Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = sex pheromone trap

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2756 KB  
Article
Life History and the Relation Between Population Dynamics and Meteorological Factors of Hyphantria cunea (Lepidoptera: Erebidae: Arctiidae) in Shanghai, China
by Siqi Tang, Zichun Li, Guangyu Huang, Yangyang Han and Dejun Hao
Insects 2025, 16(11), 1136; https://doi.org/10.3390/insects16111136 - 6 Nov 2025
Viewed by 884
Abstract
The fall webworm Hyphantria cunea (Lepidoptera: Erebidae) is a globally invasive species that causes serious damage to agriculture and forestry. Since the first invasion reported in Liaoning Province, China, it has spread extensively southward and was found in Shanghai in 2019. Owing to [...] Read more.
The fall webworm Hyphantria cunea (Lepidoptera: Erebidae) is a globally invasive species that causes serious damage to agriculture and forestry. Since the first invasion reported in Liaoning Province, China, it has spread extensively southward and was found in Shanghai in 2019. Owing to the climatic and environmental differences between these regions, the biology and population dynamics of H. cunea may have undergone changes in its newly invaded areas. In this study, we investigated the biology of H. cunea in Shanghai and monitored the population dynamics using sex-pheromone-baited traps. We analyzed the relationships between population dynamics and local meteorological factors, including temperature, precipitation, and sunshine duration. Our result indicates high temperatures and large diurnal temperature ranges have significant effects (R2 = 0.723, p < 0.001) on the survival and development of H. cunea. Consequently, they play an important role in shaping its population dynamics. These findings enhance our understanding of how H. cunea responds to Shanghai’s environmental conditions, provide a scientific basis for local pest management, and contribute to predicting its population trends. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

25 pages, 8746 KB  
Article
Synergistic Attraction and Ecological Effects of Multi-Source Physical and Chemical Trapping Methods with Different Mechanism Combinations on Rice Pests
by Wei Zeng, Jianping Peng, Chuanhong Feng, Qinghua Chen and Chunxian Jiang
Insects 2025, 16(10), 1001; https://doi.org/10.3390/insects16101001 - 26 Sep 2025
Viewed by 828
Abstract
Comparative experiments on trapping major rice pests using different methods showed that a light-transmitting three-combination trapping method, using different combinations of color plates + insect sex pheromones + transmitting (shielding) light covers + solar-powered automatic insect-attracting ultraviolet lamps, demonstrated significant positive attraction and [...] Read more.
Comparative experiments on trapping major rice pests using different methods showed that a light-transmitting three-combination trapping method, using different combinations of color plates + insect sex pheromones + transmitting (shielding) light covers + solar-powered automatic insect-attracting ultraviolet lamps, demonstrated significant positive attraction and synergistic effects on the simultaneous capture of multiple pests, including rice Sogatella furcifera, Laodelphax striatellus, Chilo suppressalis, and Sesamia inferens and rice leafhoppers, Sitobion miscanthi, Cnaphalocrocis exigua, Parnara guttata, and Naranga aenescens. In addition, the light-transmitting three-combination trapping method has a low benefit-harm ratio and is not easily disturbed by non-target flies (Muscadomestica). The ultraviolet light and transmitting cover in the device had a negative effect on attracting the Cnaphalocrocis medinalis, resulting in a highly significant or significant decrease in its capture rate. The results also showed that the light-shielding double-combination trapping method, which lacks ultraviolet lamp waves and transmitting covers, had no significant difference in the capture rate and insect benefit-harm ratio of C. medinalis adults compared with the glue-type sex lure method, confirming that C. medinalis has a significant negative tendency characteristic to ultraviolet lamp waves and transmitting covers. Therefore, the light-shielding double-combination trapping method using color plates and insect sex pheromones is recommended for monitoring the weakly phototactic C. medinalis. The light-transmitting three-combination trapping method is preferred for the simultaneous capture of multiple major rice pests besides C. medinalis. This study provides a scientific basis for the rational and effective application of multi-source physical and chemical trapping for monitoring and pest control of major crop pests. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

