Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (234)

Search Parameters:
Keywords = severe soil disturbance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2639 KiB  
Review
Cement Industry Pollution and Its Impact on the Environment and Population Health: A Review
by Alina Bărbulescu and Kamal Hosen
Toxics 2025, 13(7), 587; https://doi.org/10.3390/toxics13070587 - 14 Jul 2025
Viewed by 1191
Abstract
The cement industry, a foundation of global infrastructure development, significantly contributes to environmental pollution. Key sources of pollution include dust emissions; greenhouse gases, particularly carbon dioxide; and the release of toxic substances such as heavy metals and particulate matter. These pollutants contribute to [...] Read more.
The cement industry, a foundation of global infrastructure development, significantly contributes to environmental pollution. Key sources of pollution include dust emissions; greenhouse gases, particularly carbon dioxide; and the release of toxic substances such as heavy metals and particulate matter. These pollutants contribute to air, water, and soil degradation and are linked to severe health conditions in nearby populations, including respiratory disorders, cardiovascular diseases, and increased mortality rates. Noise pollution is also a significant issue, inducing auditory diseases that affect most workers in cement plants, and disturbing the population living in the neighborhoods and fauna behavior. This review explores the pollution paths and the multifaceted impacts of cement production on the environment. It also highlights the social challenges faced by communities, underscoring the urgent need for stricter environmental policies and the adoption of greener technologies to mitigate the adverse effects of cement production on both the environment and human health. Full article
Show Figures

Graphical abstract

21 pages, 2738 KiB  
Article
Effects of Fire on Soil Bacterial Communities and Nitrogen Cycling Functions in Greater Khingan Mountains Larch Forests
by Yang Shu, Wenjie Jia, Pengwu Zhao, Mei Zhou and Heng Zhang
Forests 2025, 16(7), 1094; https://doi.org/10.3390/f16071094 - 2 Jul 2025
Viewed by 344
Abstract
Investigating the effects of fire disturbance on soil microbial diversity and nitrogen cycling is crucial for understanding the mechanisms underlying soil nitrogen cycling. This study examined the fire burn site of the Larix gmelinii forest in the Greater Khingan Mountains, Inner Mongolia, to [...] Read more.
Investigating the effects of fire disturbance on soil microbial diversity and nitrogen cycling is crucial for understanding the mechanisms underlying soil nitrogen cycling. This study examined the fire burn site of the Larix gmelinii forest in the Greater Khingan Mountains, Inner Mongolia, to analyze the impact of varying fire intensities on soil nitrogen, microbial communities, and the abundance of nitrogen cycle-related functional genes after three years. The results indicated the following findings: (1) Soil bulk density increased significantly following severe fires (7.06%~10.84%, p < 0.05), whereas soil water content decreased with increasing fire intensity (6.62%~19.42%, p < 0.05). The soil total nitrogen and ammonium nitrogen levels declined after heavy fires but increased after mild fires; (2) Mild fire burning significantly increased soil bacterial diversity, while heavy fire had a lesser effect. Dominant bacterial groups included Xanthobacteraceae, norank_o_norank_c_AD3, and norank_o_Elsterales. Norank_o_norank_c_AD3 abundance decreased with burn intensity (7.90% unburned, 3.02% mild fire, 2.70% heavy fire). Conversely, norank_o_Elsterales increased with burning (1.23% unburned, 5.66% mild fire, 5.48% heavy fire); (3) The abundance of nitrogen-fixing nifH functional genes decreased with increasing fire intensity, whereas nitrification functional genes amoA-AOA and amoA-AOB exhibited the opposite trend. Light-intensity fires increased the abundance of denitrification functional genes nirK, nirS, and nosZ, while heavy fires reduced their abundance; (4) The correlation analysis demonstrated a strong association between soil bacteria and denitrification functional genes nifH and amoA-AOA, with soil total nitrogen being a key factor influencing the nitrogen cycle-related functional genes. The primary bacterial groups involved in soil nitrogen cycling were Proteobacteria, Actinobacteria, and Chloroflexi. These findings play a critical role in promoting vegetation regeneration and rapid ecosystem restoration in fire-affected areas. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

