Google Scholar] [CrossRef]
- Keijer, T.; Bouwens, T.; Hessels, J.; Reek, J.N.H. Supramolecular strategies in artificial photosynthesis. Chem. Sci. 2021, 12, 50–70. [Google Scholar] [CrossRef]
- Cheng, Y.Y.; Fückel, B.; MacQueen, R.W.; Khoury, T.; Clady, R.G.C.R.; Schulze, T.F.; Ekins-Daukes, N.J.; Crossley, M.J.; Stannowski, B.; Lips, K.; et al. Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion. Energy Environ. Sci. 2012, 5, 6953–6959. [Google Scholar] [CrossRef] [Green Version]
- Sazali, N.; Salleh, W.N.W.; Jamaludin, A.S.; Razali, M.N.M. New Perspectives on Fuel Cell Technology: A Brief Review. Membranes 2020, 10, 99. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, C. Cost-effective iron-based aqueous redox flow batteries for large-scale energy storage application. J. Power Sources 2021, 493, 229445. [Google Scholar] [CrossRef]
- Shin, D.W.; Guiver, M.D.; Lee, Y.M. Hydrocarbon-Based Polymer Electrolyte Membranes: Importance of Morphology on Ion Transport and Membrane Stability. Chem. Rev. 2017, 117, 4759–4805. [Google Scholar] [CrossRef]
- Sun, C.; Negro, E.; Nale, A.; Pagot, G.; Vezzù, K.; Zawodzinski, T.A.; Meda, L.; Gambaro, C.; Di Noto, V. An efficient barrier toward vanadium crossover in redox flow batteries: The bilayer [Nafion/(WO3)x] hybrid inorganic-organic membrane. Electrochim. Acta 2021, 378, 138133. [Google Scholar] [CrossRef]
- Parthiban, V.; Akula, S.; Sahu, A.K. Surfactant templated nanoporous carbon-Nafion hybrid membranes for direct methanol fuel cells with reduced methanol crossover. J. Membr. Sci. 2017, 541, 127–136. [Google Scholar] [CrossRef]
- Shen, Y.X.; Saboe, P.O.; Sines, I.T.; Erbakan, M.; Kumar, M. Biomimetic membranes: A review. J. Membr. Sci. 2014, 454, 359–381. [Google Scholar] [CrossRef]
- Percec, V.; Heck, J. Liquid crystalline polymers containing mesogenic units based on half-disc and rod-like moieties—4. Side chain liquid crystalline polymethylsiloxanes containing hemiphasmidic mesogens based on 4-[3,4,5-tri-(alkan-1-yloxy)benzoate]biphenyl groups. J. Polym. Sci. Part A Polym. Chem. 1991, 29, 591–597. [Google Scholar] [CrossRef]
- Sun, H.-J.; Zhang, S.; Percec, V. From structure to function via complex supramolecular dendrimer systems. Chem. Soc. Rev. 2015, 44, 3900–3923. [Google Scholar] [CrossRef]
- Rosen, B.M.; Wilson, C.J.; Wilson, D.A.; Peterca, M.; Imam, M.R.; Percec, V. Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem. Rev. 2009, 109, 6275–6540. [Google Scholar] [CrossRef]
- Sherman, S.E.; Xiao, Q.; Percec, V. Mimicking complex biological membranes and their programmable glycan ligands with dendrimersomes and glycodendrimersomes. Chem. Rev. 2017, 117, 6538–6631. [Google Scholar] [CrossRef] [PubMed]
- Bhosale, S.V.; Rasool, M.A.; Reina, J.A.; Giamberini, M. New Liquid crystallne Columnar Poly(epichlorohydrin-co-ethylene oxide) Derivatives Leading to Biomimetic Ion Channels. Polym. Eng. Sci. 2013, 53, 159–167. [Google Scholar] [CrossRef]
- Montané, X.; Bhosale, S.V.; Reina, J.A.; Giamberini, M. Columnar Liquid Crystalline Polyglycidol De-rivatives: A Novel Alternative for Proton-Conducting Membranes. Polymer 2015, 66, 100–109. [Google Scholar] [CrossRef]