21 pages, 3808 KB  
Article
Study on the Image Recognition of Field-Trapped Adult Spodoptera frugiperda Using Sex Pheromone Lures
by Quanyuan Xu, Caiyi Li, Min Fan, Ying Lu, Hui Ye and Yonghe Li
Insects 2025, 16(9), 952; https://doi.org/10.3390/insects16090952 - 11 Sep 2025
Viewed by 908
Abstract
Spodoptera frugiperda is a major transboundary migratory pest under global alert by the Food and Agriculture Organization (FAO) of the United Nations. The accurate identification and counting of trapped adults in the field are key technologies for achieving quantitative monitoring and precision pest [...] Read more.
Spodoptera frugiperda is a major transboundary migratory pest under global alert by the Food and Agriculture Organization (FAO) of the United Nations. The accurate identification and counting of trapped adults in the field are key technologies for achieving quantitative monitoring and precision pest control. However, precise recognition is challenged by issues such as scale loss and the presence of mixed insect species in trapping images. To address this, we constructed a field image dataset of trapped Spodoptera frugiperda adults and proposed an improved YOLOv5s-based detection method. The dataset was collected over a two-year sex pheromone monitoring campaign in eastern–central Yunnan, China, comprising 9550 labeled insects across six categories, and was split into training, validation, and test sets in an 8:1:1 ratio. In this study, YOLOv7, YOLOv8, Mask R-CNN, and DETR were selected as comparative baselines to evaluate the recognition of images containing Spodoptera frugiperda adults and other insect species. However, the complex backgrounds introduced by field trap photography adversely affected classification performance, resulting in a relatively modest average accuracy. Considering the additional requirement for model lightweighting, we further enhanced the YOLOv5s architecture by integrating Mosaic data augmentation and an adaptive anchor box strategy. Additionally, three attention mechanisms—SENet, CBAM, and Coordinate Attention (CA)—were embedded into the backbone to build a multidimensional attention comparison framework, demonstrating CBAM’s superiority under complex backgrounds. Ultimately, the CBAM-YOLOv5 model achieved 97.8% mAP@0.5 for Spodoptera frugiperda identification, with recognition accuracy for other insect species no less than 72.4%. Based on the optimized model, we developed an intelligent recognition system capable of image acquisition, identification, and counting, offering a high-precision algorithmic solution for smart trapping devices. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

13 pages, 2888 KB  
Article
Monitoring of Harmful Noctuid Pests with Synthetic Sex Pheromones and Semisynthetic Bisexual Lures (SBL): Benefits and Limitations of Separate, Parallel and Combined Use of the Methods
by Szabolcs Szanyi, Szilvia Pálóczi, Júlia Katalin Jósvai, Zoltán Varga, Miklós Tóth and Antal Nagy
Agronomy 2025, 15(9), 2086; https://doi.org/10.3390/agronomy15092086 - 29 Aug 2025
Viewed by 1062
Abstract
Sex pheromones and semi-synthetic bisexual lure (SBL) were used both in parallel and in combination within single traps to monitor four widely distributed noctuid pest species. For Agrotis ipsilon, the SBL proved to be more effective than the species-specific sex pheromone, and [...] Read more.
Sex pheromones and semi-synthetic bisexual lure (SBL) were used both in parallel and in combination within single traps to monitor four widely distributed noctuid pest species. For Agrotis ipsilon, the SBL proved to be more effective than the species-specific sex pheromone, and it can be used alone instead of them, as well as for monitoring the pest. In the case of A. segetum and Lacanobia oleracea, the lures did not inhibit each other, and their parallel and combined use provided a more accurate representation of swarming dynamics and abundance peaks, as well as enabled the monitoring of female flight activity. Observations revealed shifts in the life cycle of L. oleracea and further supported the migratory nature of A. segetum. The parallel and combined application of the newly developed SBL and conventional sex pheromone lures may significantly enhance the precision of pest monitoring and forecasting, thereby supporting more precise planning and timing and more effective implementation of plant protection treatments in IPM strategies. Full article
Show Figures