15 pages, 2836 KiB  
Article
Pressure-Amplified Structural Superiority in Silty Clays: Dynamic Divergence Between Undisturbed and Remolded States
by Jinhu Hu, Banglong Zhou, Penggang Li, Jing Wang and Yayuan Yang
Buildings 2025, 15(13), 2319; https://doi.org/10.3390/buildings15132319 - 2 Jul 2025
Viewed by 264
Abstract
Silty clay is extensively distributed in northern China. Numerous seismic events have demonstrated that underground structures embedded in silty clay strata are prone to severe damage during earthquakes. This study employs dynamic cyclic triaxial tests on undisturbed and remolded specimens (50–300 kPa confining [...] Read more.
Silty clay is extensively distributed in northern China. Numerous seismic events have demonstrated that underground structures embedded in silty clay strata are prone to severe damage during earthquakes. This study employs dynamic cyclic triaxial tests on undisturbed and remolded specimens (50–300 kPa confining pressures) to pioneer the quantification of pressure-amplified structural superiority. The experimental results reveal that: (1) Undisturbed soils exhibit 20–30% higher maximum shear stress (τdmax) and shear modulus (Gdmax) than remolded counterparts at 300 kPa, far exceeding the <5% deviation at 50 kPa due to enhanced particle-cementation synergy under pressure. (2) The normalized shear modulus ratio (Gd/Gdmax) exhibits low sensitivity to confining pressure, with Gd/Gdmaxγd relationship curves predominantly confined within a narrow band range. A triphasic evolutionary characteristic is manifested in the progressive reduction of Gd/Gdmax with increasing shear strain (γd), and quasi-linear attenuation is observed within the shear strain range of 1 × 10−4γd ≤ 1 × 10−2. (3) Remolded and undisturbed specimens demonstrate close correspondence in damping ratio (λd) across consolidation pressures. Under identical γd conditions, undisturbed specimens consistently exhibit lower λd values than remolded counterparts, attributable to enhanced energy dissipation resulting from structural homogenization in remolded soils, with λdmax magnitudes ranging between 0.2 and 0.3. The research provides mechanistic insights for seismic design of underground structures in silty clay terrains, particularly regarding disturbance sensitivity under deep burial conditions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 1892 KiB  
Review
A Review on Carbon-Negative Woody Biomass Biochar System for Sustainable Urban Management in the United States of America
by Gamal El Afandi, Muhammad Irfan, Amira Moustafa, Salem Ibrahim and Santosh Sapkota
Urban Sci. 2025, 9(6), 214; https://doi.org/10.3390/urbansci9060214 - 10 Jun 2025
Viewed by 1830
Abstract
It is essential to emphasize the significant impacts of climate change, which are evident in the form of severe and prolonged droughts, hurricanes, snowstorms, and other climatic disturbances. These challenges are particularly pronounced in urban environments and among human populations. The situation is [...] Read more.
It is essential to emphasize the significant impacts of climate change, which are evident in the form of severe and prolonged droughts, hurricanes, snowstorms, and other climatic disturbances. These challenges are particularly pronounced in urban environments and among human populations. The situation is further aggravated by the increasing utilization of available open spaces for residential and industrial development, leading to heightened energy consumption, elevated pollution levels, and increased carbon emissions, all of which negatively affect public health. The primary objective of this review article is to provide a comprehensive evaluation of current research, with a particular focus on the innovative use of residual biomass from urban vegetation for biochar production in the United States. This research entails an exhaustive review of existing literature to assess the implementation of a carbon-negative wood biomass biochar system as a strategic approach to sustainable urban management. By transforming urban wood waste—including tree trimmings, construction debris, and storm-damaged timber—into biochar through pyrolysis, a thermochemical process that sequesters carbon while generating renewable energy, we can leverage this valuable resource. The resulting biochar offers a range of co-benefits: it enhances soil health, improves water retention, reduces stormwater runoff, and lowers greenhouse gas emissions when applied in urban green spaces, agriculture, and land restoration projects. This review highlights the advantages and potential of converting urban wood waste into biochar while exploring how municipalities can strengthen their green ecosystems. Furthermore, it aims to provide a thorough understanding of how the utilization of woody biomass biochar can contribute to mitigating urban carbon emissions across the United States. Full article
(This article belongs to the Special Issue Sustainable Energy Management and Planning in Urban Areas)
Show Figures

