Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = shipboard aircraft

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7633 KiB  
Article
Dynamic Modeling and Safety Analysis of Whole Three-Winch Traction System of Shipboard Aircraft
by Guofang Nan, Ying Wang, Yihui Zhou, Haoyu Wang and Yao Li
Aerospace 2025, 12(7), 579; https://doi.org/10.3390/aerospace12070579 - 26 Jun 2025
Viewed by 260
Abstract
The winch traction system for shipboard aircraft, when operating in a marine environment, is subjected to additional forces and moments due to the complex motion of the hull. These loads pose significant threats to the safety of the aircraft during the traction process. [...] Read more.
The winch traction system for shipboard aircraft, when operating in a marine environment, is subjected to additional forces and moments due to the complex motion of the hull. These loads pose significant threats to the safety of the aircraft during the traction process. To address the safety issues under complex sea conditions, this paper adopts harmonic functions to describe the rolling, pitching, and heaving motions of the hull. A theoretical analytical model of the three-winch traction system, considering the intricate coupling motions of the ship, is established. Unlike previous studies that often simplify ship motion or focus on single-component modeling, this work develops a complete, whole-system dynamic model integrating the winch system, rope, aircraft structure, and ship interaction. The dynamic characteristics of the small-deck winch traction system are investigated, with particular focus on the influence of the rear winch position, driving trajectory, and ship motion on the system’s dynamics and safety. This research is innovative in systematically exploring the dynamic safety behavior of a three-winch traction system operating under small-deck conditions and complex sea states. The results show that as the distance between the two rear winches increases, the lateral force on the tire decreases. Additionally, as the aircraft’s turning angle increases, the front winch rope force also increases. Moreover, with higher sea condition levels and wind scales, the maximum lateral force on the tires increases, leading to a significant reduction in the stability and safety of the winch traction system. This is particularly critical when the sea condition level exceeds 3 and the wind scale exceeds 6, as it increases the risk of tire sideslip or off-ground events. This research has substantial value for enhancing the safety and stability of winch traction systems on small decks, and also provides a theoretical basis for traction path design, winch position optimization, and the extension of the service life of key system components, demonstrating strong engineering applicability. Full article
Show Figures

Figure 1

19 pages, 13312 KiB  
Article
Numerical Simulation of the Unsteady Airwake of the Liaoning Carrier Based on the DDES Model Coupled with Overset Grid
by Xiaoxi Yang, Baokuan Li, Zhibo Ren and Fangchao Tian
J. Mar. Sci. Eng. 2024, 12(9), 1598; https://doi.org/10.3390/jmse12091598 - 9 Sep 2024
Cited by 2 | Viewed by 1276
Abstract
The wake behind an aircraft carrier under heavy wind condition is a key concern in ship design. The Chinese Liaoning ship’s upturned bow and the island on the deck could cause serious flow separation in the landing and take-off area. The flow separation [...] Read more.
The wake behind an aircraft carrier under heavy wind condition is a key concern in ship design. The Chinese Liaoning ship’s upturned bow and the island on the deck could cause serious flow separation in the landing and take-off area. The flow separation induces strong velocity gradients and intense pulsations in the flow field. In addition, the sway of the aircraft carrier caused by waves could also intensify the flow separation. The complex flow field poses a significant risk to the shipboard aircraft take-off and landing operation. Therefore, accurately predicting the wake of an aircraft carrier during wave action motion is of great interest for design optimization and recovery aircraft control. In this research, the aerodynamic around an aircraft carrier (i.e., Liaoning) was analyzed using the computational fluid dynamics technique. The validity of two turbulence models was verified through comparison with the existing data from the literature. The upturned bow take-off deck and the right-hand island were the main areas where flow separation occurred. Delayed detached eddy simulation (DDES), which combines the advantages of LES and RANS, was adopted to capture the full-scale spatial and temporal flow information. The DDES was also coupled with the overset grid to calculate the flow field characteristics under the effect of hull sway. The downwash area at 15° starboard wind became shorter when the hull was stationary, while the upwash area and turbulence intensity increased. The respective characteristics of the wake flow field in the stationary and swaying state of the ship were investigated, and the flow separation showed a clear periodic when the ship was swaying. Comprehensive analysis of the time-dependent flow characteristic of the approach line for fixed-wing naval aircraft is also presented. Full article
Show Figures