Figure 1

29 pages, 5601 KB  
Article
Highly Improved Captures of the Diamondback Moth, Plutella xylostella, Using Bimodal Traps
by Andrei N. Frolov and Yulia A. Zakharova
Insects 2025, 16(9), 881; https://doi.org/10.3390/insects16090881 - 24 Aug 2025
Viewed by 1899
Abstract
Many cases have been described where the combination of semiochemicals and light sources in traps cause an increase in adult insect attraction. In this context, we tested different treatments using Delta plastic traps to catch DBM adults: (1) dispensers containing DBM SSA; (2) [...] Read more.
Many cases have been described where the combination of semiochemicals and light sources in traps cause an increase in adult insect attraction. In this context, we tested different treatments using Delta plastic traps to catch DBM adults: (1) dispensers containing DBM SSA; (2) UV (365–370 nm) LEDs; (3) a combination of a dispenser containing DBM SSA and LEDs (SSA + LED); and (4) no lures (Control). The trials were conducted in northwestern Russia (the vicinity of St. Petersburg) during the period of 2022–2024 on cabbage crops. The results showed a highly significant interaction between SSA and LEDs with respect to their attractiveness to male DBM adults, as evidenced by an average 15-fold increase in DBM captures after the traps containing SSA were equipped with a second lure, an LED. This article discusses the prospects for using the identified synergistic effect of interaction between SSA and LEDs to enhance the catch of DBM adults for practical purposes, such as improving monitoring and developing more effective mass-trapping technologies. Full article
Show Figures

Graphical abstract

11 pages, 1929 KB  
Article
Field Evaluation of Synthetic Components of the Sex Pheromone of the Tea Pest Helopeltis cinchonae Mann (Hemiptera: Miridae)
by Fida Hussain Magsi, David R. Hall, Zongxiu Luo, Xiangfei Meng, Chunli Xiu, Zhaoqun Li, Lei Bian, Nanxia Fu, Jianlong Li, Zongmao Chen and Xiaoming Cai
Insects 2025, 16(3), 307; https://doi.org/10.3390/insects16030307 - 16 Mar 2025
Viewed by 1504
Abstract
Helopeltis cinchonae is an emerging pest of tea and causes severe damage to tea plantations in China. The female of H. cinchonae has been reported to produce a sex pheromone consisting of two components, hexyl (3R)-3-acetoxybutyrate and (5R)-1-acetoxy-5-butyroxyhexane, and [...] Read more.
Helopeltis cinchonae is an emerging pest of tea and causes severe damage to tea plantations in China. The female of H. cinchonae has been reported to produce a sex pheromone consisting of two components, hexyl (3R)-3-acetoxybutyrate and (5R)-1-acetoxy-5-butyroxyhexane, and lures containing the synthetic compounds have been shown to attract male H. cinchonae to traps in the field. This is the first time that components of the sex pheromone have been identified for a species of Helopeltis bug, but their field application has not been evaluated in detail. The present study shows that a blend of both compounds loaded into a polyethylene vial at 0.2 and 2 mg, respectively, caught significantly more male H. cinchonae bugs than the individual compounds and all the other tested blends. Sticky wing traps baited with the binary blend of compounds at the optimized ratio and dosage caught more bugs than bucket funnel or delta traps, and traps hung at a height of 10 cm above the tea shoots caught more bugs than those at other heights. The optimized traps and lures were used for monitoring the pest and two distinct population peaks of H. cinchonae were observed, the first one during mid-May to early June, and the other one in mid-September. Overall, the results of this study contribute to an environmentally-friendly approach to monitoring and managing H. cinchonae in the field. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

11 pages, 3209 KB  
Brief Report
Functional Investigation of the Receptor to the Major Pheromone Component in the C-Strain and the R-Strain of the Fall Armyworm Spodoptera frugiperda
by Arthur Comte, Alizée Delarue, Marie-Christine François, Christelle Monsempes, Camille Meslin, Nicolas Montagné and Emmanuelle Jacquin-Joly
Insects 2025, 16(3), 304; https://doi.org/10.3390/insects16030304 - 14 Mar 2025
Cited by 1 | Viewed by 1488
Abstract
The fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) is an important invasive polyphagous crop pest that has been invading the world since 2016. This species consists of two strains adapted to different host plants, the corn strain and the rice strain, which also exhibit [...] Read more.
The fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) is an important invasive polyphagous crop pest that has been invading the world since 2016. This species consists of two strains adapted to different host plants, the corn strain and the rice strain, which also exhibit differences in their mating behavior, pheromone composition, and pheromone receptor sequences. A way to monitor invasion and control this pest is the use of synthetic sex pheromones to trap adults and disturb the mate-finding process via the release of large amounts of pheromones in the air. However, the efficiency of these methods depends on the specificity and sensitivity of the corresponding pheromone receptors. Yet, only pheromone receptors of the corn strain have been characterized, and nothing is known about the specificity and sensitivity of the rice strain orthologues. To address this gap, we functionally expressed the receptors to the major sex pheromone component of the two strains in Drosophila olfactory sensory neurons and challenged them with a large panel of pheromone compounds using single-sensillum recordings. Although their sequences present subtle mutations, we revealed that they share similar response spectra and sensitivity. The implications of these results on pheromone-based pest management strategies are discussed. Full article
Show Figures

