Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = shear horizontal guided waves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 21094 KiB  
Article
Development of a Meander-Coil-Type Dual Magnetic Group Circumferential Magnetostrictive Guided Wave Transducer for Detecting Small Defects Hidden behind Support Structures
by Jinjie Zhou, Hang Zhang, Yuepeng Chen and Jitang Zhang
Micromachines 2024, 15(10), 1261; https://doi.org/10.3390/mi15101261 - 15 Oct 2024
Cited by 1 | Viewed by 1338
Abstract
In order to solve the problem that small defects hidden behind pipeline support parts are difficult to detect effectively in small spaces, such as offshore oil platforms, a meander-coil-type dual magnetic group circumferential magnetostrictive guided wave transducer is developed in this paper. The [...] Read more.
In order to solve the problem that small defects hidden behind pipeline support parts are difficult to detect effectively in small spaces, such as offshore oil platforms, a meander-coil-type dual magnetic group circumferential magnetostrictive guided wave transducer is developed in this paper. The transducer, which consists of a coil, two sets of permanent magnets, and a magnetostrictive patch, can excite a high-frequency circumferential shear horizontal (CSH) guided wave. The energy conversion efficiency of the MPT is optimized through magnetic field simulation and experiment, and the amplitude of the defect signal is enhanced 1.9 times. The experimental results show that the MPT developed in this paper can effectively excite and receive CSH2 mode guided waves with a center frequency of 1.6 MHz. Compared with the traditional PPM EMAT transducer, the excitation energy of the transducer is significantly enhanced, and the defects of the 2 mm round hole at the back of the support can be effectively detected. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications, 2nd Edition)
Show Figures

Figure 1

20 pages, 9967 KiB  
Article
Investigation of Viscoelastic Guided Wave Properties in Anisotropic Laminated Composites Using a Legendre Orthogonal Polynomials Expansion–Assisted Viscoelastodynamic Model
by Hongye Liu, Ziqi Huang, Zhuang Yin, Maoxun Sun, Luyu Bo, Teng Li and Zhenhua Tian
Polymers 2024, 16(12), 1638; https://doi.org/10.3390/polym16121638 - 10 Jun 2024
Cited by 3 | Viewed by 1225
Abstract
This study investigates viscoelastic guided wave properties (e.g., complex–wavenumber–, phase–velocity–, and attenuation–frequency relations) for multiple modes, including different orders of antisymmetric, symmetric, and shear horizontal modes in viscoelastic anisotropic laminated composites. To obtain those frequency–dependent relations, a guided wave characteristic equation is formulated [...] Read more.
This study investigates viscoelastic guided wave properties (e.g., complex–wavenumber–, phase–velocity–, and attenuation–frequency relations) for multiple modes, including different orders of antisymmetric, symmetric, and shear horizontal modes in viscoelastic anisotropic laminated composites. To obtain those frequency–dependent relations, a guided wave characteristic equation is formulated based on a Legendre orthogonal polynomials expansion (LOPE)–assisted viscoelastodynamic model, which fuses the hysteretic viscoelastic model–based wave dynamics and the LOPE–based mode shape approximation. Then, the complex–wavenumber–frequency solutions are obtained by solving the characteristic equation using an improved root–finding algorithm, which leverages coefficient matrix determinant ratios and our proposed local tracking windows. To trace the solutions on the dispersion curves of different wave modes and avoid curve–tracing misalignment in regions with phase–velocity curve crossing, we presented a curve–tracing strategy considering wave attenuation. With the LOPE–assisted viscoelastodynamic model, the effects of material viscosity and fiber orientation on different guided wave modes are investigated for unidirectional carbon–fiber–reinforced composites. The results show that the viscosity in the hysteresis model mainly affects the frequency–dependent attenuation of viscoelastic guided waves, while the fiber orientation influences both the phase–velocity and attenuation curves. We expect the theoretical work in this study to facilitate the development of guided wave–based techniques for the NDT and SHM of viscoelastic anisotropic laminated composites. Full article
Show Figures

