Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = shaft bow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 12831 KiB  
Article
Behavior of Large-Diameter Circular Deep Excavation Under Asymmetric Surface Surcharge
by Ping Zhao, Youqiang Qiu, Feng Liu, Zhanqi Wang and Panpan Guo
Symmetry 2025, 17(8), 1194; https://doi.org/10.3390/sym17081194 - 25 Jul 2025
Viewed by 254
Abstract
Circular deep excavations, characterized by their symmetrical geometry, are commonly employed in constructing foundations for large-span suspension bridges and as launching shafts for shield tunneling. However, the mechanical behavior of such excavations under asymmetric surface surcharge remains inadequately understood due to a paucity [...] Read more.
Circular deep excavations, characterized by their symmetrical geometry, are commonly employed in constructing foundations for large-span suspension bridges and as launching shafts for shield tunneling. However, the mechanical behavior of such excavations under asymmetric surface surcharge remains inadequately understood due to a paucity of relevant investigations. This study addresses this knowledge gap by establishing a three-dimensional finite element model (3D-FEA) based on the anchor deep excavation project of a specific bridge. The model is utilized to investigate the influence of asymmetric surcharge on the forces and deformations within the supporting structure. The results show that both the internal force and displacement cloud diagrams of the support structure exhibit asymmetric characteristics. The distribution of displacement and internal forces has spatial effects, and the maximum values all occur in the areas where asymmetric loads are applied. The maximum values of the displacement, axial force, and shear force of underground continuous walls increase with the increase in the excavation depth. The total displacement curves all show the feature of a “bulging belly”. The maximum displacement is 13.3 mm. The axial force is mainly compression, with a maximum value of −9514 kN/m. The maximum positive and negative values of the shear force are 333 kN/m and −705 kN/m, respectively. The bending moment diagram of different monitoring points shows the characteristics of “bow knot”. The maximum values of the positive bending moment and negative bending moment are 1509.4 kN·m/m and −2394.3 kN·m/m, respectively. The axial force of the ring beam is mainly compression, with a maximum value of −5360 kN, which occurs in ring beams 3, 4, and 5. The displacement cloud diagram of the support structure under symmetrical loads shows symmetrical characteristics. Under different load conditions, the displacement curve of the diaphragm wall shows the characteristics of “bulge belly”. The forms of loads with displacements from largest to smallest at the same position are as follows: asymmetric loads, symmetrical loads, and no loads. These findings provide valuable insights for optimizing the structural design of similar deep excavation projects and contribute to promoting sustainable urban underground development. Full article
(This article belongs to the Special Issue Symmetry, Asymmetry and Nonlinearity in Geomechanics)
Show Figures

Figure 1

12 pages, 2687 KiB  
Article
Three-Dimensional Bowing Measurement of Distal Femur at Actual Size and Clinical Implications of Total Knee Arthroplasty
by Gu-Hee Jung, Young-Jue An and Dong-Geun Kang
Medicina 2024, 60(6), 986; https://doi.org/10.3390/medicina60060986 - 15 Jun 2024
Viewed by 1915
Abstract
Background and Objectives: To assess femoral shaft bowing (FSB) in coronal and sagittal planes and introduce the clinical implications of total knee arthroplasty (TKA) by analyzing a three-dimensional (3D) model with virtual implantation of the femoral component. Materials and Methods: Sixty-eight [...] Read more.
Background and Objectives: To assess femoral shaft bowing (FSB) in coronal and sagittal planes and introduce the clinical implications of total knee arthroplasty (TKA) by analyzing a three-dimensional (3D) model with virtual implantation of the femoral component. Materials and Methods: Sixty-eight patients (average age: 69.1 years) underwent 3D model reconstruction of medullary canals using computed tomography (CT) data imported into Mimics® software (version 21.0). A mechanical axis (MA) line was drawn from the midportion of the femoral head to the center of the intercondylar notch. Proximal/distal straight centerlines (length, 60 mm; diameter, 1 mm) were placed in the medullary canal’s center. Acute angles between these centerlines were measured to assess lateral and anterior bowing. The acute angle between the distal centerline and MA line was measured for distal coronal and sagittal alignment in both anteroposterior (AP) and lateral views. The diameter of curve (DOC) along the posterior border of the medulla was measured. Results: The mean lateral bowing in the AP view was 3.71°, and the mean anterior bowing in the lateral view was 11.82°. The average DOC of the medullary canal was 1501.68 mm. The average distal coronal alignment of all femurs was 6.40°, while the distal sagittal alignment was 2.66°. Overall, 22 femurs had coronal bowing, 42 had sagittal bowing, and 15 had both. Conclusions: In Asian populations, FSB can occur in coronal, sagittal, or both planes. Increased anterolateral FSB may lead to cortical abutment in the sagittal plane, despite limited space in the coronal plane. During TKA, distal coronal alignment guides the distal femoral valgus cut angle, whereas distal sagittal alignment aids in predicting femoral component positioning to avoid anterior notching. However, osteotomies along the anterior cortical bone intended to prevent notching may result in outliers due to differences between the distal sagittal alignment and the distal anterior cortical axis. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