Figure 1

31 pages, 469 KB  
Review
What Can We Learn from Dissecting Tortricid Females About the Efficacy of Mating Disruption Programs?
by Alan Lee Knight, Michele Preti and Esteban Basoalto
Insects 2025, 16(3), 248; https://doi.org/10.3390/insects16030248 - 28 Feb 2025
Cited by 1 | Viewed by 1811
Abstract
Female mating success for the tortricids codling moth (CM), Cydia pomonella, Oriental fruit moth (OFM), Grapholita molesta, European grape vine moth (EGVM), Lobesia botrana, and five leafroller (LR) species under various mating disruption (MD) programs was reviewed at a time [...] Read more.
Female mating success for the tortricids codling moth (CM), Cydia pomonella, Oriental fruit moth (OFM), Grapholita molesta, European grape vine moth (EGVM), Lobesia botrana, and five leafroller (LR) species under various mating disruption (MD) programs was reviewed at a time when new dual sex lures can provide alternative tools to assess female mating. Previous reliance on passive assessments such as tethering and virgin female-baited traps with laboratory moths are at odds with active trapping methods of wild moths. Additive factors such as delayed mating, adjustments in female behaviors, and greater levels of natural control may or may not contribute to the apparent success of MD. Current MD programs are not based solely on research, as economics and commercialization require some compromise. The complete sex pheromone blend is not always used. A delay in mating has been reported from the field with one study and suggested that reductions in fecundity would likely be minimal. There is no evidence that MD works better with low population densities. MD is an established technology, but the new dual sex lures are showing that the density of mated females is rather high. Efforts to improve the efficacy of MD are ongoing with a small cadre of researchers. Full article
19 pages, 3989 KB  
Article
Factors Impacting the Use of an Allelochemical Lure in Pome Fruit for Cydia pomonella (L.) Monitoring
by Alan Lee Knight, Michele Preti and Esteban Basoalto
Insects 2025, 16(2), 172; https://doi.org/10.3390/insects16020172 - 6 Feb 2025
Cited by 5 | Viewed by 1591
Abstract
A four-component blend comprising pear ester, DMNT, linalool oxide, and acetic acid (CM4K) was identified as a potent allelochemical lure for both sexes of codling moth (CM), Cydia pomonella (L.). Studies conducted from 2020 to 2022 in Washington State (USA) examined factors which [...] Read more.
A four-component blend comprising pear ester, DMNT, linalool oxide, and acetic acid (CM4K) was identified as a potent allelochemical lure for both sexes of codling moth (CM), Cydia pomonella (L.). Studies conducted from 2020 to 2022 in Washington State (USA) examined factors which could impact the lure’s relative performance. The CM4K lure was effective across a range of mating disruption programs and was equally attractive in monitoring wild and sterile CM. The lure remained attractive for at least 10 weeks. Total catch in traps baited with the CM4K was significantly less impacted than a sex pheromone lure located near mating disruption dispensers and female catches were largely unaffected. Traps with the CM4K lure caught significantly more females and fewer males when placed near clusters of fruits in a trellised orchard. Two factors were found to significantly impact the relative performance of the CM4K to sex pheromone lures: the CM4K lure was only equivalent to sex pheromone lures in pear MD orchards, and apple and pear orchards with vigorous weed growth. This is the first report of a monitoring lure for a tortricid moth being negatively impacted by the background odor of non-host weed species present within an orchard. Full article
Show Figures

