Analysis of the Impact of Clusters on Productivity of Multi-Fracturing Horizontal Well in Shale Gas
Abstract
:1. Introduction
1.1. The Current Development Status and Mainstream Development Technologies of Shale Gas Reservoirs
1.2. The Flow Models of Shale Gas Reservoirs at the Nanoscale Level
1.3. The Equation for the Production of Hydraulic Fractured Horizontal Shale Gas Wells
2. Physical Models and Mathematical Models
2.1. Physical Seepage Model of Clusters in Multi-Fracturing Horizontal Well
2.2. Mathematical Models of Seepage Considering Diffusion and Slip
2.3. The Mathematical Model of Seepage for Intra-Cluster Flow
- (1)
- Zone I (linear area) flow equation
- (2)
- Zone I (radial area) flow model
- (3)
- Zone II (cluster network) ellipse flow model
- (4)
- Zone III (shale matrix) ellipse flow equation
3. Solution and Analysis
3.1. Influences of Factors on Production
3.1.1. The Influence of Cluster Number
3.1.2. The Influence of Cluster Length
3.1.3. The Influence of Diffusion Coefficient on Shale Gas Production
3.1.4. The Influence of Fracture Cluster Conductivity on Shale Gas Production
3.1.5. The Influence of Transformation Zone Permeability on Shale Gas Production
3.1.6. Sensitivity Analysis of Various Parameters
3.2. Production Analysis of Actual Wells
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Nie, H.; Dang, W.; Zhang, K.; Su, H.; Ding, J.; Li, D.; Liu, X.; Li, P.; Li, P.; Yang, S.; et al. 20 Years of Research and Development of Chinese Shale Gas: Review and Outlook. Nat. Gas Ind. 2024, 44, 20–52. [Google Scholar]
- Li, L.; Wang, H.; Liu, H.; Li, Q.; Zhang, L. Natural gas powering future global development—Summary of the 27th World Gas Conference (WGC). Nat. Gas Ind. 2018, 38, 1–9. [Google Scholar]
- Min, H. Characteristics and Formation Mechanism of High-Over-Mature Shale Reservoirs of the Lower Cambrian Qiongzhusi Formation on the Southwestern Margin of the Yangtze Plate; Chengdu University of Technology: Chengdu, China, 2021. [Google Scholar]
- Dang, J.; Shen, B.; Chen, W.; Xu, S.; Zhang, Y.; Yang, M.; Xi, S. Research and Application of Fracturing Transformation Technology for Deep Tight Sandstone Gas Reservoir in J7 Block. Shandong Chem. Ind. 2023, 52, 184–187. [Google Scholar]
- Chen, W. Factors affecting segmented multi-clusters fracturing technology in horizontal wells. Chem. Eng. Equip. 2022, 6, 78–79. [Google Scholar]
- Li, T.; Zhang, J.; Guan, Y.; Yi, G.; Yang, Q.; Zhang, A. Research Progress on Production Evaluation Techniques of Segmented Fracturing in Horizontal Wells. Sci. Technol. Eng. 2023, 23, 8916–8927. [Google Scholar]
- Li, Q.; Wang, Y.; Wang, F.; Wu, J.; Usman Tahir, M.; Li, Q.; Yuan, L.; Liu, Z. Effect of thickener and reservoir parameters on the filtration property of CO2 fracturing fluid. Energy Sources 2020, 42, 1604880. [Google Scholar] [CrossRef]
- Li, Q.; Cheng, Y.; Li, Q.; Zhang, C.; Ansari, U.; Song, B. Establishment and evaluation of strength criterion for clayey silt hydrate-bearing sediments. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 40, 742–750. [Google Scholar] [CrossRef]
- Ugueto, G.A.; Wojtaszek, M.; Huckabee, P.T.; Savitski, A.A.; Guzik, A.; Jin, G.; Chavarria, J.A.; Haustveit, K. An Integrated View of Hydraulic Induced Fracture Geometry in Hydraulic Fracture Test Site 2. In Proceedings of the Unconventional Resources Technology Conference, Houston, TX, USA, 26–28 July 2021. [Google Scholar]