Figure 1

16 pages, 6766 KiB  
Article
Electromagnetic Acoustic Detection of Pipe Defects Hidden above T-Type Support Structures with Circumferential Shear Horizontal Guided Wave
by Xingjun Zhang, Jinjie Zhou, Yang Hu, Yao Liu and Xingquan Shen
Micromachines 2024, 15(4), 550; https://doi.org/10.3390/mi15040550 - 20 Apr 2024
Cited by 3 | Viewed by 1708
Abstract
When pipe defects are generated above the T-type support structure location, it is difficult to distinguish the reflection signals caused by the weld bead at the support structure from the reflection echoes of pipe defects. Therefore, in order to effectively detect pipe defects, [...] Read more.
When pipe defects are generated above the T-type support structure location, it is difficult to distinguish the reflection signals caused by the weld bead at the support structure from the reflection echoes of pipe defects. Therefore, in order to effectively detect pipe defects, a waveform subtraction method with a circumferential shear horizontal (CSH) guided wave is proposed, which is generated by an electromagnetic acoustic transducer (EMAT). First, a CSH0 guided wave mode with a center frequency of 500 kHz is selected to establish a three-dimensional model with and without pipe defects above the support structure. Following this, the influence of different widths of support structures on the echo signal is compared. Moreover, simulation and experimental results are used to compare the influence of different welding qualities on the detection results. Finally, the waveform subtraction method is used to process the simulation and experimental signals, and the influence of pipe defects with different lengths and depths is discussed. The results show that the non-through crack defect of 5 mm × 1 mm (length × depth) can be detected. The results show that this method can effectively detect the cracks by eliminating the influence of the weld echo, which provides a new concept for the detection of the defect above the support structure. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications)
Show Figures

Figure 1

24 pages, 2493 KiB  
Review
Application Research of Ultrasonic-Guided Wave Technology in Pipeline Corrosion Defect Detection: A Review
by Feng Lyu, Xinyue Zhou, Zheng Ding, Xinglong Qiao and Dan Song
Coatings 2024, 14(3), 358; https://doi.org/10.3390/coatings14030358 - 18 Mar 2024
Cited by 24 | Viewed by 5980
Abstract
This paper presents research on the application of ultrasonic-guided wave technology in corrosion defect identification, expounds the relevant ultrasonic-guided wave theories and the principle of ultrasonic-guided wave non-destructive testing of pipelines, and discusses the Lamb wave and shear horizontal wave mode selection that [...] Read more.
This paper presents research on the application of ultrasonic-guided wave technology in corrosion defect identification, expounds the relevant ultrasonic-guided wave theories and the principle of ultrasonic-guided wave non-destructive testing of pipelines, and discusses the Lamb wave and shear horizontal wave mode selection that is commonly used in ultrasonic-guided wave corrosion detection. Furthermore, research progress in the field of ultrasonic-guided wave non-destructive testing (NDT) technology, i.e., regarding transducers, structural health monitoring, convolutional neural networks, machine learning, and other fields, is reviewed. Finally, the future prospects of ultrasonic-guided wave NDT technology are discussed. Full article
Show Figures