- Montané, X.; Bogdanowicz, K.A.; Colace, G.; Reina, J.A.; Cerruti, P.; Lederer, A.; Giamberini, M. Advances in the Design of Self-Supported Ion-Conducting Membranes-New Family of Columnar Liquid Crystalline Polyamines. Part 1: Copolymer Synthesis and Membrane Preparation. Polymer 2016, 105, 298–309. [Google Scholar] [CrossRef]
- Šakalytė, A.; Reina, J.A.; Giamberini, M. Liquid Crystalline Polyamines Containing Side Dendrons: To-ward the Building of Ion Channels Based on Polyamines. Polymer 2013, 54, 5133–5140. [Google Scholar] [CrossRef]
- Bogdanowicz, K.A.; Rapsilber, G.A.; Reina, J.A.; Giamberini, M. Liquid Crystalline Polymeric Wires for Selective Proton Transport, Part 1: Wires Preparation. Polymer 2016, 92, 50–57. [Google Scholar] [CrossRef]
- Bogdanowicz, K.A.; Sistat, P.; Reina, J.A.; Giamberini, M. Liquid Crystalline Polymeric Wires for Selective Proton Transport, Part 2: Ion Transport in Solid-State. Polymer 2016, 92, 58–65. [Google Scholar] [CrossRef]
- Montané, X.; Bogdanowicz, K.A.; Prats-Reig, J.; Colace, G.; Reina, J.A.; Giamberini, M. Advances in the Design of Self-Supported Ion-Conducting Membranes—New Family of Columnar Liquid Crystalline Pol-yamines. Part 2: Ion Transport Characterisation and Comparison to Hybrid Membranes. Polymer 2016, 105, 234–242. [Google Scholar] [CrossRef]
- Bogdanowicz, K.A.; Bhosale, S.V.; Li, Y.; Vankelecom, I.F.J.; Garcia-Valls, R.; Reina, J.A.; Giamberini, M. Mimicking Nature: Biomimetic Ionic Channels. J. Membr. Sci. 2016, 509, 10–18. [Google Scholar] [CrossRef]
- Lee, W.J.; Kwac, L.K.; Kim, H.G.; Chang, J.-H. Thermotropic liquid crystalline copolyester fibers according to various heat treatment conditions. Sci. Rep. 2021, 11, 11654. [Google Scholar] [CrossRef] [PubMed]
- Teruel-Juanes, R.; Bogdanowicz, K.A.; Badia, J.D.; de Juano-Arbona, V.S.; Graf, R.; Reina, J.A.; Giamberini, M.; Ribes-Greus, A. Molecular Mobility in Oriented and Unoriented Membranes Based on Poly[2-(Aziridin-1-yl)ethanol]. Polymers 2021, 13, 1060. [Google Scholar] [CrossRef] [PubMed]
- Teruel-Juanes, R.; Pascual-Jose, B.; Graf, R.; Reina, J.A.; Giamberini, M.; Ribes-Greus, A. Effect of Dendritic Side Groups on the Mobility of Modified Poly(epichlorohydrin) Copolymers. Polymers 2021, 13, 1961. [Google Scholar] [CrossRef]
- Zare, A.; Pascual-Jose, B.; De la Flor, S.; Ribes-Greus, A.; Montané, X.; Reina, J.A.; Giamberini, M. Membranes for cation transport based on dendronized Poly(epichlorohydrin-co-ethylene oxide). Part 1: The effect of the Dendron amount and column orientation on the copolymer mobility. Polymers 2021, 13, 3532. [Google Scholar] [CrossRef]
- Prater, K.B. Polymer electrolyte fuel cells: A review of recent developments. J. Power Sources 1994, 51, 129–144. [Google Scholar] [CrossRef]
- Horcas, I.; Fernandez, R.; Gomez-Rodriguez, J.M.; Colchero, J.; Gomez-Herrero, J.; Baro, A.M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705. [Google Scholar] [CrossRef]
- Garcia-Valls, R. Nous Materials en Tècniques de Separació D’elements Lantànids: Membranes Polimètriques Activades i Materials Inorgànics per a Cromatografia. Ph.D. Thesis, Universitat Rovira i Virgili (URV), Tarragona, Spain, 1995. Available online: https://hdl.handle.net/10803/13267 (accessed on 22 July 2021).
