Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (103)

Search Parameters:
Keywords = shale nanopore

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3106 KiB  
Article
Preparation of a Nanomaterial–Polymer Dynamic Cross-Linked Gel Composite and Its Application in Drilling Fluids
by Fei Gao, Peng Xu, Hui Zhang, Hao Wang, Xin Zhao, Xinru Li and Jiayi Zhang
Gels 2025, 11(8), 614; https://doi.org/10.3390/gels11080614 - 5 Aug 2025
Viewed by 25
Abstract
During the process of oil and gas drilling, due to the existence of pores or micro-cracks, drilling fluid is prone to invade the formation. Under the action of hydration expansion of clay in the formation and liquid pressure, wellbore instability occurs. In order [...] Read more.
During the process of oil and gas drilling, due to the existence of pores or micro-cracks, drilling fluid is prone to invade the formation. Under the action of hydration expansion of clay in the formation and liquid pressure, wellbore instability occurs. In order to reduce the wellbore instability caused by drilling fluid intrusion into the formation, this study proposed a method of forming a dynamic hydrogen bond cross-linked network weak gel structure with modified nano-silica and P(AM-AAC). The plugging performance of the drilling fluid and the performance of inhibiting the hydration of shale were evaluated through various experimental methods. The results show that the gel composite system (GCS) effectively optimizes the plugging performance of drilling fluid. The 1% GCS can reduce the linear expansion rate of cuttings to 14.8% and increase the recovery rate of cuttings to 96.7%, and its hydration inhibition effect is better than that of KCl and polyamines. The dynamic cross-linked network structure can significantly increase the viscosity of drilling fluid. Meanwhile, by taking advantage of the liquid-phase viscosity effect and the physical blocking effect, the loss of drilling fluid can be significantly reduced. Mechanism studies conducted using zeta potential measurement, SEM analysis, contact angle measurement and capillary force assessment have shown that modified nano-silica stabilizes the wellbore by physically blocking the nano-pores of shale and changing the wettability of the shale surface from hydrophilic to hydrophobic when the contact angle exceeds 60°, thereby reducing capillary force and surface free energy. Meanwhile, the dynamic cross-linked network can reduce the seepage of free water into the formation, thereby significantly lowering the fluid loss of the drilling fluid. This research provides new insights into improving the stability of the wellbore in drilling fluids. Full article
(This article belongs to the Special Issue Advanced Gels for Oil Recovery (2nd Edition))
Show Figures

Figure 1

15 pages, 5081 KiB  
Article
Comparative Study of Water Flow in Nanopores with Different Quartz (101¯0) Surfaces via Molecular Dynamics Simulations
by Peng Zhou, Junyao Bao, Shiyuan Zhan, Xingjian Wang, Shaopeng Li, Baofeng Lan and Zhanbo Liu
Nanomaterials 2025, 15(12), 896; https://doi.org/10.3390/nano15120896 - 10 Jun 2025
Viewed by 347
Abstract
Dewatering and gas production are applied on a large scale in shale gas development. The fundamental mechanisms of water flow in shale nanoporous media are essential for the development of shale oil and gas resources. In this work, we use molecular dynamic simulations [...] Read more.
Dewatering and gas production are applied on a large scale in shale gas development. The fundamental mechanisms of water flow in shale nanoporous media are essential for the development of shale oil and gas resources. In this work, we use molecular dynamic simulations to investigate water flow in two different quartz surface ((101¯0)-α and (101¯0)-β) nanopores. Results show that the (101¯0)-β surface exhibits stronger water molecule structuring with a structure arranged in two layers and higher first-layer adsorption density (2.44 g/cm3) compared to the ((101¯0)-α surface (1.68 g/cm³). The flow flux under the (101¯0)-α surface is approximately 1.2 times higher than that under the (101¯0)-β surface across various pressure gradients. We developed a theoretical model dividing the pore space into non-flowing, adsorbed, and bulk water regions, with critical thicknesses of 0.14 nm and 0.27 nm for the non-flowing region, and 0.15 nm for the adsorbed region in both surfaces. This model effectively predicts velocity distributions and volumetric flow rates with errors generally below 5%. Our findings provide insights into water transport mechanisms in shale inorganic nanopores and offer practical guidance for numerical simulation of shale gas production through dewatering operations. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology for the Oil and Gas Industry)
Show Figures