Figure 1

22 pages, 10952 KiB  
Article
Surface Acoustic Waves (SAW) Sensors: Tone-Burst Sensing for Lab-on-a-Chip Devices
by Debdyuti Mandal, Tally Bovender, Robert D. Geil and Sourav Banerjee
Sensors 2024, 24(2), 644; https://doi.org/10.3390/s24020644 - 19 Jan 2024
Cited by 4 | Viewed by 2489
Abstract
The article presents the design concept of a surface acoustic wave (SAW)-based lab-on-a-chip sensor with multifrequency and multidirectional sensitivity. The conventional SAW sensors use delay lines that suffer from multiple signal losses such as insertion, reflection, transmission losses, etc. Most delay lines are [...] Read more.
The article presents the design concept of a surface acoustic wave (SAW)-based lab-on-a-chip sensor with multifrequency and multidirectional sensitivity. The conventional SAW sensors use delay lines that suffer from multiple signal losses such as insertion, reflection, transmission losses, etc. Most delay lines are designed to transmit and receive continuous signal at a fixed frequency. Thus, the delay lines are limited to only a few features, like frequency shift and change in wave velocity, during the signal analysis. These facts lead to limited sensitivity and a lack of opportunity to utilize the multi-directional variability of the sensing platform at different frequencies. Motivated by these facts, a guided wave sensing platform that utilizes simultaneous tone burst-based excitation in multiple directions is proposed in this article. The design incorporates a five-count tone burst signal for the omnidirectional actuation. This helps the acquisition of sensitive long part of the coda wave (CW) signals from multiple directions, which is hypothesized to enhance sensitivity through improved signal analysis. In this article, the design methodology and implementation of unique tone burst interdigitated electrodes (TB-IDT) are presented. Sensing using TB-IDT enables accessing multiple frequencies simultaneously. This results in a wider frequency spectrum and allows better scope for the detection of different target analytes. The novel design process utilized guided wave analysis of the substrate, and selective directional focused interdigitated electrodes (F-IDT) were implemented. The article demonstrates computational simulation along with experimental results with validation of multifrequency and multidirectional sensing capability. Full article
(This article belongs to the Special Issue MEMS Sensors and Applications)
Show Figures

Figure 1

25 pages, 6155 KiB  
Article
New Shear Horizontal (SH) Surface-Plasmon-Polariton-like Elastic Surface Waves for Sensing Applications
by Piotr Kiełczyński
Sensors 2023, 23(24), 9879; https://doi.org/10.3390/s23249879 - 17 Dec 2023
Cited by 2 | Viewed by 1343
Abstract
The advent of elastic metamaterials at the beginning of the 21st century opened new venues and possibilities for the existence of new types of elastic (ultrasonic) surface waves, which were deemed previously impossible. In fact, it is not difficult to prove that shear [...] Read more.
The advent of elastic metamaterials at the beginning of the 21st century opened new venues and possibilities for the existence of new types of elastic (ultrasonic) surface waves, which were deemed previously impossible. In fact, it is not difficult to prove that shear horizontal (SH) elastic surface waves cannot exist on the elastic half-space or at the interface between two conventional elastic half-spaces. However, in this paper we will show that SH elastic surface waves can propagate at the interface between two elastic half-spaces, providing that one of them is a metamaterial with a negative elastic compliance s44(ω). If in addition, s44(ω) changes with frequency ω as the dielectric function ε(ω) in Drude’s model of metals, then the proposed SH elastic surface waves can be considered as an elastic analogue of surface plasmon polariton (SPP) electromagnetic waves, propagating at a metal-dielectric interface. Due to inherent similarities between the proposed SH elastic surface waves and SPP electromagnetic waves, the new results developed in this paper can be readily transferred into the SPP domain and vice versa. The proposed new SH elastic surface waves are characterized by a strong subwavelength confinement of energy in the vicinity of the guiding interface; therefore, they can potentially be used in subwavelength ultrasonic imaging, superlensing, and/or acoustic (ultrasonic) sensors with extremely high mass sensitivity. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

14 pages, 4476 KiB  
Communication
Internal and External Pipe Defect Characterization via High-Frequency Lamb Waves Generated by Unidirectional EMAT
by Xu Zhang, Bo Li, Xiaolong Zhang, Xiaochun Song, Jun Tu, Chen Cai, Jundong Yuan and Qiao Wu
Sensors 2023, 23(21), 8843; https://doi.org/10.3390/s23218843 - 31 Oct 2023
Cited by 7 | Viewed by 2051
Abstract
Periodic permanent magnet(PPM) electromagnetic acoustic transducers (EMATs) are commonly employed for axial defect inspection in pipelines. However, the lowest-order shear horizontal waves (SH0) guided waves have difficulties in distinctly differentiating internal and external defects. To enhance the signal-to-noise ratio and resolution, a unidirectional [...] Read more.
Periodic permanent magnet(PPM) electromagnetic acoustic transducers (EMATs) are commonly employed for axial defect inspection in pipelines. However, the lowest-order shear horizontal waves (SH0) guided waves have difficulties in distinctly differentiating internal and external defects. To enhance the signal-to-noise ratio and resolution, a unidirectional electromagnetic acoustic transducer (EMAT) based on Circumferential Lamb waves (CLamb waves) is developed. Through structural parameter optimization and excitation frequency adjustment, high-amplitude and low-dispersion CLamb waves are successfully generated in the high-frequency-thickness product region of the dispersion curve. Finite element simulations and experimental validation confirm the capability of this EMAT in exciting CLamb waves for the detection of crack-like defects. Experimental results demonstrate that the excitation efficiency of the CLamb EMAT exceeds that of the periodic permanent magnet electromagnetic acoustic transducer by more than tenfold. The defect reflection signal of the CLamb EMAT exhibits higher resolution and more significant amplitude compared to the PPM EMAT. The integration of this method with SH0 mode detection allows for the inspection of both internal and external defects in pipelines, offering a new avenue for EMAT applications in pipeline inspection. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