Figure 1

22 pages, 10593 KiB  
Article
Study of an LLC Converter for Thermoelectric Waste Heat Recovery Integration in Shipboard Microgrids
by Nick Rigogiannis, Ioannis Roussos, Christos Pechlivanis, Ioannis Bogatsis, Anastasios Kyritsis, Nick Papanikolaou and Michael Loupis
Technologies 2024, 12(5), 67; https://doi.org/10.3390/technologies12050067 - 11 May 2024
Cited by 1 | Viewed by 2550
Abstract
Static waste heat recovery, by means of thermoelectric generator (TEG) modules, constitutes a fast-growing energy harvesting technology on the way towards greener transportation. Many commercial solutions are already available for small internal combustion engine (ICE) vehicles, whereas further development and cost reductions of [...] Read more.
Static waste heat recovery, by means of thermoelectric generator (TEG) modules, constitutes a fast-growing energy harvesting technology on the way towards greener transportation. Many commercial solutions are already available for small internal combustion engine (ICE) vehicles, whereas further development and cost reductions of TEG devices expand their applicability at higher-power transportation means (i.e., ships and aircrafts). In this light, the integration of waste heat recovery based on TEG modules in a shipboard distribution network is studied in this work. Several voltage step-up techniques are considered, whereas the most suitable ones are assessed via the LTspice simulation platform. The design procedure of the selected LLC resonant converter is presented and analyzed in detail. Furthermore, a flexible control strategy is proposed, capable of either output voltage regulation (constant voltage) or maximum power point tracking (MPPT), according to the application demands. Finally, both simulations and experiments (on a suitable laboratory testbench) are performed. The obtained measurements indicate the high efficiency that can be achieved with the LLC converter for a wide operating area as well as the functionality and adequate performance of the control scheme in both operating conditions. Full article
(This article belongs to the Special Issue MOCAST 2023)
Show Figures

Figure 1

22 pages, 1213 KiB  
Review
Energy Storage Systems: Technologies and High-Power Applications
by Ahmed Aghmadi and Osama A. Mohammed
Batteries 2024, 10(4), 141; https://doi.org/10.3390/batteries10040141 - 20 Apr 2024
Cited by 73 | Viewed by 20226
Abstract
Energy storage systems are essential in modern energy infrastructure, addressing efficiency, power quality, and reliability challenges in DC/AC power systems. Recognized for their indispensable role in ensuring grid stability and seamless integration with renewable energy sources. These storage systems prove crucial for aircraft, [...] Read more.
Energy storage systems are essential in modern energy infrastructure, addressing efficiency, power quality, and reliability challenges in DC/AC power systems. Recognized for their indispensable role in ensuring grid stability and seamless integration with renewable energy sources. These storage systems prove crucial for aircraft, shipboard systems, and electric vehicles, addressing peak load demands economically while enhancing overall system reliability and efficiency. Recent advancements and research have focused on high-power storage technologies, including supercapacitors, superconducting magnetic energy storage, and flywheels, characterized by high-power density and rapid response, ideally suited for applications requiring rapid charging and discharging. Hybrid energy storage systems and multiple energy storage devices represent enhanced flexibility and resilience, making them increasingly attractive for diverse applications, including critical loads. This paper provides a comprehensive overview of recent technological advancements in high-power storage devices, including lithium-ion batteries, recognized for their high energy density. In addition, a summary of hybrid energy storage system applications in microgrids and scenarios involving critical and pulse loads is provided. The research further discusses power, energy, cost, life, and performance technologies. Full article
(This article belongs to the Special Issue Charging Safety and Intelligence of Lithium-Ion Batteries)
Show Figures

Graphical abstract

25 pages, 1494 KiB  
Perspective
New Horizons for Microgrids: From Rural Electrification to Space Applications
by Alexander Micallef, Josep M. Guerrero and Juan C. Vasquez
Energies 2023, 16(4), 1966; https://doi.org/10.3390/en16041966 - 16 Feb 2023
Cited by 20 | Viewed by 3959
Abstract
The microgrid concept has evolved from the humble origins of simple remote electrification applications in rural environments to complex architectures. Microgrids are key enablers to the integration of higher penetrations of renewables in the energy sector (including electricity, heating, cooling, transport and industry). [...] Read more.
The microgrid concept has evolved from the humble origins of simple remote electrification applications in rural environments to complex architectures. Microgrids are key enablers to the integration of higher penetrations of renewables in the energy sector (including electricity, heating, cooling, transport and industry). In addition to the local energy sources, energy storage systems and loads, the modern microgrid encompasses sophisticated energy and power management systems, peer-to-peer energy markets and digital technologies to support this energy transition. The microgrid concept has recently been applied to all energy sectors, in order to develop solutions that address pressing issues related to climate change and the decarbonization of these important sectors. This paper initially reviews novel applications in which the microgrid concept is being applied, from a detailed analysis of recent literature. This consists of a comprehensive analysis of the state of the art in shipboard microgrids, port microgrids, aircraft microgrids, airport microgrids and space microgrids. Future research directions are then presented, based on the authors’ perspectives on pushing the boundaries of microgrids further. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Graphical abstract