Graphical abstract

21 pages, 5300 KiB  
Article
Micro-Pore Structure and Fractal Characteristics of Shale Reservoir in Jiyang Depression
by Qin Qian, Mingjing Lu, Anhai Zhong, Feng Yang, Wenjun He and Lei Li
Processes 2025, 13(6), 1704; https://doi.org/10.3390/pr13061704 - 29 May 2025
Viewed by 486
Abstract
In order to better understand the micropore structure of shale reservoir in Jiyang Depression, permeability damage test, low temperature nitrogen adsorption and scanning electron microscopy (SEM) were carried out on six cores in the target block. The adsorption isotherms were analyzed by Frenkel–Halsey–Hill [...] Read more.
In order to better understand the micropore structure of shale reservoir in Jiyang Depression, permeability damage test, low temperature nitrogen adsorption and scanning electron microscopy (SEM) were carried out on six cores in the target block. The adsorption isotherms were analyzed by Frenkel–Halsey–Hill (FHH) model, and the fractal dimensions of different layers were calculated. The results show that the shale pore system is mainly composed of organic nanopores, inorganic nanopores and micro-fractures. The inorganic pores are mainly distributed around or inside the mineral particles, while microcracks are commonly found between mineral particles or at the organic–mineral interface. Organic pores are located within or between organic particles. The results of nitrogen adsorption show that the shale pores are mainly H2/H3 hysteresis loops with wedge, plate or ink bottle shapes. The pore structure is highly complex, and the fractal dimension is high. The mean D1 fractal dimension, which represents pore surface roughness, is 2.3788, and the mean D2 fractal dimension, which represents pore structure complexity, is 2.7189. The fractal dimension is positively correlated with specific surface area and total pore volume and negatively correlated with average pore radius. The permeability damage rates of the N layer, B layer, and F layer are 17.39%, 20.2%, and 21.6%, respectively. The contact Angle of the core decreases with the increase in water skiing time. In this study, the micropore structure of different formations in Jiyang Depression is compared and analyzed, which provides valuable insights for the optimization and differentiated development of shale oil and gas resources. Full article
(This article belongs to the Special Issue Advances in Unconventional Reservoir Development and CO2 Storage)
Show Figures

Figure 1

28 pages, 17047 KiB  
Article
Fractal Analysis of Organic Matter Nanopore Structure in Tectonically Deformed Shales
by Mingliang Liang, Min Dong, Zongxiu Wang, Kaixun Zhang, Xiaoshi Li and Xingqiang Feng
Fractal Fract. 2025, 9(4), 257; https://doi.org/10.3390/fractalfract9040257 - 18 Apr 2025
Cited by 1 | Viewed by 546
Abstract
Fractal analysis was used to characterize the organic matter nanopore structure in tectonically deformed shales, providing insights into the heterogeneity and complexity of the pore network. Shale samples from different tectonic deformation styles (undeformed, brittle deformed, and ductile deformed) in the Lower Cambrian [...] Read more.
Fractal analysis was used to characterize the organic matter nanopore structure in tectonically deformed shales, providing insights into the heterogeneity and complexity of the pore network. Shale samples from different tectonic deformation styles (undeformed, brittle deformed, and ductile deformed) in the Lower Cambrian Niutitang Formation in western Hunan, South China, were collected. By comprehensively applying techniques such as low-temperature gaseous (CO2 and N2) adsorption (LTGA), scanning electron microscopy (SEM), and ImageJ analysis, we accurately obtained key parameters of the pore structure. The results show ductile deformation reduces fractal dimension (DM) by ~0.2 compared to brittle deformed shale, reflecting the homogenization of organic nanopore structures. Brittle deformation leads to a more complex pore network, while ductile deformation reduces the complexity of the organic nanopore structure. The fractal dimensions are affected by various factors, with micropore development being crucial for undeformed shale, clay and pore length–width ratio dominating in brittle deformed shale, and all-scale pores being key for ductile deformed shale. This study provides the first comparative analysis of fractal dimensions across undeformed, brittle deformed, and ductile deformed shales, revealing distinct pore structure modifications linked to deformation styles. These findings not only enhance our understanding of the influence mechanism of tectonic deformation on shale pore structure and fractal characteristics but also provide a theoretical basis for optimizing shale gas exploration and production strategies. These findings offer a framework for predicting gas storage and flow dynamics in tectonically complex shale reservoirs. For instance, in areas with different tectonic deformation styles, we can better evaluate the gas storage capacity and production potential of shale reservoirs according to the obtained fractal characteristics, which is of great significance for efficient shale gas development. Full article
Show Figures