14 pages, 5242 KiB  
Article
Research on Crossing-Pipe Support Structure Defect Detection of EMAT-Excited CSH Wave
by Yang Hu, Jinjie Zhou and Wenying Yue
Sensors 2023, 23(12), 5535; https://doi.org/10.3390/s23125535 - 13 Jun 2023
Cited by 6 | Viewed by 1640
Abstract
A circumferential shear horizontal (CSH) guide wave-detection method using a periodic permanent magnet electromagnetic acoustic transducer (PPM EMAT) was proposed to solve the defect detection located at the inside of the pipe welded by supporting structures. Firstly, a low-frequency CSH0 mode was [...] Read more.
A circumferential shear horizontal (CSH) guide wave-detection method using a periodic permanent magnet electromagnetic acoustic transducer (PPM EMAT) was proposed to solve the defect detection located at the inside of the pipe welded by supporting structures. Firstly, a low-frequency CSH0 mode was selected to establish a three-dimensional equivalent model for the defect detection to cross the pipe support, and the ability of the CSH0 guided wave to propagate through the support and weld structure was analyzed. Then, an experiment was used for the further exploration of the influence of different sizes and types of defects on detection after using the support, as well as the ability of detection mechanism to cross different pipe structures. The results show that both the experiment and the simulation received a good detection signal at 3 mm crack defects, which proves that the method can detect the defects by crossing the welded supporting structure. At the same time, the support structure shows a greater impact on the detection of small defects than the welded structure. The research in this paper can provide ideas for guide wave detection across the support structure in the future. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

16 pages, 7638 KiB  
Article
Electromagnetic Ultrasonic Shear-Horizontal Wave to Detect Corrosion Defect of Flat Steel for Grounding Device of Transmission Pole Tower
by Chunhua Fang, Junjie Lv, Ziheng Pu, Peng Li, Tian Wu and Tao Hu
Appl. Sci. 2023, 13(12), 6947; https://doi.org/10.3390/app13126947 - 8 Jun 2023
Cited by 3 | Viewed by 1672
Abstract
Detecting defects in grounded flat steel is essential for ensuring the safety and reliability of transmission tower grounding devices. However, traditional inspection methods, such as physical excavation and verification, are costly and time-consuming. This paper proposes a corrosion defect detection method for flat [...] Read more.
Detecting defects in grounded flat steel is essential for ensuring the safety and reliability of transmission tower grounding devices. However, traditional inspection methods, such as physical excavation and verification, are costly and time-consuming. This paper proposes a corrosion defect detection method for flat steel transmission tower grounding devices based on electromagnetic ultrasonic SH waves. In addition, using commercial software, a three-dimensional finite element simulation model of grounded flat steel with simulated pitting corrosion defects is constructed. The specified displacements applied to multiple surface sources mimic the horizontal shear vibrations generated by the electromagnetic ultrasonic transducer on the surface of the grounded flat steel during actual inspection. A simulation was used to investigate the propagation and attenuation characteristics of shear-horizontal ultrasonic SH0guided waves for simulated corrosion defects with various geometric configurations in grounded flat steel. The simulation investigated the propagation and attenuation characteristics of the SH0 wave in grounded flat steel and the detection of various defects for linear analysis of the results. The simulation results show that the attenuation of the electromagnetic ultrasonic guided wave is small, at only 0.0016 dB/mm, and the displacement amplitude of the echo signal decreases with the increase of the SH0 wave propagation distance. Increasing the depth and length of corrosion defects increases the echo signal amplitude. At the same time, the width of corrosion defects has little effect on the echo amplitude. Finally, a flat steel defect detection experiment was conducted, and the experimental results fit with the simulation to verify the accuracy of the simulation model. This detection method introduces a new idea for the on-site detection and quantitative identification of corrosion defects in grounded flat steel, which has significant reference value and can provide a more effective and economical method for ensuring the safety and dependability of transmission tower grounding devices. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