Figure 1

19 pages, 9936 KB  
Article
Identification of Candidate Olfactory Genes in the Antennal Transcriptome of Loxostege sticticalis Trapped by Three Different Sex Pheromone Blends
by Mengke Zhang, Sumei Zhao, Zhiping Xue, Jiaying Sun, Jiangning Hao, Fengzhi Deng, Junxia Huang, Caroline Du and Yongjun Du
Insects 2025, 16(2), 152; https://doi.org/10.3390/insects16020152 - 3 Feb 2025
Viewed by 1338
Abstract
Insects sense intraspecific or interspecific information about the chemical substances in the habitat through the sensitive olfactory system to carry out foraging, mating, oviposition, and other activities. The antennae serve as the primary olfactory organs in insects. The olfactory process involves the participation [...] Read more.
Insects sense intraspecific or interspecific information about the chemical substances in the habitat through the sensitive olfactory system to carry out foraging, mating, oviposition, and other activities. The antennae serve as the primary olfactory organs in insects. The olfactory process involves the participation of many proteins, such as odorant-binding proteins (OBPs) and odorant receptors (ORs), but ORs play a central role in olfactory specificity and sensitivity. The beet webworm, Loxostege sticticalis, is an omnivorous agricultural pest that endangers crops and poses a significant risk to the agricultural and animal husbandry production in northern China. In this study, Illumina sequencing was conducted on the antennal transcriptome of male L. sticticalis trapped by three different sex pheromone blends. A total of 10,320 DEGs were identified, from which 46 candidate olfactory genes were selected for further analysis. These candidate olfactory genes comprise 13 odorant receptors, 6 ionotropic receptors (IRs), 3 gustatory receptors (GRs), 12 odorant-binding proteins, and 13 chemosensory proteins (CSPs). In summary, we analyzed the antennal transcriptome of male L. sticticalis trapped by three different sex pheromone blends and identified several candidate olfactory genes. This discovery offers a foundation for further molecular-level investigations into the olfactory system of L. sticticalis. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

8 pages, 1005 KB  
Article
First Report of a Migratory Pest, the Fall Armyworm, Spodoptera frugiperda (JE Smith, 1797) (Lepidoptera, Noctuidae) from Bulgaria
by Szabolcs Szanyi, Marek Barta, Dimitar Velchev, Stoyan Beshkov, Stephen Mumford, Ivaylo Todorov, Antal Nagy, Zoltán Varga, Miklós Tóth and Teodora Toshova
Insects 2025, 16(2), 134; https://doi.org/10.3390/insects16020134 - 30 Jan 2025
Viewed by 2551
Abstract
The first occurrence of an invasive pest species, the fall armyworm (Spodoptera frugiperda, Lepidoptera: Noctuidae), in Bulgaria is reported. Different trapping methods (black light trap, traps baited with semiochemical lures, and food attractants) were used to study Noctuidae assemblages in Bulgaria in [...] Read more.
The first occurrence of an invasive pest species, the fall armyworm (Spodoptera frugiperda, Lepidoptera: Noctuidae), in Bulgaria is reported. Different trapping methods (black light trap, traps baited with semiochemical lures, and food attractants) were used to study Noctuidae assemblages in Bulgaria in 2023. Two males of S. frugiperda were caught with sex pheromone traps in maize fields in Knezha, northern Bulgaria, in early November 2023. Additionally, three moths were attracted by black light traps (early November 2023) and one moth by a food lure applied on a tree trunk at the end of October 2023 in the municipalities of Parvomay and Chirpan, southern Bulgaria, respectively. The identification of S. frugiperda was confirmed using morphological and molecular methods. Full article
(This article belongs to the Special Issue Travelers on the Wind: Migratory Insects as Emerging Research Models)
Show Figures