Figure 1

29 pages, 12050 KiB  
Article
Quantitative Classification of Shale Lithofacies and Gas Enrichment in Deep-Marine Shale of the Late Ordovician Wufeng Formation and Early Silurian Longyi1 Submember, Sichuan Basin, China
by Liyu Fang, Fanghao Xu, Guosheng Xu, Jiaxin Liu, Haoran Liang and Xin Gong
Energies 2025, 18(7), 1835; https://doi.org/10.3390/en18071835 - 4 Apr 2025
Viewed by 372
Abstract
The classification of shale lithofacies, pore structure characteristics, and controlling factors of gas enrichment in deep-marine shale are critical for deep shale gas exploration and development. This study investigates the Late Ordovician Wufeng Formation (448–444 Ma) and Early Silurian Longyi1 submember (444–440 [...] Read more.
The classification of shale lithofacies, pore structure characteristics, and controlling factors of gas enrichment in deep-marine shale are critical for deep shale gas exploration and development. This study investigates the Late Ordovician Wufeng Formation (448–444 Ma) and Early Silurian Longyi1 submember (444–440 Ma) in the western Chongqing area, southern Sichuan Basin, China. Using experimental data from deep-marine shale samples, including total organic carbon (TOC) content analysis, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), low-pressure N2 and CO2 adsorption, gas content measurement, and three-quartile statistical analysis, a lithofacies classification scheme for deep-marine shale was established. The differences between various global marine shale formations were compared, and the main controlling factors of gas enrichment and advantageous lithofacies for deep shale were identified. The results show that six main lithofacies were identified: organic-rich siliceous shale (S1), organic-rich mixed shale (M1), medium-organic siliceous shale (S2), medium-organic mixed shale (M2), organic-lean siliceous shale (S3), and organic-lean mixed shale (M3). Deep-marine shale gas mainly occurs in micropores, and the development degree of micropores determines the gas content. Micropore development is jointly controlled by the TOC content, felsic mineral content, and clay mineral content. TOC content directly controls the development degree of micropores, whereas the felsic and clay mineral contents control the preservation and destruction of micropores during deep burial. The large-scale productivity of siliceous organisms during the Late Ordovician Wufeng period to the Early Silurian Longmaxi period had an important influence on the formation of S1. By comparing the pore structure parameters and gas contents of different lithofacies, it is concluded that S1 should be the first choice for deep-marine shale gas exploration, followed by S2. Full article
Show Figures