20 pages, 4313 KiB  
Article
A Novel Hybrid Approach to the Diagnosis of Simultaneous Imbalance and Shaft Bowing Faults in a Jeffcott Rotor-Bearing System
by Shyh-Chin Huang, Sherina Octaviani and Mohammad Najibullah
Appl. Sci. 2024, 14(8), 3269; https://doi.org/10.3390/app14083269 - 12 Apr 2024
Cited by 5 | Viewed by 1941
Abstract
Ensuring optimal performance and reliability in rotor-bearing systems is crucial for industrial applications. Imbalances and shaft bowing in these systems can lead to decreased efficiency and increased vibrations. The early detection and mitigation of a rotor’s faults are essential, and model-based fault identification [...] Read more.
Ensuring optimal performance and reliability in rotor-bearing systems is crucial for industrial applications. Imbalances and shaft bowing in these systems can lead to decreased efficiency and increased vibrations. The early detection and mitigation of a rotor’s faults are essential, and model-based fault identification has gained much attention in the manufacturing industry over the years. Over the past two decades, however, the development of fault diagnosis rules with data-driven and artificial intelligence (AI) methods has become a trend, and in the foreseeable future the combination of AI with big data will become mainstream. Nevertheless, the critical role of rotating machinery in manufacturing introduces a challenge, as often insufficient fault data are available. This limitation renders the establishment of diagnostic rules using data-driven methods and AI technologies impractical. In light of these challenges, this study proposes a novel hybrid approach that combines a physical model with machine learning (ML) techniques for the diagnosis of multi-faults (imbalances and shaft bowing are demonstrated) in a Jeffcott rotor. To overcome the lack of real-world labeled fault datasets, a physics-based Jeffcott rotor model is first derived and then used to generate abundant fault datasets for ML. Subsequently, simulated data are employed for the training of an artificial neural network (ANN), enabling the network to learn from and analyze the vast array of generated data. The results prove that a well-trained feed-forward neural network (FNN) can accurately isolate and diagnose imbalance and shaft bowing faults using the simulated and real data from the Jeffcott rotor experiment. These physics-based and ML approaches prove effective particularly for multi-faults, offering new possibilities for advanced rotor system monitoring and maintenance strategies in industrial applications. Full article
(This article belongs to the Collection Modeling, Design and Control of Electric Machines: Volume II)
Show Figures