- Mulder, M. Basic Principles of Membrane Technology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Ferreiro, V.; Douglas, J.F.; Amis, E.J.; Karim, A. Phase Ordering in Blend Films of Semi-crystalline and Amorphous Polymers. Macromol. Symp. 2001, 167, 73–88. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Scheirs, J.; Long, T.E. Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters; John Wiley & Sons Ltd.: Chichester, UK, 2003. [Google Scholar]
- Bascheka, G.; Hartwiga, G.; Zahradnikb, F. Effect of water absorption in polymers at low and high temperatures. Polymer 1999, 40, 3433–3441. [Google Scholar] [CrossRef]
- Wandrol, P.; Slouf, M. Polymer imaging in SEM—Charge, damage and coating free. Microsc. Microanal. 2017, 23, 1816–1817. [Google Scholar] [CrossRef] [Green Version]
- Yaroslavtsev, A.B.; Stenina, I.A.; Golubenko, D.V. Membrane materials for energy production and storage. Pure Appl. Chem. 2020, 92, 1147–1157. [Google Scholar] [CrossRef]
- Bogdanowicz, K.A.; Pirone, D.; Prats-Reig, J.; Ambrogi, V.; Reina, J.A.; Giamberini, M. In Situ Raman Spectroscopy as a Tool for Structural Insight into Cation Non-Ionomeric Polymer Interactions during Ion Transport. Polymers 2018, 10, 416. [Google Scholar] [CrossRef] [Green Version]
- Tylkowski, B.; Castelao, N.; Giamberini, M.; Garcia-Valls, R.; Reina, J.A.; Gumí, T. The importance of orientation in proton transport of a polymer film based on an oriented self-organized columnar liquid-crystalline polyether. Mater. Sci. Eng. C 2012, 32, 105–111. [Google Scholar] [CrossRef]
- Cotton, F.A.; Wilkinson, G. Advanced Inorganic Chemistry; John Wiley & Sons: New York, NY, USA, 1980. [Google Scholar]
- Garrido, L.; Pozuelo, J.; López-González, M.; Yan, G.; Fang, J.; Riande, E. Influence of the Water Content on the Diffusion Coefficients of Li+ and Water across Naphthalenic Based Copolyimide Cation-Exchange Membranes. J. Phys. Chem. B 2012, 116, 11754–11766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkov, V.I.; Chernyak, A.V.; Golubenko, D.V.; Tverskoy, V.A.; Lochin, G.A.; Odjigaeva, E.S.; Yaroslavtsev, A.B. Hydration and Diffusion of H, Li, Na, Cs Ions in Cation-Exchange Membranes Based on Polyethylene- and Sulfonated-Grafted Polystyrene Studied by NMR Technique and Ionic Conductivity Measurements. Membranes 2020, 10, 272. [Google Scholar] [CrossRef]
- Stenina, I.A.; Sistat, P.; Rebrov, A.I.; Pourcelly, G.; Yaroslavtsev, A.B. Ion mobility in Nafion-117 membranes. Desalination 2004, 170, 49–57. [Google Scholar] [CrossRef]
Sample | RMS Roughness (µm) | Kurtosis |
---|---|---|
CP20 | 128 ± 26 | 3.6 ± 1.3 |