Figure 1

10 pages, 7877 KiB  
Article
A Molecular Dynamics Simulation on the Methane Adsorption in Nanopores of Shale
by Qiuye Yuan, Jinghua Yang, Shuxia Qiu and Peng Xu
Computation 2025, 13(3), 79; https://doi.org/10.3390/computation13030079 - 20 Mar 2025
Viewed by 519
Abstract
Gas adsorption in nanoscale pores is one of the key theoretical bases for shale gas development. However, the influence mechanisms of gas adsorption capacity and the second adsorption layer in nanoscale pores are very complex, and are difficult to directly observe by using [...] Read more.
Gas adsorption in nanoscale pores is one of the key theoretical bases for shale gas development. However, the influence mechanisms of gas adsorption capacity and the second adsorption layer in nanoscale pores are very complex, and are difficult to directly observe by using traditional experimental methods. Therefore, multilayer graphene is used to model the nanopores in a shale reservoir, and the molecular dynamics method is carried out to study the adsorption dynamics of methane molecules. The results show that the adsorption density of methane molecules is inversely proportional to the temperature and pore size, and it positively correlates to the graphene layer number and pressure. The smaller adsorption region will reach the adsorption equilibrium state earlier, and the adsorption layer thickness is smaller. When the pore size is larger than 1.7 nm, the single-layer adsorption becomes double-layer adsorption of methane molecules. The peak of the second adsorption layer depends on the pressure and temperature, while the position of the second adsorption layer depends on the pore size. The present work is useful for understanding the dynamics mechanism of gas molecules in a nanoscale confined space, and may provide a theoretical basis for the development of unconventional natural gas. Full article
(This article belongs to the Special Issue Advances in Computational Methods for Fluid Flow)
Show Figures

Figure 1

13 pages, 5004 KiB  
Article
Molecular Dynamics Simulation of Phase Behavior of Fluid in Confined Nanopores
by Jiahao Gao, Ke Zhang, Weifeng Lyu, Yu Zhang, Mingyuan Wang, Yaoze Cheng, Ao Li and Xv Chen
Processes 2025, 13(2), 506; https://doi.org/10.3390/pr13020506 - 12 Feb 2025
Viewed by 1019
Abstract
The reservoir proportion with deep and low permeability, where oil and gas exist widely in nanopores, has been discovered increasingly in China. Affected by the nano-confinement effect, the phase behavior of fluid in nanopores varies with nanopore size rather than being constant. In [...] Read more.
The reservoir proportion with deep and low permeability, where oil and gas exist widely in nanopores, has been discovered increasingly in China. Affected by the nano-confinement effect, the phase behavior of fluid in nanopores varies with nanopore size rather than being constant. In this paper, the density, viscosity, and saturation pressure of pure and mixed fluids in nanopores are studied by molecular dynamics (MD) simulation combined with statistical physics. The feasibility of using the MD method to investigate fluid behavior in nanopores was verified with laboratory data. It was found that the fluids’ phase behavior parameters in nanopores are lower than those in the bulk phase due to the confinement effect. The boundary of confinement effect (BCE) is defined as a size range of nanopores that separates the pore scale into the confinement scale and bulk scale. Each fluid has a specific BCE influenced by the molecular size of fluid. The phase behavior of crude oil in shale and tight oil reservoirs is most affected by the molecular adsorption and interaction energy between the fluid molecule and pore wall. Clarifying a specific BCE in shale reservoirs can significantly enhance the understanding of reservoirs and guide reservoir development strategies. Full article
Show Figures