Figure 1

24 pages, 8519 KiB  
Article
Fractional-Order Fuzzy PID Controller with Evolutionary Computation for an Effective Synchronized Gantry System
by Wei-Lung Mao, Sung-Hua Chen and Chun-Yu Kao
Algorithms 2024, 17(2), 58; https://doi.org/10.3390/a17020058 - 29 Jan 2024
Cited by 5 | Viewed by 2242
Abstract
Gantry-type dual-axis platforms can be used to move heavy loads or perform precision CNC work. Such gantry systems drive a single axis with two linear motors, and under heavy loads, a high driving force is required. This can generate a pulling force between [...] Read more.
Gantry-type dual-axis platforms can be used to move heavy loads or perform precision CNC work. Such gantry systems drive a single axis with two linear motors, and under heavy loads, a high driving force is required. This can generate a pulling force between the drive shafts in the coupling mechanism. In these situations, when a synchronization error becomes too large, mechanisms can become deformed or damaged, leading to damaged equipment, or in industrial settings, an additional power consumption. Effectively and accurately acquiring the synchronized movement of the platform is important to reduce energy consumption and optimize the system. In this study, a fractional-order fuzzy PID controller (FOFPID) using Oustaloup’s recursive filter is used to control a synchronous X–Y gantry-type platform. The optimized controller parameters are obtained by the measurement of control errors in a simulated environment. Four optimization methods are tested and compared: particle swarm optimization, invasive weed optimization, a gray wolf optimizer, and biogeography-based optimization. The systems were tested and compared in order to optimize the control parameters. Each of the four algorithms is simulated on four contour shapes: a circle, bow, heart, and star. The simulations and control scheme of the experiments are implemented using MATLAB, and the reference paths were planned using non-uniform rational B-splines (NURBS). After running the simulations to determine the optimal control parameters, each set of acquired control parameters is also tested and compared in the experiments and the results are recorded. Both the simulations and experiments show good results, and the tracking of the X–Y platform showed improved performance. Two performance indices are used to determine and validate the relative performance of the models and results. Full article
(This article belongs to the Special Issue Algorithms for PID Controller 2024)
Show Figures

Figure 1

23 pages, 24072 KiB  
Article
Experimental Study on the Effect of Hull Deformation on the Relative Attitude between Shaft and Bearing
by Weixin Zhou, Yao Zhao, Hua Yuan and Zhaoxin Ren
J. Mar. Sci. Eng. 2023, 11(10), 1992; https://doi.org/10.3390/jmse11101992 - 16 Oct 2023
Cited by 5 | Viewed by 1980
Abstract
The unclear change laws of bearing offset and rotation, both of which influence the condition of shaft alignment during hull deformation, make it difficult to optimize shafting design. In this paper, an integrated hull-bearing-shaft model is designed and built for a cantilever beam [...] Read more.
The unclear change laws of bearing offset and rotation, both of which influence the condition of shaft alignment during hull deformation, make it difficult to optimize shafting design. In this paper, an integrated hull-bearing-shaft model is designed and built for a cantilever beam loading test. Displacement sensors are utilized to determine the change in displacement of the hull, bearings, and shaft. The pressure distribution at the bow and stern ends of the bearing is measured using a new type of thin-film pressure sensor. The test results show that the rotation angle of the shaft and bearing varied differentially during hull deformation, and the magnitude of the shaft-bearing angle was comparable to the rotation angle. The measured rotation angles of the front and rear ends of the stern tube bearings are opposite to the theoretical value of a cantilever beam, indicating that the stern tube has a non-negligible effect on local deformation, and it is recommended to measure the bearings directly as opposed to the alternative structure to obtain the rotation. The change pattern of the shaft and bearing attitude does not change with the different initial state of the shaft, which indicates that the initial error of installation will be retained during the hull deformation process. The change pattern of the shaft and bearing attitude is unaffected by the initial state of the shaft, indicating that the initial installation error will persist during hull deformation. In some instances, the bearing reaction force remained unchanged, but the shaft-bearing angle and bearing pressure altered, indicating that the bearing condition cannot be determined solely by the bearing reaction force. The results of bearing pressure and the shaft-bearing angle can be compared, indicating that the thin-film pressure sensor can be used to determine the status of the shaft-bearing angle, particularly during the installation phase. Full article
(This article belongs to the Special Issue Advances in Marine Propulsion II)
Show Figures