Figure 1

12 pages, 245 KB  
Article
Comparison of Pheromone Lures and Sticky Pad Color for Capturing Tuta absoluta (Lepidoptera: Gelechiidae)
by Muhammad Sadique, Muhammad Ishtiaq, Mirza Abdul Qayyum, Wafa A. H. Alkherb, Asim Abbasi, Muhammad Arshad, Unsar Naeem Ullah, Nazar Faried, Muhammad Irfan Akram and Nazih Y. Rebouh
Insects 2025, 16(1), 94; https://doi.org/10.3390/insects16010094 - 17 Jan 2025
Cited by 1 | Viewed by 3405
Abstract
Tomato leaf miner Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) has gained the status of major pest globally. Integrated pest management (IPM) consists of different control methods. This field study was conducted to evaluate the influence of different pheromone-based traps to attract the male population [...] Read more.
Tomato leaf miner Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) has gained the status of major pest globally. Integrated pest management (IPM) consists of different control methods. This field study was conducted to evaluate the influence of different pheromone-based traps to attract the male population and the potential of sticky pads of four different colors in capturing the adults in the absence of pheromone lures. The trials were conducted in Khyber Pakhtunkhwa (Pakistan) for two consecutive years, 2020 and 2021. The Delta trap with rubber septum type lure was significantly more attractive in both years, with mean number of capturing 76.0 and 86.17, as compared to polymer wax (32.83 and 28.2) and polymer vial (10.37 and 11.77), lures. The highest mean number of capturing of T. absoluta adults were noted as 17.93 and 21.73 with black color sticky trap without pheromone, whereas the lowest number of adults, i.e., 1.33 and 1.47, were captured during the first and second year of the study, respectively, with yellow color sticky traps. However, a significant difference was found in pheromone lures and among black, red, green, and yellow color sticky pads. Hence, Delta traps equipped with rubber septum pheromones lures and black colored sticky pads were more useful for the control of T. absoluta than any other colored sticky pads and pheromone lures alone. These findings could be helpful for the integrated management of T. absoluta. Full article
18 pages, 7697 KB  
Article
Tissue Expression and Characterization of Eogystia hippophaecolus (Lepidoptera: Cossidae) Odorant Receptors
by Chunyan Chen, Yiming Niu, Sainan Zhang, Sanhe Liu, Xiangbo Lin, Shixiang Zong and Jing Tao
Forests 2025, 16(1), 98; https://doi.org/10.3390/f16010098 - 9 Jan 2025
Viewed by 1046
Abstract
Eogystia hippophaecolus (Hua, Chou, Fang et Chen) is a drilling pest that damages sea buckthorn, leading to substantial ecological and economic losses in areas where sea buckthorn is cultivated in China. Pheromone lures are widely used to monitor and trap male moths; however, [...] Read more.
Eogystia hippophaecolus (Hua, Chou, Fang et Chen) is a drilling pest that damages sea buckthorn, leading to substantial ecological and economic losses in areas where sea buckthorn is cultivated in China. Pheromone lures are widely used to monitor and trap male moths; however, the olfactory recognition mechanisms in male moths require further investigation. In this study, we characterized odorant receptor genes using phylogenetics, gene expression, sequence analyses and molecular docking. A phylogenetic analysis using the maximum likelihood method revealed that odorant receptor co-receptor (EhipOrco) genes clustered with other lepidopteran Orco genes, while pheromone receptor (EhipPR) genes clustered with other lepidopteran PR genes, suggesting that these genes have similar functions. The expression levels of 27 odorant receptor (EhipOR) genes in five tissues of male adults were analyzed using qPCR. Nine EhipOR genes were specifically expressed in the antennae, while several EhipOR genes were highly expressed in the head, feet, and external genitalia. As determined using molecular docking, EhipPR1–3 bound strongly to the primary sex pheromone components of E. hippophaecolus. Additionally, EhipPR1–3 demonstrated a strong binding affinity for longifolene among sea buckthorn volatiles. This study provides a foundation for future functional research on EhipORs and the olfactory recognition mechanisms of E. hippophaecolus. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