Figure 1

27 pages, 23698 KiB  
Article
Insights into Adsorption Behaviors of Multi-Component Shale Oil in Illite Nanopores Under Different Reservoir Conditions by Molecular Simulation
by Lingtan Zhang, Maojin Tan, Xuefeng Liu, Xiaoqing Lu, Qian Wang, Siyu Wang, Min Tian and Junjie Wang
Nanomaterials 2025, 15(3), 235; https://doi.org/10.3390/nano15030235 - 3 Feb 2025
Cited by 1 | Viewed by 982
Abstract
Clay pores are important storage spaces in shale oil reservoirs. Studying the adsorption behavior of shale oil in clay nanopores is of great significance for reserve assessment and exploitation. In this work, illite clay pore models and multi-component shale oil adsorption models considering [...] Read more.
Clay pores are important storage spaces in shale oil reservoirs. Studying the adsorption behavior of shale oil in clay nanopores is of great significance for reserve assessment and exploitation. In this work, illite clay pore models and multi-component shale oil adsorption models considering light hydrocarbon correction are constructed for carrying out molecular dynamics simulation. We studied the adsorption behavior and characteristics of shale oil in illite pores, and analyzed the effects of reservoir environmental factors such as temperature, pressure and pore size on the adsorption behavior. The results show that in illite nanopores, shale oil can form multiple adsorption layers. The heavier the component, the stronger the interaction with the wall. The adsorption ratio of the component is closely related to the solid–liquid interaction and the molar fraction, which preliminarily reveals the reason why the heavy component content in the produced oil is considerable. The increase in temperature promotes the desorption of light and medium components, while the heavy components and dissolved gas are less affected; although the increase in pressure inhibits diffusion, the adsorption amount changes little, and only the light component increases slightly. This study deeply reveals the adsorption mechanism of shale oil in illite pores, providing a theoretical basis for the optimization and development of shale reservoirs. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology for the Oil and Gas Industry)
Show Figures

Figure 1

15 pages, 9289 KiB  
Article
Molecular Dynamics Simulation on the Mechanism of Shale Oil Displacement by Carbon Dioxide in Inorganic Nanopores
by Chengshan Li, Hongbo Xue, Liping Rao, Fang Yuan, Zhongyi Xu, Tongtong He, Chengwei Ji, Zhengbin Wu and Jiacheng Yan
Energies 2025, 18(2), 262; https://doi.org/10.3390/en18020262 - 9 Jan 2025
Viewed by 769
Abstract
Shale oil reservoirs feature a considerable number of nanopores and complex minerals, and the impact of nano-pore confinement and pore types frequently poses challenges to the efficient development of shale oil. For shale oil reservoirs, CO2 flooding can effectively lower crude oil [...] Read more.
Shale oil reservoirs feature a considerable number of nanopores and complex minerals, and the impact of nano-pore confinement and pore types frequently poses challenges to the efficient development of shale oil. For shale oil reservoirs, CO2 flooding can effectively lower crude oil viscosity, enhance reservoir physical properties, and thereby increase recovery. In this paper, the CO2 displacement process in the nanoscale pores of shale oil was simulated through the molecular dynamic simulation method. The performance disparity of quartz and calcite slit nanopores was discussed, and the influences of nanoscale pore types and displacement rates on CO2 displacement behavior were further analyzed. The results demonstrate that the CO2 displacement processes of different inorganic pores vary. In contrast, the displacement efficiency of light oil components is higher and the transportation distance is longer. Intermolecular interaction has a remarkable effect on the displacement behavior of CO2 in nanopores. On the other hand, it is discovered that a lower displacement rate is conducive to the miscible process of alkane and CO2 and the overall displacement process of CO2. The displacement efficiency drops significantly with the increase in displacement velocity. Nevertheless, once the displacement speed is extremely high, a strong driving force can facilitate the forward movement of alkane, and the displacement efficiency will recover slightly. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