- Fu, W.; Morris, J.; Fu, P.; Huang, J.; Sherman, C.S.; Settgast, R.R. Simulating Tightly-spaced Swarming Hydraulic Fractures at Field Scale Using an Upscaling Approach. In Proceedings of the ARMA US Rock Mechanics/Geomechanics Symposium, Golden, CO, USA, 28 June–1 July 2020; American Rock Mechanics Association: Alexandria, VA, USA, 2020. [Google Scholar]
- Liu, X.; Tan, Y.; Singh, A.; Waddle, R.; Hilarides, K.; Forand, D.; Liang, B.; Khan, S.; Rijken, M. Learnings on Fracture and Geomechanical Modeling from the Hydraulic Fracturing Test Site in the Midland Basin, West Texas. In Proceedings of the Asia Pacific Unconventional Resources Technology Conference, Virtual, 16–18 November 2021. [Google Scholar]
- Stegent, N.; Candler, C. Downhole Microseismic Mapping of More Than 400 Fracturing Stages on a Multiwell Pad at the Hydraulic Fracturing Test Site (HFTS): Discussion of Operational Challenges and Analytic Results. In Proceedings of the In Unconventional Resources Technology Conference, Houston, TX, USA, 23–25 July 2018. [Google Scholar]
- Song, Y.; Yang, Q.; Ren, Z.; Tao, Y.; Liao, H.; Qiao, L. Calculation of production capacity of fractured horizontal wells in shale gas reservoirs and its influencing factors. Daqing Pet. Geol. Dev. 2023, 42, 158–166. [Google Scholar]
- Zheng, D.; Miska, S.; Ziaja, S.; Ziaja, M.; Zhang, J. Study of anisotropic strength properties of shale. AGH Drill. Oil Gas 2019, 36, 93–112. [Google Scholar] [CrossRef]
- Rafieepour, S.; Zheng, D.; Miska, S.; Ozbayoglu, E.; Takach, N.; Yu, M.; Zhang, J. Combined Experimental and Well Log Evaluation of Anisotropic Mechanical Properties of Shales: An Application to Wellbore Stability in Bakken Formation. In Proceedings of the Annual Technical Conference and Exhibition, Virtual, 27–29 October 2020. [Google Scholar] [CrossRef]
- Zheng, D.; Miska, S.; Ozbayoglu, E.; Zhang, J. Combined Experimental and Well Log Study of Anisotropic Strength of Shale. In Proceedings of the Annual Technical Conference and Exhibition, San Antonio, TX, USA, 16–18 October 2023. [Google Scholar] [CrossRef]
- Zhu, W.; Chen, Z.; Song, Z.; Wu, J.; Li, W.; Yue, M. Research Progress on Development Theory and Technology of Chinese Shale Gas. J. Eng. Sci. 2021, 43, 1397–1412. [Google Scholar]
- Xia, Y.; Deng, Y.; Wei, S.; Jin, Y. Numerical Simulation of Multi-scale Coupled Flow in Fractured Shale Gas Reservoirs. Acta Mech. Sin. 2023, 55, 616–629. [Google Scholar]
- Schepers, K.C.; Nuttall, B.C.; Oudinot, A.Y.; Gonzalez, R.J. Reservoir Modeling and Simulation of the Devonian Gas Shale of Eastern Kentucky for Enhanced Gas Recovery and CO2 Storage. In Proceedings of the International Conference on CO2 Capture, Storage, and Utilization, San Diego, CA, USA, 2–4 November 2009. [Google Scholar] [CrossRef]
- Guan, F.; Wu, E.; Qiu, Z.; Chang, T. Influence of shale gas seepage mechanism on gas reservoir exploitation. Daqing Pet. Geol. Dev. 2011, 30, 4. [Google Scholar]
- Michel, G.G.; Sigal, R.F.; Civan, F.; Devegowda, D. Parametric Investigation of Shale Gas Production Considering Nano-Scale Pore Size Distribution, Formation Factor, and Non-Darcy Flow Mechanisms. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 30 October–2 November 2011. [Google Scholar]