CP20 oriented | 44 ± 11 | 4.6 ± 1.6 |
CP40 | 0.44 ± 0.08 | 2.7 ± 0.1 |
CP40 oriented | 16 ± 3 | 4.8 ± 1.1 |
Sample | Contact Angle (°) | |
---|---|---|
Unoriented a,b | Oriented a,b | |
CP0 | 72 ± 1 | - |
CP20 | 87 ± 2 a, 89 ± 1 b | 104.5 ± 0.9 a, 106.5 ± 0.4 b |
CP40 | 96.3 ± 0.3 a, 97.0 ± 0.5 b | 131.0 ± 0.8 a, 129.8 ± 0.3 b |
Sample | WU (%), Unoriented | WU (%), Oriented | Methanol Permeability (cm2 s−1) |
---|---|---|---|
CP0 | 28 | - | 1.79 × 10−6 |
CP20 | 10 ± 0.5 | 2.5 ± 0.5 | Not Detected |
CP40 | 7.5 ± 0.5 | 2.0 ± 0.5 | Not Detected |
Sample | Proton Permeability (cm2 s−1) | ||
---|---|---|---|
Cation in Stripping Phase | |||
Li+ | Na+ | K+ | |
CP0 | (2.7 ± 0.2) × 10−6 | (3.4 ± 1.6) × 10−6 | (2.2 ± 0.1) × 10−5 |
CP20 | (1.2 ± 0.3) × 10−8 | (3.1 ± 0.5) × 10−8 | Not detected |
CP40 | (1.4 ± 0.2) × 10−7 | (3.4 ± 0.5) × 10−7 | Not detected |
Nafion 117 | - | (7.7 ± 0.2) × 10−6 | - |
Sample Name | Thickness (µm) | Electrolyte | Resistance (kΩ/cm2) | Selectivity (%) |
---|---|---|---|---|
Nafion | 200 | HCl | 0.03 | - |
LiCl | 0.16 | 16.5 | ||
NaCl | 0.11 | 24.2 | ||
KCl | 0.08 | 31.0 | ||
CP0 | 360 | HCl | 863.9 | - |
LiCl | 1470.59 | 58,7 | ||
NaCl | 1108.65 | 77,8 | ||
KCl | 1175.78 | 73,5 | ||
CP20 | 150 | HCl | 3333.33 | - |
LiCl | 16260.16 | 20.5 | ||
NaCl | 12269.94 | 27.2 | ||
KCl | 12578.62 | 26.5 | ||
CP40 | 200 | HCl | 1492.54 | - |
LiCl | 8230.45 | 19.4 | ||
NaCl | 2597,40 | 51.3 | ||
KCl | 2564.10 | 57.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zare, A.; Montané, X.; Reina, J.A.; Giamberini, M. Membranes for Cation Transport Based on Dendronized Poly(Epichlorohydrin-Co-Ethylene Oxide). Part 2: Membrane Characterization and Transport Properties. Polymers 2021, 13, 3915. https://doi.org/10.3390/polym13223915
Zare A, Montané X, Reina JA, Giamberini M. Membranes for Cation Transport Based on Dendronized Poly(Epichlorohydrin-Co-Ethylene Oxide). Part 2: Membrane Characterization and Transport Properties. Polymers. 2021; 13(22):3915. https://doi.org/10.3390/polym13223915
Chicago/Turabian StyleZare, Alireza, Xavier Montané, José Antonio Reina, and Marta Giamberini. 2021. "Membranes for Cation Transport Based on Dendronized Poly(Epichlorohydrin-Co-Ethylene Oxide). Part 2: Membrane Characterization and Transport Properties" Polymers 13, no. 22: 3915. https://doi.org/10.3390/polym13223915
APA StyleZare, A., Montané, X., Reina, J. A., & Giamberini, M. (2021). Membranes for Cation Transport Based on Dendronized Poly(Epichlorohydrin-Co-Ethylene Oxide). Part 2: Membrane Characterization and Transport Properties. Polymers, 13(22), 3915. https://doi.org/10.3390/polym13223915