16 pages, 8582 KiB  
Article
Research on Dynamic Marine Atmospheric Corrosion Behavior of AZ31 Magnesium Alloy
by Ying Wang, Weichen Xu, Xiutong Wang, Quantong Jiang, Yantao Li, Yanliang Huang and Lihui Yang
Metals 2022, 12(11), 1886; https://doi.org/10.3390/met12111886 - 4 Nov 2022
Cited by 13 | Viewed by 2406
Abstract
The dynamic marine atmospheric corrosion behavior of AZ31 magnesium alloy was investigated in situ exposed on the deck of marine scientific research vessel for 1 year. The marine scientific research vessel carried out five voyages from the coast of China to the western [...] Read more.
The dynamic marine atmospheric corrosion behavior of AZ31 magnesium alloy was investigated in situ exposed on the deck of marine scientific research vessel for 1 year. The marine scientific research vessel carried out five voyages from the coast of China to the western Pacific Ocean, while the navigation track and environmental data were collected and analyzed. The corrosion rate and characteristics were evaluated by using weight loss tests, scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. The corrosion rate from weight loss values was 52.23 μm∙y−1 after exposure for 1 year, which was several times higher than that of the static field exposure test in marine atmospheric environment of other reported literature. The main corrosion products were Mg5(CO3)4(OH)2·4H2O, MgCO3·3H2O and Mg2(OH)3Cl·4H2O. The corrosion was initiated from pitting corrosion and evolved into general corrosion gradually. The serious corrosion maybe due to the harsh corrosive environment with alternating changes in temperature and relative humidity caused by multiple longitude and latitude changes, and particularly high deposition rate of chloride during voyage, which was nearly twenty times that on the coast of China. This study provides effective data for the application of magnesium alloy in shipboard aircraft and other equipment, and provides a reference for indoor simulation experiments. Full article
(This article belongs to the Special Issue Preparation and Processing Technology of Advanced Magnesium Alloys)
Show Figures

Figure 1

21 pages, 3938 KiB  
Article
Capacity Evaluation Method of Ship Terminal Area Based on Network Maximum Flow
by Gang Zhong, Yuhan Fei, Jia Yi, Dikun Feng and Ouge Feng
Sustainability 2022, 14(17), 10470; https://doi.org/10.3390/su141710470 - 23 Aug 2022
Viewed by 1631
Abstract
With the development of modern military ship equipment, the airspace operation environment of shipboard aircraft is becoming increasingly complex. The objective and accurate evaluation of ship-terminal capacity is the basis of air traffic flow management for shipboard aircraft, and it is also the [...] Read more.
With the development of modern military ship equipment, the airspace operation environment of shipboard aircraft is becoming increasingly complex. The objective and accurate evaluation of ship-terminal capacity is the basis of air traffic flow management for shipboard aircraft, and it is also the premise of improving the efficiency of airspace resources. First of all, this paper divides the airspace and ship terminal areas and realizes the route network planning for the arrival and departure of shipboard aircraft. Following this, according to the airspace characteristics of the ship terminal area and the operation process of the shipboard aircraft, an arrival-and-departure network flow model for shipboard aircraft is established by using capacity-limitation and flow-conservation conditions. Finally, simulated annealing (SA) is used to solve the maximum flow in the arrival-and-departure network flow model, and the capacity evaluation results of the ship terminal area are obtained. The results show that when the number of gates is ng ≥ 7, the bottleneck in the ship terminal area’s operation capacity is the deck runway. When 3 ≤ ng < 7, imbalanced take-off and landing tasks lead to a waste of runway resources, and when ng < 3, the number of gates becomes the bottleneck which limits the capacity. With the number of gates being reduced from seven to three, the capacity is reduced from twenty sorties per hour to six sorties per hour. The model and core idea proposed in this paper can not only quickly evaluate the capacity of the terminal area of ships but also provide a solid foundation for the development of future fleet groups and the full use of maritime airspace. Full article
(This article belongs to the Special Issue Airspace System Planning and Management)
Show Figures