- Freeman, C.M.; Moridis, G.J.; Blasingame, T.A. A Numerical Study of Microscale Flow Behavior in Tight Gas and Shale Gas Reservoir Systems. Transp. Porous Media 2011, 90, 253. [Google Scholar] [CrossRef]
- Yao, J.; Sun, H.; Fan, D.Y.; Wang, C.C.; Sun, Z.X. Numerical simulation of gas transport mechanisms in tight shale gas reservoirs. Pet. Sci. 2013, 10, 528–537. [Google Scholar] [CrossRef]
- Deng, J.; Zhu, W.; Ma, Q. A new seepage model for shale gas reservoir and productivity analysis of fractured well. Fuel 2014, 124, 232–240. [Google Scholar] [CrossRef]
- Zhu, W.; Qi, Q. Study on multi-scale complex flow mechanisms and models of shale gas. Science in China. Technol. Sci. 2016, 46, 111–119. [Google Scholar]
- Wang, Z.; Zhu, W.; Yue, M.; Gao, Y.; Zhao, G.; Wang, H. Calculation method of production capacity of fractured horizontal wells in low and ultra-low permeability oil reservoirs. J. Univ. Sci. Technol. Beijing 2012, 34, 750–754. [Google Scholar]
- Wang, Y.; Dong, D.; Li, J.; Wang, S.; Li, X.; Wang, L.; Cheng, K.; Huang, J. Characteristics of Longmaxi Formation shale gas reservoir in the Lower Silurian of southern Sichuan. Acta Pet. Sin. 2012, 33, 551–561. [Google Scholar]
- Zhang, M.; Yao, J.; Sun, H.; Zhao, J.; Fan, D.; Huang, Z.; Wang, Y. Triple-continuum modeling of shale gas reservoirs considering the effect of kerogen. J. Nat. Gas Sci. Eng. 2015, 24, 252–263. [Google Scholar] [CrossRef]
- Liu, J.; Shang, X.; Zhu, W. Numerical calculation of non-steady-state nonlinear seepage and production capacity prediction of shale gas vertical wells. Science in China. Technol. Sci. 2015, 45, 737–746. [Google Scholar]
- Wu, Y.; Moridis, G.; Berkeley, L.; Bai, B.; Zhang, K. A Multi-Continuum Model for Gas Production in Tight Fractured Reservoirs. In Proceedings of the Hydraulic Fracturing Technology Conference, The Woodlands, TX, USA, 19–21 January 2009. [Google Scholar] [CrossRef]
- Xie, W.; Li, X.; Zhang, L.; Wang, J.; Cheng, Z.; Yuan, L. Discussion on unstable production decline of multi-stage fractured horizontal wells in shale gas reservoirs. Nat. Gas Geosci. 2015, 26, 384–390. [Google Scholar]
- Jia, D. Research on Nonlinear Seepage Theory of Multi-Stage Fractured Horizontal Wells in Shale Gas Reservoirs; University of Science and Technology Beijing: Beijing, China, 2015. [Google Scholar]
- Xu, C.; Zhang, G.; Yin, J.; Ji, G.; Li, X. Comprehensive seepage model of fractured horizontal wells in shale gas reservoirs considering desorption-adsorption. Nat. Gas Geosci. 2019, 30, 111–118. [Google Scholar]
- Qi, Q. Research on Multi-Field Coupling Nonlinear Seepage Theory of Multi-Stage Fractured Horizontal Wells in Shale Gas Reservoirs; University of Science and Technology Beijing: Beijing, China, 2021. [Google Scholar]
- Wang, Y.; Wang, S.; Dong, D.; Li, X.; Huang, J.; Zhang, C.; Guan, Q. Fine dissection of lithofacies of Longmaxi Formation in the Lower Silurian of Chongqing and Jiaoshiba area, Sichuan Basin. Nat. Gas Geosci. 2016, 27, 423–432. [Google Scholar]
- Zhao, Y.; Cui, Q.; Gao, S.; Chen, M.; Zheng, C.; Zhang, L. Inversion of single-stage fracture parameters of shale gas wells based on shut-in pressure data—Taking shale gas wells in the Changning N209 area as an example. J. Shenzhen Univ. (Sci. Eng.) 2024, 41, 22–32. [Google Scholar] [CrossRef]