19 pages, 8492 KiB  
Article
Simulation of Shale Gas Reservoir Production Considering the Effects of the Adsorbed Water Layer and Flow Differences
by Hua Yuan, Jianyi Liu, Qunchao Ding, Lu Jiang, Zhibin Liu, Wenting He and Yimin Wen
Processes 2024, 12(12), 2693; https://doi.org/10.3390/pr12122693 - 29 Nov 2024
Viewed by 911
Abstract
Accurately describing the behavior of a gas-water two-phase flow in shale gas reservoirs is crucial for analyzing production dynamics in the field. Current research generally lacks consideration of the differences in physical properties and adsorption characteristics between the oleophilic organic matrix and the [...] Read more.
Accurately describing the behavior of a gas-water two-phase flow in shale gas reservoirs is crucial for analyzing production dynamics in the field. Current research generally lacks consideration of the differences in physical properties and adsorption characteristics between the oleophilic organic matrix and the hydrophilic inorganic matrix. This study considers the organic matrix system as a single-phase gas flow, while the inorganic matrix and fracture systems involve a gas-water two-phase flow. Taking into account the impact of the adsorbed water layer on permeability at the surface of nanoscale pores in an inorganic matrix, the model comprehensively incorporates multiple mechanisms such as adsorption-desorption, the slippage effect, and Knudsen diffusion in the organic matrix and clay minerals. A multiscale gas-water two-phase comprehensive flow model for shale gas reservoirs has been established, and the results of the numerical model were validated against commercial software and actual field data. Simulation results over 1000 days indicate that early production from gas wells is primarily supplied by fractures, whereas free gas or desorbed gas from inorganic and organic matrices gradually contributes to the flow during the middle and later stages of production. As the Langmuir pressure and volume in the organic matrix and clay minerals increase, so does the corresponding gas production. The adsorbed water layer on the surface of inorganic nanopores reduces permeability, leading to a decrease in single-well cumulative gas production by 8.41%. The impact of the adsorbed water layer on gas production cannot be overlooked. The simulation method proposed in this study provides theoretical support for analyzing the gas-water two-phase flow behavior in shale gas reservoirs. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 4079 KiB  
Article
CO2 Utilization and Sequestration in Organic and Inorganic Nanopores During Depressurization and Huff-n-Puff Process
by Jiadong Guo, Shaoqi Kong, Kunjie Li, Guoan Ren, Tao Yang, Kui Dong and Yueliang Liu
Nanomaterials 2024, 14(21), 1698; https://doi.org/10.3390/nano14211698 - 24 Oct 2024
Viewed by 984
Abstract
CO2 injection in shale reservoirs is more suitable than the conventional recovering methods due to its easier injectivity and higher sweep efficiency. In this work, Grand Canonical Monte Carlo (GCMC) simulation is employed to investigate the adsorption/desorption behavior of CH4-C [...] Read more.
CO2 injection in shale reservoirs is more suitable than the conventional recovering methods due to its easier injectivity and higher sweep efficiency. In this work, Grand Canonical Monte Carlo (GCMC) simulation is employed to investigate the adsorption/desorption behavior of CH4-C4H10 and CH4-C4H10-CO2 mixtures in organic and inorganic nanopores during pressure drawdown and CO2 huff and puff processes. The huff and puff process involves injecting CO2 into the micro- and mesopores, where the system pressure is increased during the huffing process and decreased during the puffing process. The fundamental mechanism of shale gas recovery using the CO2 injection method is thereby revealed from the nanopore-scale perspective. During primary gas production, CH4 is more likely to be produced as the reservoir pressure drops. On the contrary, C4H10 tends to be trapped in these organic nanopores and is hard to extract, especially from micropores and inorganic pores. During the CO2 huffing period, the adsorbed CH4 and C4H10 are recovered efficiently from the inorganic mesopores. On the contrary, the adsorbed C4H10 is slightly extracted from the inorganic micropores during the CO2 puffing period. During the CO2 puff process, the adsorbed CH4 desorbs from the pore surface and is thus heavily recovered, while the adsorbed C4H10 cannot be readily produced. During CO2 huff and puff, the recovery efficiency of CH4 is higher in the organic pores than that in the inorganic pores. More importantly, the recovery efficiency of C4H10 reaches the highest levels in both the inorganic and organic pores during the CO2 huff and puff process, suggesting that the CO2 huff and puff method is more advanced for heavier hydrocarbon recovery compared to the pressure drawdown method. In addition to CO2 storage, CO2 sequestration in the adsorbed state is safer than that in the free state. In our work, it was found that the high content of organic matter, high pressure, and small pores are beneficial factors for CO2 sequestration transforming into adsorbed state storage. Full article
Show Figures