Figure 1

24 pages, 9948 KiB  
Article
Real-Time Precise DGNSS/INS Integrated Relative Positioning with High Output Rate and Low Broadcast Rate for Kinematic-to-Kinematic Applications
by Qingsong Li, Yi Dong, Dingjie Wang, Jie Wu and Liang Zhang
Remote Sens. 2022, 14(9), 2053; https://doi.org/10.3390/rs14092053 - 25 Apr 2022
Cited by 5 | Viewed by 2224
Abstract
High-output-rate relative positions are required for high-speed safety-critical kinematic-to-kinematic applications such as pre-crash sensing and shipboard landing. We propose a real-time, high-output-rate relative positioning method based on the integration of a real time kinematic (RTK) differential global navigation satellite systems (DGNSS) relative positioning [...] Read more.
High-output-rate relative positions are required for high-speed safety-critical kinematic-to-kinematic applications such as pre-crash sensing and shipboard landing. We propose a real-time, high-output-rate relative positioning method based on the integration of a real time kinematic (RTK) differential global navigation satellite systems (DGNSS) relative positioning algorithm, carrier-phase-based tightly coupled GNSS/Inertial navigation system (TC-GNSS/INS) integration algorithm and polynomial prediction algorithm for position increment. We focus on the rarely studied issue that data broadcast rates and sampling rates have effects on the integrated relative positioning accuracy under different motion states of a moving base. A vehicle-to-vehicle field test with a frequently turning base demonstrates the advantages of the proposed method, such as low bit rate of broadcast data, high output rate of position solutions and excellent real-time tolerance of latency. The results show that compared with the 10-Hz output of sole RTK DGNSS relative positioning, the proposed method can provide centimeter-level-accuracy relative positions at an output rate of 125 Hz with a sampling rate of 1 Hz, and the bit rate can be reduced by 83.12%. A UAV-to-boat field test with straight-line-motion moving base is then carried out to validate the applicability of the proposed system for aircraft applications. The results show that the broadcast rate of position increments of the moving base can be further reduced. Full article
(This article belongs to the Topic GNSS Measurement Technique in Aerial Navigation)
Show Figures

Graphical abstract

15 pages, 3299 KiB  
Article
A Comprehensive Review of EMI Filter Network Architectures: Synthesis, Optimization and Comparison
by Saikat Dey and Ayan Mallik
Electronics 2021, 10(16), 1919; https://doi.org/10.3390/electronics10161919 - 10 Aug 2021
Cited by 14 | Viewed by 5503
Abstract
This paper presents a volumetric comparison among three possible optimized three phase EMI filter structures, a three phase PFC converter used in cutting edge applications, such as avionics, space or shipboard power systems. The size minimization of each of the filter structures, described [...] Read more.
This paper presents a volumetric comparison among three possible optimized three phase EMI filter structures, a three phase PFC converter used in cutting edge applications, such as avionics, space or shipboard power systems. The size minimization of each of the filter structures, described in the paper, was performed utilizing the volumetric optimization methodology proposed in the paper. This paper theoretically demonstrates the design steps for choosing the appropriate filter component values and number of filter stages to achieve the smallest volume of the DM filter stage for any given EMI filter structure. While the validation of the proposed design methodology was done through a MATLAB simulation, an experimental verification was also performed by designing and comparing the optimized EMI filter structures for a 2.3 kW proof-of-concept of a three-phase boost PFC converter for more electric aircraft (MEA) applications to comply with the stringent EMI requirements of the DO-160F standard. Full article
(This article belongs to the Special Issue Modeling, Control, and Optimization of Power Electronics)
Show Figures

Figure 1

25 pages, 19242 KiB  
Article
Adaptive Control of Fuel Cell Converter Based on a New Hamiltonian Energy Function for Stabilizing the DC Bus in DC Microgrid Applications
by Phatiphat Thounthong, Pongsiri Mungporn, Serge Pierfederici, Damien Guilbert and Nicu Bizon
Mathematics 2020, 8(11), 2035; https://doi.org/10.3390/math8112035 - 15 Nov 2020
Cited by 22 | Viewed by 3485
Abstract
DC microgrid applications include electric vehicle systems, shipboard power systems, and More Electric Aircraft (MEA), which produce power at a low voltage level. Rapid developments in hydrogen fuel cell (FC) energy have extended the applications of multi-phase parallel interleaved step-up converters in stabilizing [...] Read more.
DC microgrid applications include electric vehicle systems, shipboard power systems, and More Electric Aircraft (MEA), which produce power at a low voltage level. Rapid developments in hydrogen fuel cell (FC) energy have extended the applications of multi-phase parallel interleaved step-up converters in stabilizing DC bus voltage. The cascade architecture of power converters in DC microgrids may lead to large oscillation and even risks of instability given that the load converters considered as loads feature constant power load (CPL) characteristics. In this article, the output DC bus voltage stabilization and the current sharing of a multi-phase parallel interleaved FC boost converter is presented. The extended Port-Hamiltonian (pH) form has been proposed with the robust controller by adding an integrator action based on the Lyapunov−Energy function, named “Adaptive Hamiltonian PI controller”. The stability and robustness of the designed controller have been estimated by using Mathematica and Matlab/Simulink environments and successfully authenticated by performing experimental results in the laboratory. The results have been obtained using a 2.5 kW prototype FC converter (by two-phase parallel interleaved boost converters) with a dSPACE MicroLabBox platform. The FC main source system is based on a fuel reformer engine that transforms fuel methanol and water into hydrogen gas H2 to a polymer electrolyte membrane FC stack (50 V, 2.5 kW). Full article
(This article belongs to the Special Issue Numerical Simulation and Control in Energy Systems)
Show Figures

Figure 1

Back to TopTop