20 pages, 788 KiB  
Article
The Behavior of Shear Waves in the Composite Multi-Material Structure with the Periodic Asymmetric Surfaces
by Uma Bharti, Pramod Kumar Vaishnav, Shao-Wen Yao and Hijaz Ahmad
Symmetry 2023, 15(2), 491; https://doi.org/10.3390/sym15020491 - 13 Feb 2023
Cited by 1 | Viewed by 2042
Abstract
The behavior of surface horizontally polarized shear waves (SH waves) in the composite multi-material structure with a periodic irregular surface and interface is investigated analytically in the present study. To unravel the enshrouded features of the SH-wave propagation in a multi-layer structure, we [...] Read more.
The behavior of surface horizontally polarized shear waves (SH waves) in the composite multi-material structure with a periodic irregular surface and interface is investigated analytically in the present study. To unravel the enshrouded features of the SH-wave propagation in a multi-layer structure, we consider a model of three distinct composite materials. In the schematic of the problem, the guiding layer (M-I) contains fluid-saturated porous materials of finite thickness, the intermediate layer (M-II) contains fiber-reinforced composites, and the substrate contains the functionally graded orthotropic materials (M-III). The free surface of M-I and the upper interface of the medium are considered to be irregular on a periodic basis, but the interface of M-II and M-III is supposed to be regular. The dispersion relation is obtained analytically and demonstrated graphically for the phase velocity versus the wave number to analyze the propagation behavior of the SH-wave propagation in the proposed structure. The acquired results resemble the typical Love wave results, confirming the validity of the present work. The current work provides a comprehensive evaluation of the impact of regular and irregular boundaries of the composite materials on the phase velocity of the SH waves. It is notable that the behavior of the reinforced parameters, initial stress, and porosity on the phase velocity is consistent in both scenarios. More than the irregularity of the free surface, the periodic irregularity of the interface had an impact on the phase velocity. The obtained results are useful to understand the compositions of the materials on the mountain surface. Full article
(This article belongs to the Special Issue Solid Mechanics and Mechanical Mechanics)
Show Figures

Figure 1

18 pages, 5421 KiB  
Article
Design and Manufacture of an Optimised Side-Shifted PPM EMAT Array for Use in Mobile Robotic Localisation
by Ross McMillan, Rory Hampson, Morteza Tabatabaeipour, William Jackson, Dayi Zhang, Konstantinos Tzaferis and Gordon Dobie
Sensors 2023, 23(4), 2012; https://doi.org/10.3390/s23042012 - 10 Feb 2023
Cited by 6 | Viewed by 2448
Abstract
Guided wave Electro Magnetic Acoustic Transducers (EMATs) offer an elegant method for structural inspection and localisation relative to geometric features, such as welds. This paper presents a Lorentz force EMAT construction framework, where a numerical model has been developed for optimising Printed Circuit [...] Read more.
Guided wave Electro Magnetic Acoustic Transducers (EMATs) offer an elegant method for structural inspection and localisation relative to geometric features, such as welds. This paper presents a Lorentz force EMAT construction framework, where a numerical model has been developed for optimising Printed Circuit Board (PCB) coil parameters as well as a methodology for optimising magnet array parameters to a user’s needs. This framework was validated experimentally to show its effectiveness through comparison to an industry built EMAT. The framework was then used to design and manufacture a Side-Shifted Unidirectional Periodic Permanent Magnet (PPM) EMAT for use on a mobile robotic system, which uses guided waves for ranging to build internal maps of a given subject, identifying welded sections, defects and other structural elements. The unidirectional transducer setup was shown to operate in simulation and was then manufactured to compare to the bidirectional transmitter and two-receiver configurations on a localisation system. The unidirectional setup was shown to have clear benefits over the bidirectional setup for mapping an unknown environment using guided waves as there were no dead spots of mapping where signal direction could not be interpreted. Additionally, overall package size was significantly reduced, which in turn allows more measurements to be taken within confined spaces and increases robotic crawler mobility. Full article
Show Figures