Graphical abstract

19 pages, 7532 KiB  
Article
Analysis of the Impact of Clusters on Productivity of Multi-Fracturing Horizontal Well in Shale Gas
by Fuquan Song, Chenkan Zhang, Xiaohe Huang and Yongzheng Wang
Energies 2024, 17(20), 5140; https://doi.org/10.3390/en17205140 - 16 Oct 2024
Viewed by 871
Abstract
Shale gas reservoirs with nanoporous media have become one of the primary resources for natural gas development. The nanopore diameters of shale reservoirs range from 5 to 200 nm, with permeability ranging from 1 × 10−9 to 1 × 10−6 μm [...] Read more.
Shale gas reservoirs with nanoporous media have become one of the primary resources for natural gas development. The nanopore diameters of shale reservoirs range from 5 to 200 nm, with permeability ranging from 1 × 10−9 to 1 × 10−6 μm2. The natural gas production from shale gas reservoirs is low, necessitating the use of multi-stage hydraulic fracturing in horizontal wells. Segmented multi-cluster perforation fracturing is an effective method for shale gas extraction in these wells. The number of clusters significantly impacts the productivity of horizontal wells. Therefore, it is essential to analyze the impact of cluster numbers on fracture productivity in shale gas reservoir development. In this study, the equivalent flow resistance method was applied to establish a productivity model for multi-stage hydraulic fracturing horizontal wells in shale gas reservoirs considering diffusion and slip. An approximate analytical solution was obtained, and the effects of cluster length, diffusion coefficient, and fracture network permeability on productivity were analyzed. The results show that gas production gradually increases with the increase in the number of clusters and cluster length. However, as the number of clusters increases, the interference between clusters leads to a decrease in the productivity of individual clusters. As the fracture permeability, fracture network permeability, and diffusion coefficient increase, shale gas production also gradually increases. The permeability of the fracture network has the greatest impact on productivity. These research results are beneficial for the design of clusters in horizontal well fracturing and are of great importance for the development and production of shale gas reservoirs. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

12 pages, 4066 KiB  
Article
Numerical Study on the Enhanced Oil Recovery by CO2 Huff-n-Puff in Shale Volatile Oil Formations
by Aiwei Zheng, Wentao Lu, Rupeng Zhang and Hai Sun
Energies 2024, 17(19), 4881; https://doi.org/10.3390/en17194881 - 28 Sep 2024
Cited by 1 | Viewed by 1194
Abstract
The Sichuan Basin’s Liangshan Formation shale is rich in oil and gas resources, yet the recovery rate of shale oil reservoirs typically falls below 10%. Currently, gas injection huff-n-puff (H-n-P) is considered one of the most promising methods for improving shale oil recovery. [...] Read more.
The Sichuan Basin’s Liangshan Formation shale is rich in oil and gas resources, yet the recovery rate of shale oil reservoirs typically falls below 10%. Currently, gas injection huff-n-puff (H-n-P) is considered one of the most promising methods for improving shale oil recovery. This study numerically investigates the application of the CO2 huff-n-puff process in enhancing oil recovery in shale volatile oil reservoirs. Using an actual geological model and fluid properties of shale oil reservoirs in the Sichuan Basin, the CO2 huff-n-puff process was simulated. The model takes into account the molecular diffusion of CO2, adsorption, stress sensitivity effects, and nanopore confinement. After history matching, through sensitivity analysis, the optimal injection rate of 400 tons/day, soaking time of 30 days, and three cycles of huff-n-puff were determined to be the most effective. The simulation results show that, compared with other gases, CO2 has significant potential in improving the recovery rate and overall efficiency of shale oil reservoirs. This study is of great significance and can provide valuable references for the actual work of CO2 huff-n-puff processes in shale volatile oil reservoirs of the Sichuan Basin. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