Figure 1

23 pages, 4375 KiB  
Article
Leafing Out: Leaf Area Index as an Indicator for Mountain Forest Recovery Following Mixed-Severity Wildfire in Southwest Colorado
by Michael Remke, Katie Schneider and Julie Korb
Forests 2025, 16(6), 872; https://doi.org/10.3390/f16060872 - 22 May 2025
Cited by 1 | Viewed by 494
Abstract
Wildfire is a critical driver of ecological processes in western U.S. forests, but recent shifts in climate, land use, and fire suppression have altered forest structure and disturbance regimes. Understanding post-fire recovery is essential for land management, particularly across complex montane landscapes like [...] Read more.
Wildfire is a critical driver of ecological processes in western U.S. forests, but recent shifts in climate, land use, and fire suppression have altered forest structure and disturbance regimes. Understanding post-fire recovery is essential for land management, particularly across complex montane landscapes like the southern Rocky Mountains. We assessed forest recovery in montane conifer forests, ranging from ponderosa pine to spruce-fir, following a large mixed-severity fire using field-based forest stand data and remotely sensed Leaf Area Index (LAI) measurements. Our objectives were to determine whether LAI is a meaningful proxy for post-fire vegetative recovery and how recovery patterns vary by forest type, burn severity, and abiotic factors. Stand characteristics predicted crown burn severity inconsistently and did not predict soil burn severity. LAI correlated strongly with live overstory tree density and shrub cover (R2 = 0.70). Recovery trajectories varied by forest type, with lower-severity burns generally recovering four years post-fire, while high-severity burns showed delayed recovery. Regeneration patterns were strongly influenced by climate, with higher seedling densities occurring at wetter sites. Our findings highlight the utility of LAI as a proxy for vegetative recovery and underscore the importance of forest type, fire severity, and climatic factors when assessing post-fire resilience. Full article
Show Figures

Figure 1

21 pages, 7557 KiB  
Article
Assessment of Vegetation Dynamics After South Sugar Loaf and Snowstorm Wildfires Using Remote Sensing Spectral Indices
by Ibtihaj Ahmad and Haroon Stephen
Remote Sens. 2025, 17(11), 1809; https://doi.org/10.3390/rs17111809 - 22 May 2025
Viewed by 440
Abstract
Wildfires cause substantial ecological disturbances, altering vegetation dynamics and soil properties over extended periods. This study investigated the influence of vegetation burn severity on post-fire vegetation recovery rates using multi-temporal Landsat 8 surface reflectance imagery from 2014 to 2023. Two major fire events [...] Read more.
Wildfires cause substantial ecological disturbances, altering vegetation dynamics and soil properties over extended periods. This study investigated the influence of vegetation burn severity on post-fire vegetation recovery rates using multi-temporal Landsat 8 surface reflectance imagery from 2014 to 2023. Two major fire events in Nevada, the Snowstorm Fire (2017) and the South Sugar Loaf Fire (2018), were examined through four spectral indices: the Normalized Difference Vegetation Index (NDVI), Moisture Stress Index (MSI), Modified Chlorophyll Absorption Ratio Index 2 (MCARI2), and Land Surface Temperature (LST). Statistical techniques, including the Mann–Kendall trend test and Linear Mixed Effects models, were applied to assess pre- and post-fire trends across burn severity classes. Results showed that vegetation recovery was primarily driven by temporal factors rather than burn severity, especially in the Snowstorm Fire. In the South Sugar Loaf Fire, significant changes were observed in LST and NDVI scores in low-severity areas, while MSI and MCARI2 scores exhibited significant recovery differences in high-severity zones. These findings suggest that post-fire vegetation dynamics vary spatially and temporally, with severity effects more pronounced in certain conditions. The study underscores the effectiveness of spectral indices in capturing post-disturbance recovery and supports their application in guiding site-specific restoration and long-term ecosystem management. Full article
Show Figures