Figure 1

19 pages, 3623 KiB  
Article
Classification of Unbalanced and Bowed Rotors under Uncertainty Using Wavelet Time Scattering, LSTM, and SVM
by Nima Rezazadeh, Mario de Oliveira, Donato Perfetto, Alessandro De Luca and Francesco Caputo
Appl. Sci. 2023, 13(12), 6861; https://doi.org/10.3390/app13126861 - 6 Jun 2023
Cited by 15 | Viewed by 2592
Abstract
A growing interest in intelligent fault detection may sometimes lead to practical issues when existing malfunctions reveal analogous indications and the number of observations is limited. This article addresses the classification problem of two identical malfunctions, i.e., unbalancing and shaft bow in rotary [...] Read more.
A growing interest in intelligent fault detection may sometimes lead to practical issues when existing malfunctions reveal analogous indications and the number of observations is limited. This article addresses the classification problem of two identical malfunctions, i.e., unbalancing and shaft bow in rotary machines, where only 56 observations were utilized for the training. The faulty systems are modeled in ABAQUS/CAE; a data set for each fault is created by simulation under various physical and operational conditions employing the uncertainty concept. The wavelet time scattering (WTS) technique extracts low-variance presentations from signals. With respect to the classification procedure of the faulted rotor systems, two models are examined with the extracted features from WTS as the input. Initially, a long short-term memory (LSTM) network is trained and tested, and then, the capability of a support vector machine (SVM) model is inquired. Ultimately, the classification models are trained and tested using the raw time series data and the extracted features to compare the effectiveness of the suggested methods, i.e., WTS. The employed approach for feature extraction demonstrated remarkable effectiveness in addressing a potential hurdle in identifying faults in rotating systems: the ability to differentiate between unbalanced and bowed rotors, irrespective of the classification model utilized. Full article
Show Figures

Figure 1

19 pages, 1332 KiB  
Review
Diagnosing and Balancing Approaches of Bowed Rotating Systems: A Review
by Nima Rezazadeh, Alessandro De Luca, Giuseppe Lamanna and Francesco Caputo
Appl. Sci. 2022, 12(18), 9157; https://doi.org/10.3390/app12189157 - 13 Sep 2022
Cited by 15 | Viewed by 3943
Abstract
Driven/driving shafts are the most important portion of rotating devices. Misdiagnosis or late diagnosis of these components could result in severe vibrations, defects in other parts (particularly bearings), and ultimately catastrophic failures. A shaft bow is a common problem in heavy rotating systems [...] Read more.
Driven/driving shafts are the most important portion of rotating devices. Misdiagnosis or late diagnosis of these components could result in severe vibrations, defects in other parts (particularly bearings), and ultimately catastrophic failures. A shaft bow is a common problem in heavy rotating systems equipped with such attachments as blades, discs, etc. Many factors can cause the shaft bending; this malfunction can be temporary, such as the bow resulting from a rotor gravitational sag, or can be permanent, such as shrink fitting. Since bending effects are similar to those induced by the classic eccentricity of the mass from the geometric center, i.e., unbalancing, distinguishing the differences in dynamic behaviors, as well as the symptoms, can be a labor-intensive and specialized task. This article represents a review of almost all the investigations and studies that have been carried out on the diagnosing and balancing of bowed rotating systems. The articles are categorized into two major classes, diagnosing and balancing/correcting approaches to bowed rotors. The former is divided into three subclasses, i.e., time-domain, frequency-domain, and time–frequency-domain analyses; the latter is divided into three other sub-sections that concern influence coefficient, modal balancing, and optimization method in correcting. Since the number of investigations in the time domain is relatively high, this category is subdivided into two groups: manual and smart inspection. Finally, a summary is provided, as well as some new research prospects. Full article
(This article belongs to the Special Issue Non-destructive Evaluation for Products and Processes)
Show Figures

Figure 1

Back to TopTop