- Shen, C.; Wu, J.; Fu, Y.; Zeng, B. Dynamic evaluation of long horizontal section fracturing integration for shale gas wells—Taking the Changning national shale gas demonstration zone as an example. Nat. Gas Ind. 2022, 42, 123–132. [Google Scholar]
Basic Parameters | Numerical Value | Basic Parameters | Numerical Value |
---|---|---|---|
Km (matrix permeability) | 0.0005 mD | Kf (cluster permeability) [34] | 2.5 mD |
xf (cluster radius) | 60 m | KN (fracture network permeability) [34] | 0.5 mD |
T (formation temperature) | 366.15 K | h (gas reservoir thickness) | 30.5 m |
Tsc (standard condition temperature) | 293 K | wf (cluster width) | 0.015 m |
μ (fluid viscosity) | 0.027 mPa·s | pe (boundary pressure) | 24.13 MPa |
Z (actual compressibility factor) | 0.89 | pw (boundary pressure) | 6 MPa |
Zsc (standard compressibility factor) | 1 | psc (standard pressure) | 0.101 MPa |
Φ (porosity) | 0.07 | d (cluster distance) | 5/10 m |
α (polynomial correction coefficients) | 1.2 | rw (wellbore radius) | 0.1 m |
Dk (diffusion coefficient) | 9.503 × 10−7 m2/s | bf (renovation zone minor axis) | 10 m |
Bm (untransformed zone ellipse minor axis) | 10.1 m |
Basic Parameters | Well N201 [35] | Well N209 [36,37] |
---|---|---|
Km (matrix permeability) | 0.00029 mD | 0.000247 mD |
Kf (cluster permeability) | 2.5 mD | 2.5 mD |
KN (fracture network permeability) | 0.5 mD | 0.5 mD |
xf (cluster radius) | 90 m | 90 m |
h (gas reservoir thickness) | 85 m | 44.6 m |
T (formation temperature) | 366.15 K | 366.15 K |
Tsc (standard condition temperature) | 293 K | 293 K |
μ (fluid viscosity) | 0.027 mPa.s | 0.027 mPa.s |
Φ (porosity) | 0.07 | 0.89 |
Zsc (standard compressibility factor) | 1 | 1 |
Z (actual compressibility factor) | 0.89 | 0.89 |
α (polynomial correction coefficients) | 1.2 | 1.2 |
m (average number of stages of fracturing) | 15 | 15 |
n (number of clusters per segment) | 6 | 6 |
wf (cluster width) | 0.013 m | 0.013 m |
pe (formation pressure) | 36.4 MPa | 54.6 MPa |
pw (boundary pressure) | 9.3 MPa | 20.3 MPa |
psc (standard pressure) | 0.101 MPa | 0.101 MPa |
d (cluster distance) | 5 m | 5 m |
re (venting radius) | 400 m | 400 m |
rw (wellbore radius) | 0.1 m | 0.1 m |
Dk (diffusion coefficient) | 9.503 × 10−7 m2/s | 9.503 × 10−7 m2/s |
bf (renovation zone minor axis) | 15 m | 15 m |
Bm (untransformed zone ellipse minor axis) | 15.1 m | 15.1 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, F.; Zhang, C.; Huang, X.; Wang, Y. Analysis of the Impact of Clusters on Productivity of Multi-Fracturing Horizontal Well in Shale Gas. Energies 2024, 17, 5140. https://doi.org/10.3390/en17205140
Song F, Zhang C, Huang X, Wang Y. Analysis of the Impact of Clusters on Productivity of Multi-Fracturing Horizontal Well in Shale Gas. Energies. 2024; 17(20):5140. https://doi.org/10.3390/en17205140
Chicago/Turabian StyleSong, Fuquan, Chenkan Zhang, Xiaohe Huang, and Yongzheng Wang. 2024. "Analysis of the Impact of Clusters on Productivity of Multi-Fracturing Horizontal Well in Shale Gas" Energies 17, no. 20: 5140. https://doi.org/10.3390/en17205140
APA StyleSong, F., Zhang, C., Huang, X., & Wang, Y. (2024). Analysis of the Impact of Clusters on Productivity of Multi-Fracturing Horizontal Well in Shale Gas. Energies, 17(20), 5140. https://doi.org/10.3390/en17205140