Figure 1

20 pages, 3407 KiB  
Review
A Critical Review: Unearthing the Hidden Players—The Role of Extremophilic Fungi in Forest Ecosystems
by Muhammad Talal, Xiaoming Chen, Irfana Iqbal and Imran Ali
Forests 2025, 16(5), 855; https://doi.org/10.3390/f16050855 - 20 May 2025
Viewed by 477
Abstract
Often thought of as a mesic paradise, forest ecosystems are a mosaic of microhabitats with temporal oscillations that cause significant environmental stresses, providing habitats for extremophilic and extremotolerant fungi. Adapted to survive and thrive under conditions lethal to most mesophiles (e.g., extreme temperatures, [...] Read more.
Often thought of as a mesic paradise, forest ecosystems are a mosaic of microhabitats with temporal oscillations that cause significant environmental stresses, providing habitats for extremophilic and extremotolerant fungi. Adapted to survive and thrive under conditions lethal to most mesophiles (e.g., extreme temperatures, pH, water potential, radiation, salinity, nutrient scarcity, and pollutants), these species are increasingly recognized as vital yet underappreciated elements of forest biodiversity and function. This review examines the current understanding of the roles of extremophilic fungi in forests, scrutinizing their presence in these ecosystems with a critical eye. Particularly under severe environmental conditions, extremophilic fungi play a crucial role in forest ecosystems, as they significantly enhance decomposition and nutrient cycling, and foster mutualistic interactions with plants that increase stress resilience. This helps to maintain ecosystem stability. We examine the definition of “extreme” within forest settings, survey the known diversity and distribution of these fungi across various forest stress niches (cold climates, fire-affected areas, acidic soils, canopy surfaces, polluted sites), and delve into their possible ecological functions, including decomposition of recalcitrant matter, nutrient cycling under stress, interactions with plants (pathogenesis, endophytism, perhaps mycorrhizae), bioremediation, and contributions to soil formation. However, the review stresses significant methodological difficulties, information gaps, and field-based natural biases. We recommend overcoming cultural constraints, enhancing the functional annotation of “omics” data, and planning investigations that clarify the specific activities and interactions of these cryptic creatures within the forest matrix to further advance the field. Here, we demonstrate that moving beyond simple identification to a deeper understanding of function will enable us to more fully appreciate the value of extremophilic fungi in forest ecosystems, particularly in relation to environmental disturbances and climate change. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

20 pages, 5150 KiB  
Article
Soil Microbial Adaptation and Biogeochemical Feedback in Degraded Alpine Meadows of the Qinghai–Tibetan Plateau
by Bingzhang Li, Quzhen Gesang, Yan Sun, Yuting Wang, Jibin Nan and Jun Xu
Microorganisms 2025, 13(5), 1142; https://doi.org/10.3390/microorganisms13051142 - 16 May 2025
Viewed by 931
Abstract
Alpine meadows on the Qinghai–Tibetan Plateau are experiencing rapid degradation due to climate change and anthropogenic disturbances, leading to severe ecological consequences. In this study, we investigated the response of soil microbial communities and their metabolic functions across a degradation gradient using metagenomic [...] Read more.
Alpine meadows on the Qinghai–Tibetan Plateau are experiencing rapid degradation due to climate change and anthropogenic disturbances, leading to severe ecological consequences. In this study, we investigated the response of soil microbial communities and their metabolic functions across a degradation gradient using metagenomic sequencing and comprehensive soil physicochemical analysis in the city of Lhasa, China. Results showed that soil pH increased with degradation, while most nutrients, including different forms of nitrogen, phosphorus, and potassium, declined. pH, ammonium nitrogen, and organic matter were identified as key factors driving degradation dynamics. Microbial community composition shifted markedly, with distinct biomarker taxa emerging at different degradation levels. Network analysis revealed a progressive loss of microbial connectivity, with Actinobacteria dominance increasing in heavily degraded soils, while cross-phylum interactions weakened. Functional analysis of biogeochemical cycling genes showed that carbon, nitrogen, and phosphorus cycling were all disrupted by degradation, but each exhibited unique response patterns. These findings will extend our understanding of microbial-mediated soil processes under degradation and provide a scientific foundation for ecosystem management, conservation, and targeted restoration strategies in alpine meadows. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