Figure 1

16 pages, 4717 KiB  
Article
Defect Detection and Imaging in Composite Structures Using Magnetostrictive Patch Transducers
by Akram Zitoun, Steven Dixon, Mihalis Kazilas and David Hutchins
Sensors 2023, 23(2), 600; https://doi.org/10.3390/s23020600 - 5 Jan 2023
Cited by 3 | Viewed by 2256
Abstract
The use of thin magnetostrictive patches to generate and detect guided waves within the composite samples is investigated for defect detection. This approach has been implemented using SH0 shear horizontal guided waves in both CFRP and GFRP plates. A magnetostrictive patch transducer was [...] Read more.
The use of thin magnetostrictive patches to generate and detect guided waves within the composite samples is investigated for defect detection. This approach has been implemented using SH0 shear horizontal guided waves in both CFRP and GFRP plates. A magnetostrictive patch transducer was able to generate SH0 waves with known directional characteristics. The synthetic aperture focusing technique (SAFT) was then used to reconstruct images of defects using multiple transmission and detection locations. The results for imaging defects in both types of material are presented. Full article
(This article belongs to the Special Issue Non-destructive Inspection with Sensors)
Show Figures

Figure 1

7 pages, 12185 KiB  
Article
Synthetic Weyl Points of the Shear Horizontal Guided Waves in One-Dimensional Phononic Crystal Plates
by Hongbo Zhang, Shaobo Zhang, Jiang Liu and Bilong Liu
Appl. Sci. 2022, 12(1), 167; https://doi.org/10.3390/app12010167 - 24 Dec 2021
Cited by 6 | Viewed by 2665
Abstract
Weyl physics in acoustic and elastic systems has drawn extensive attention. In this paper, Weyl points of shear horizontal guided waves are realized by one-dimensional phononic crystal plates, in which one physical dimension plus two geometrical parameters constitute a synthetic three-dimensional space. Based [...] Read more.
Weyl physics in acoustic and elastic systems has drawn extensive attention. In this paper, Weyl points of shear horizontal guided waves are realized by one-dimensional phononic crystal plates, in which one physical dimension plus two geometrical parameters constitute a synthetic three-dimensional space. Based on the finite element method, we have not only observed the synthetic Weyl points but also explored the Weyl interface states and the reflection phase vortices, which have further proved the topological phase interface states. As the first realization of three-dimensional topological phases through one-dimensional phononic crystal plates in the synthetic dimension, this research demonstrates the great potential of applicable one-dimensional plate structural systems in detecting higher-dimensional topological phenomena. Full article
(This article belongs to the Special Issue Advances in Metamaterials for Sound and Vibration Control)
Show Figures