22 pages, 4964 KiB  
Article
Fluid Flow Behavior in Nanometer-Scale Pores and Its Impact on Shale Oil Recovery Efficiency
by Xiangji Dou, Menxing Qian, Xinli Zhao, An Wang, Zhengdong Lei, Erpeng Guo and Yufei Chen
Energies 2024, 17(18), 4677; https://doi.org/10.3390/en17184677 - 20 Sep 2024
Cited by 3 | Viewed by 1077
Abstract
Shale oil reservoirs, as an unconventional hydrocarbon resource, have the potential to substitute conventional hydrocarbon resources and alleviate energy shortages, making their exploration and development critically significant. However, due to the low permeability and the development of nanopores in shale reservoirs, shale oil [...] Read more.
Shale oil reservoirs, as an unconventional hydrocarbon resource, have the potential to substitute conventional hydrocarbon resources and alleviate energy shortages, making their exploration and development critically significant. However, due to the low permeability and the development of nanopores in shale reservoirs, shale oil production is challenging and recovery efficiency is low. During the imbibition stage, fracturing fluid displaces the oil in the pores primarily under capillary forces, but the complex pore structure of shale reservoirs makes the imbibition mechanism unclear. This research studies the imbibition flow mechanism in nanopores based on the capillary force model and two-phase flow theory, coupled with numerical simulation methods. The results indicated that within a nanopore diameter range of 10–20 nm, increasing the pore diameter leads to a higher imbibition displacement volume. Increased pressure can enhance the imbibition displacement, but the effect diminishes gradually. Under the water-wet conditions, the imbibition displacement volume increases as the contact angle decreases. When the oil phase viscosity decreases from 10 mPa·s to 1 mPa·s, the imbibition displacement rate can increase by 72%. Moreover, merely increasing the water phase viscosity results in only a 5% increase in the imbibition displacement rate. The results provide new insights into the imbibition flow mechanism in nanopores within shale oil reservoirs and offer a theoretical foundation and technical support for efficient shale oil development. Full article
Show Figures

Figure 1

24 pages, 5184 KiB  
Article
Mathematical Model of the Migration of the CO2-Multicomponent Gases in the Inorganic Nanopores of Shale
by Xiangji Dou, Hong Li, Sujin Hong, Mingguo Peng, Yanfeng He, Kun Qian, Luyao Guo and Borui Ma
Processes 2024, 12(8), 1679; https://doi.org/10.3390/pr12081679 - 11 Aug 2024
Cited by 1 | Viewed by 1190
Abstract
Nanopores in shale reservoirs refer to extremely small pores within the shale rock, categorised into inorganic and organic nanopores. Due to the differences in the hydrophilicity of the pore walls, the gas migration mechanisms vary significantly between inorganic and organic nanopores. By considering [...] Read more.
Nanopores in shale reservoirs refer to extremely small pores within the shale rock, categorised into inorganic and organic nanopores. Due to the differences in the hydrophilicity of the pore walls, the gas migration mechanisms vary significantly between inorganic and organic nanopores. By considering the impact of irreducible water and the variations in effective migration pathways caused by pore pressure and by superimposing the weights of different migration mechanisms, a mathematical model for the migration of CO2-multicomponent gases in inorganic nanopores of shale reservoirs has been established. The aim is to accurately clarify the migration laws of multi-component gases in shale inorganic nanopores. Additionally, this paper analyses the contributions of different migration mechanisms and studies the effects of various factors, such as pore pressure, pore size, component ratios, stress deformation, and water film thickness, on the apparent permeability of the multi-component gases in shale inorganic nanopores. The research results show that at high pressure and large pore size (pore pressure greater than 10 MPa, pore size greater than 4 nm), slippage flow dominates, while at low pressure and small pore size (pore pressure less than 10 MPa, pore size less than 4 nm), Knudsen diffusion dominates. With the increase of the stress deformation coefficient, the apparent permeability of gas gradually decreases. When the stress deformation coefficient is less than 0.05 MPa−1, the component ratio significantly impacts bulk apparent permeability. However, when the coefficient exceeds 0.05 MPa−1, this influence becomes negligible. The research results provide a theoretical basis and technical support for accurately predicting shale gas productivity, enhancing shale gas recovery, and improving CO2 storage efficiency. Full article
Show Figures

Figure 1

Back to TopTop