24 pages, 12924 KiB  
Article
Analysis of Forest Change Detection Induced by Hurricane Helene Using Remote Sensing Data
by Rizwan Ahmed Ansari, Tony Esimaje, Oluwatosin Michael Ibrahim and Timothy Mulrooney
Forests 2025, 16(5), 788; https://doi.org/10.3390/f16050788 - 8 May 2025
Cited by 1 | Viewed by 508
Abstract
The occurrence of hurricanes in the southern U.S. is on the rise, and assessing the damage caused to forests is essential for implementing protective measures and comprehending recovery dynamics. This work aims to create a novel data integration framework that employs LANDSAT 8, [...] Read more.
The occurrence of hurricanes in the southern U.S. is on the rise, and assessing the damage caused to forests is essential for implementing protective measures and comprehending recovery dynamics. This work aims to create a novel data integration framework that employs LANDSAT 8, drone-based images, and geographic information system data for change detection analysis for different forest types. We propose a method for change vector analysis based on a unique spectral mixture model utilizing composite spectral indices along with univariate difference imaging to create a change detection map illustrating disturbances in the areas of McDowell County in western North Carolina impacted by Hurricane Helene. The spectral indices included near-infrared-to-red ratios, a normalized difference vegetation index, Tasseled Cap indices, and a soil-adjusted vegetation index. In addition to the satellite imagery, the ground truth data of forest damage were also collected through the field investigation and interpretation of post-Helene drone images. Accuracy assessment was conducted with geographic information system (GIS) data and maps from the National Land Cover Database. Accuracy assessment was carried out using metrics such as overall accuracy, precision, recall, F score, Jaccard similarity, and kappa statistics. The proposed composite method performed well with overall accuracy and Jaccard similarity values of 73.80% and 0.6042, respectively. The results exhibit a reasonable correlation with GIS data and can be employed to assess damage severity. Full article
Show Figures

Figure 1

19 pages, 2794 KiB  
Article
Characterizing the Soil Microbial Community Associated with the Fungal Pathogen Coccidioides immitis
by Molly Radosevich, Jennifer Head, Lisa Couper, Amanda Weaver, Simon Camponuri, Liliam Montoya, John W. Taylor and Justin Remais
J. Fungi 2025, 11(4), 309; https://doi.org/10.3390/jof11040309 - 14 Apr 2025
Cited by 1 | Viewed by 672
Abstract
Coccidioidomycosis is a fungal disease affecting humans and other mammals caused by environmental pathogens of the genus Coccidioides. Human exposure to the pathogen occurs via inhalation of spores aerosolized from soil. Thus, understanding the ecological factors that shape the distribution of Coccidioides [...] Read more.
Coccidioidomycosis is a fungal disease affecting humans and other mammals caused by environmental pathogens of the genus Coccidioides. Human exposure to the pathogen occurs via inhalation of spores aerosolized from soil. Thus, understanding the ecological factors that shape the distribution of Coccidioides in soils is important for minimizing the risk of human exposure, though this task remains challenging due to the pathogen’s highly variable spatial distribution. Here, we examined the associations between the soil microbial community and Coccidioides immitis’ presence within the Carrizo Plain National Monument, a minimally disturbed grassland ecosystem, and the site of a longitudinal study examining the effects of rodents and their burrows on C. immitis’ presence in soils. Using internal transcribed spacer 2 (ITS2) and 16S amplicon sequencing to characterize the soil fungal and bacterial communities, we found over 30 fungal species, including several other members of the Onygenales order, that co-occurred with C. immitis more frequently than would be expected by chance. Coccidioides-positive samples were significantly higher in fungal and bacterial diversity than negative samples, an association partly driven by higher Coccidioides presence within rodent burrows compared to surface soils. Soil source (i.e., rodent burrow versus surface soil) explained the largest amount of variation in bacterial and fungal community diversity and composition, with soils collected from rodent burrows having higher fungal and bacterial diversity than those collected from adjacent surface soils. While prior evidence is mixed regarding the relationship between the presence of Coccidioides and microbial diversity, we find that favorable microhabitats, such as rodent burrows, lead to a positive association between soil microbial diversity and Coccidioides presence, particularly in otherwise resource-limited natural environments. Full article
Show Figures