Figure 1

18 pages, 6849 KiB  
Article
Modeling Magnetostrictive Transducers for Structural Health Monitoring: Ultrasonic Guided Wave Generation and Reception
by Gaofeng Sha and Cliff J. Lissenden
Sensors 2021, 21(23), 7971; https://doi.org/10.3390/s21237971 - 29 Nov 2021
Cited by 17 | Viewed by 4020
Abstract
Ultrasonic guided waves provide unique capabilities for the structural health monitoring of plate-like structures. They can detect and locate various types of material degradation through the interaction of shear-horizontal (SH) waves and Lamb waves with the material. Magnetostrictive transducers (MSTs) can be used [...] Read more.
Ultrasonic guided waves provide unique capabilities for the structural health monitoring of plate-like structures. They can detect and locate various types of material degradation through the interaction of shear-horizontal (SH) waves and Lamb waves with the material. Magnetostrictive transducers (MSTs) can be used to generate and receive both SH and Lamb waves and yet their characteristics have not been thoroughly studied, certainly not on par with piezoelectric transducers. A series of multiphysics simulations of the MST/plate system is conducted to investigate the characteristics of MSTs that affect guided wave generation and reception. The results are presented in the vein of showing the flexibility that MSTs provide for guided waves in a diverse range of applications. In addition to studying characteristics of the MST components (i.e., the magnetostrictive layer, meander electric coil, and biased magnetic field), single-sided and double-sided MSTs are compared for preferential wave mode generation. The wave mode control principle is based on the activation line for phase velocity dispersion curves, whose slope is the wavelength, which is dictated by the meander coil spacing. A double-sided MST with in-phase signals preferentially excites symmetric SH and Lamb modes, while a double-sided MST with out-of-phase signals preferentially excites antisymmetric SH and Lamb modes. All attempted single-mode actuations with double-sided MSTs were successful, with the SH3 mode actuated at 922 kHz in a 6-mm-thick plate being the highest frequency. Additionally, the results show that increasing the number of turns in the meander coil enhances the sensitivity of the MST as a receiver and substantially reduces the frequency bandwidth. Full article
Show Figures

Figure 1

20 pages, 3946 KiB  
Article
Characteristics of the Vertical and Horizontal Response Spectra of Earthquakes in the Jeju Island Region
by Jun-Kyoung Kim, Soung-Hoon Wee, Seong-Hwa Yoo and Kwang-Hee Kim
Appl. Sci. 2021, 11(22), 10690; https://doi.org/10.3390/app112210690 - 12 Nov 2021
Cited by 2 | Viewed by 2830
Abstract
In this study, we evaluated the response spectra of 24 earthquake series, which includes 15 from the Kumamoto earthquake series and 9 from the Pohang earthquake series, and explored the effects of earthquake magnitude on the resonance frequencies of structures and buildings. Furthermore, [...] Read more.
In this study, we evaluated the response spectra of 24 earthquake series, which includes 15 from the Kumamoto earthquake series and 9 from the Pohang earthquake series, and explored the effects of earthquake magnitude on the resonance frequencies of structures and buildings. Furthermore, the observations of this study were compared with the design response spectra, Regulatory Guide 1.60 (The United States Nuclear Regulatory Commission, 1973) for Korean nuclear power plants, and with the Korean Building Code (MOLIT, 2016, hereinafter referred to as KBC 2016) for general structures and buildings. The response spectra, after normalization with reference to the peak ground acceleration (PGA), were derived using a total of 423 horizontal and vertical accelerations. It was observed that the shapes of the horizontal and vertical response spectra were strongly dependent on the magnitude of the earthquake and the resonance frequency. Given the strong dependence of the response on the magnitude, it is suggested to consider magnitude > ML ~ 6.0 when establishing design response spectra. Compared to inland areas, a fairly higher amplitude of response at significantly lower frequency ranges could be attributed to the local geological environment of Jeju Island, which was formed by a surface volcano eruption and the distribution of unconsolidated Pleistocene marine sediments in the Jeju area. It is necessary to study the characteristic influence of layers with low shear wave velocity distributed in the Jeju region on seismic responses more rigorously while considering the frequency band and amplitudes at the surface of Jeju. The resonance frequencies of general low-rise and mid-rise buildings by the brief formula and those by design response spectra both suggested by KBC 2016 were overlapped, and these indicated that the seismic hazard could be much higher on general buildings in the Jeju region than in inland areas. Lastly, it is necessary to make the design standard criteria for Reg. Guide 1.60 and KBC 2016 more conservative in the lower frequency range of higher than 0.6 Hz and 2.0–6.0 Hz, respectively, which is significantly lower than those of the inland area, and to establish improved design response spectra with site-specific seismic design standards by referencing large amounts of qualitative data from the region around the Korean Peninsula. Full article
Show Figures

Figure 1

Back to TopTop