13 pages, 1785 KB  
Article
Detection of Emerald Ash Borer (Coleoptera: Buprestidae) in Ash (Fraxinus spp.) Crowns in the Southern United States: Comparing Panel Trap Color, Placement, and Lure
by Benjamin Walters, Mohammad Bataineh, Stephen Clarke, Wood Johnson and William Bruce
Forests 2025, 16(1), 54; https://doi.org/10.3390/f16010054 - 31 Dec 2024
Viewed by 1303
Abstract
The emerald ash borer (EAB), Agrilus planipennis Fairmaire, is an invasive forest pest that is causing a rapid decline in ash (Fraxinus spp.). As EABs spread across North America to 35 U.S. states and 5 Canadian provinces, detection of the pest has [...] Read more.
The emerald ash borer (EAB), Agrilus planipennis Fairmaire, is an invasive forest pest that is causing a rapid decline in ash (Fraxinus spp.). As EABs spread across North America to 35 U.S. states and 5 Canadian provinces, detection of the pest has proven difficult, especially at low population density sites. Panel traps have been commonly used in detection and monitoring of EAB populations. Over two sampling periods from 2016 through 2019, adult catches and detection rates were compared among four combinations of panel trap color, lure, and crown placement in southern Arkansas, northern Louisiana, and eastern Texas. The four combinations were as follows: (1) dark purple baited with (Z)-3-hexenol alone in the mid–upper crown; (2) light green with (Z)-3-hexenol plus (3Z)-lactone in the mid–upper crown; (3) dark purple with (Z)-3-hexenol in the lower crown; and (4) dark purple with (Z)-3-hexenol plus (3Z)-lactone in the lower crown. Mid–upper tree crown placement, ~13 m, of panel traps were more effective for EAB detection and adult capture, especially of males. The sex pheromone (3Z)-lactone deterred females but attracted males, while (Z)-3-hexenol attracted females. The green panel trap with both lures and mid–upper crown placement did not drastically increase male catches, contrary to previous studies at low EAB densities. The use of (3Z)-lactone on dark purple traps at low crown placements, such as those used in the National Survey Program, is not recommended for EAB detection due to its repellent effect on EAB females. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

19 pages, 6868 KB  
Article
Functional Role of Odorant-Binding Proteins in Response to Sex Pheromone Component Z8-14:Ac in Grapholita molesta (Busck)
by Yuqing Luo, Xiulin Chen, Shiyan Xu, Boliao Li, Kun Luo and Guangwei Li
Insects 2024, 15(12), 918; https://doi.org/10.3390/insects15120918 - 25 Nov 2024
Cited by 2 | Viewed by 1499
Abstract
The plum fruit moth (PFM), Grapholita funebrana, and the oriental fruit moth (OFM), G. molesta, are closely related fruit moth species that severely damage fruit trees in Rosaceae. Both species share common primary sex pheromone components Z8-12:Ac and E8-12:Ac. The secondary [...] Read more.
The plum fruit moth (PFM), Grapholita funebrana, and the oriental fruit moth (OFM), G. molesta, are closely related fruit moth species that severely damage fruit trees in Rosaceae. Both species share common primary sex pheromone components Z8-12:Ac and E8-12:Ac. The secondary sex pheromone components of PFMs consist of Z8-12:OH, Z8-14:Ac, and Z10-14:Ac, while those of OFMs include Z8-12:OH and 12:OH. Previous researchers have proved that the inclusion of Z8-14:Ac and Z10-14:Ac did not augment PFM catches but inhibited OFM catches in orchards in Europe, thereby maintaining the species-specificity of the PFM sex attractant. However, which of these components, Z8-14:Ac or Z10-14:Ac, plays the major role in inhibiting OFM attraction remains unclear. In the current study, electroantennogram (EAG) assays indicated that both OFM and PFM males exhibited a moderate EAG response to Z8-14:Ac and Z10-14:Ac. Rubber septa loaded with varying ratios of Z8-14:Ac (1% to 30%) or Z10-14:Ac (5% to 110%) combined with a constant dose of Z8-12:Ac and E8-12:Ac produced diverse trapping effects. Sex attractants containing Z8-14:Ac did not significantly affect the trapping of PFM males but drastically reduced the capture of OFM males, with the reduction reaching up to 96.54%. Attractants containing more than 10% of Z10-14:Ac simultaneously reduced the number of OFM and PFM males captured. Z8-14:Ac was indispensable for maintaining the specificity of sex pheromones. Fluorescence competitive binding assays of recombinant GmolPBP2 showed the lowest Ki value (0.66 ± 0.02 μM) among the PBPs/GOBPs from OFMs, suggesting that it is the most likely target for Z8-14:Ac. Molecular dynamic simulation and site-directed mutagenesis assays confirmed that the Phe12 residue, which forms a π–alkyl interaction with Z8-14:Ac, was crucial for GmolPBP2 binding to Z8-14:Ac. In conclusion, Z8-14:Ac is vital to the specificity of PFM sex pheromones inhibiting OFM attractants when added to Z8-12:Ac and E8-12:Ac. This could be potentially used to develop species-specific sex attractants for the PFM. Full article
(This article belongs to the Special Issue New Advances in Insect Chemical Adaptation)
Show Figures

Figure 1

Back to TopTop