Figure 1

15 pages, 3541 KiB  
Article
Distribution of Pyrogenic Carbon in the Soil of a Cold Temperate Coniferous Forest 13 Years After a Severe Wildfire
by Lina Shi, Yuanchun Peng, Xingyu Hou and Yun Zhang
Land 2025, 14(4), 851; https://doi.org/10.3390/land14040851 - 14 Apr 2025
Viewed by 429
Abstract
Biomass combustion produces between 50 and 270 Tg of pyrogenic carbon (PyC) annually. PyC is extremely highly stable, making it a significant component of the global carbon sink. We established four plots at different slope positions within a cold temperate coniferous forest that [...] Read more.
Biomass combustion produces between 50 and 270 Tg of pyrogenic carbon (PyC) annually. PyC is extremely highly stable, making it a significant component of the global carbon sink. We established four plots at different slope positions within a cold temperate coniferous forest that experienced a severe fire in 2010. We mechanically divided the soil into three depths. The PyC content and density of the collected soil samples and four particle sizes were analyzed. Thirteen years after the fire, the PyC content in the soil on the upper slope was low (13.5–14.2 g·kg−1). In terms of PyC density, the valley and the upper slopes presented lower values. The PyC content in the 0~10 cm layer (14.0–16.7 g·kg−1) is only slightly more than 20% higher than that in the two deeper layers, whereas its density is 1.5~2 times more than that in the other layers. Our findings indicate that PyC is predominantly concentrated in coarse sand and silt particles. The spatial pattern of PyC is significantly influenced by the differentiation in topography, soil layer depth, and particle size. These distribution patterns strongly show that PyC plays a key role in forest ecosystem cycles affected by fire. PyC distribution in particle sizes particularly shows connections with specific soil components. There is a synergistic effect between the topographic redistribution (slope position differences), vertical stratification (soil depth), and particle size sorting of PyC. This determines the retention effect of stable carbon in fire-disturbed forest ecosystem soils, thereby influencing the soil carbon cycle. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

15 pages, 2913 KiB  
Article
Extension of Cut-to-Length Logging Trails on Salvage Logging Operations: An Overview of the Northeastern Italian Alps
by Nicolò Di Marzio, Davide Imperiali, Luca Marchi and Stefano Grigolato
Forests 2025, 16(4), 673; https://doi.org/10.3390/f16040673 - 12 Apr 2025
Viewed by 530
Abstract
Climate change is increasing the frequency and severity of disturbances, calling for extensive salvage logging operations. This study examines fully mechanized cut-to-length operations in the northeastern Italian Alps as a response to windthrow and bark beetle outbreaks following Storm Vaia. Using high-resolution orthophotos, [...] Read more.
Climate change is increasing the frequency and severity of disturbances, calling for extensive salvage logging operations. This study examines fully mechanized cut-to-length operations in the northeastern Italian Alps as a response to windthrow and bark beetle outbreaks following Storm Vaia. Using high-resolution orthophotos, logging trail extent, density, and configuration were analyzed in relation to terrain and ecological sensitivity. A total of 29 forest sites, covering a worksite area of 1078 hectares, were analyzed, with a combined trail length exceeding 700 km. Results indicate an average logging trail density of 500 m/ha, and a machine-trafficked area percentage of 22%. Terrain analysis revealed that 68% of the worksite area was below a 30% slope, facilitating machinery operations, while 32% of the site required adaptive strategies for steeper terrain. Additionally, depth-to-water maps were implemented to assess sensitive zones according to different moisture conditions, revealing that one-fifth of the trafficked zones were at higher risk of soil disturbances due to potentially high moisture levels. This study provides critical baseline data on mechanized salvage logging effects at a large scale, offering insights for future data-driven decision making for efficient planning under sustainable forest management. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

22 pages, 12069 KiB  
Article
Water Use Efficiency Spatiotemporal Change and Its Driving Analysis on the Mongolian Plateau
by Gesi Tang, Yulong Bao, Changqing Sun, Mei Yong, Byambakhuu Gantumur, Rentsenduger Boldbayar and Yuhai Bao
Sensors 2025, 25(7), 2214; https://doi.org/10.3390/s25072214 - 1 Apr 2025
Viewed by 664
Abstract
Water use efficiency (WUE) connects two key processes in terrestrial ecosystems: the carbon and water cycles. Thus, it is important to evaluate temporal and spatial changes in WUE over a prolonged period. The spatiotemporal variation characteristics of the WUE in the Mongolian Plateau [...] Read more.
Water use efficiency (WUE) connects two key processes in terrestrial ecosystems: the carbon and water cycles. Thus, it is important to evaluate temporal and spatial changes in WUE over a prolonged period. The spatiotemporal variation characteristics of the WUE in the Mongolian Plateau from 1982 to 2018 were analyzed based on the net primary productivity (NPP), evapotranspiration (ET), temperature, precipitation, and soil moisture. In this study, we used remote sensing data and various statistical methods to evaluate the spatiotemporal patterns of water use efficiency and their potential influencing factors on the Mongolian Plateau from 1982 to 2018. In total, 27.02% of the region witnessed a significant decline in the annual WUE over the 37 years. Two abnormal surges in the WUESeason (April–October) were detected, from 1997 to 1998 and from 2007 to 2009. The trend in the annual WUE in some broadleaf forest areas in the middle and northeast of the Mongolian Plateau reversed from the original decreasing trend to an increasing trend. WUE has shown strong resilience in previous analytical studies, whereas the WUE in the artificial vegetation area in the middle of the Mongolian Plateau showed weak resilience. WUE had a significant positive correlation with precipitation, soil moisture, and the drought severity index (DSI) but a weak correlation with temperature. WUE had strong resistance to abnormal water disturbances; however, its resistance to the effects of temperature and DSI anomalies was weak. The degree of interpretation of vegetation changes for WUE was higher than that for meteorological factors, and WUE showed weak resistance to normalized difference vegetation index (NDVI) disturbances. Delaying the start of the vegetation growing season had an increasing effect on WUE, and the interaction between phenological and meteorological vegetation factors had a non-linear enhancing effect on WUE. Human activities have contributed significantly to the increase in WUE in the eastern, central, and southern regions of the Mongolian Plateau. These results provide a reference for the study of the carbon–water cycle in the Mongolian Plateau. Full article
(This article belongs to the Special Issue Remote Sensing, Geophysics and GIS)
Show Figures

Figure 1

16 pages, 3296 KiB  
Article
Terrestrial Response to Maastrichtian Climate Change Determined from Paleosols of the Dawson Creek Section, Big Bend National Park, Texas
by Anna K. Lesko, Steve I. Dworkin and Stacy C. Atchley
Geosciences 2025, 15(4), 119; https://doi.org/10.3390/geosciences15040119 - 28 Mar 2025
Viewed by 2347
Abstract
Climate during the Late Cretaceous is characterized by a long-term cooling trend interrupted by several periods of increased warming. This study focuses on the terrestrial response to two rapid climate events just prior to the K-Pg boundary marked by the Chicxulub impact: the [...] Read more.
Climate during the Late Cretaceous is characterized by a long-term cooling trend interrupted by several periods of increased warming. This study focuses on the terrestrial response to two rapid climate events just prior to the K-Pg boundary marked by the Chicxulub impact: the Mid-Maastrichtian Event (MME) and the Late Maastrichtian Warming Event (LMWE). These hyperthermals caused widespread biotic and greenhouse gas-related disturbances, and clarification about their timing and environmental character reveals the independent nature of all three events. Using element concentrations in bulk paleosols, as well as element concentrations in pedogenic calcite from paleosols in the Tornillo Basin of West Texas, we reconstruct mean annual precipitation (MAP) and the character of soil weathering across the K-Pg boundary. Modelled MAP indicates increased precipitation during the first half of the MME and rapid high amplitude changes in precipitation during the second half of the MME. The Tornillo Basin became increasingly dry during the LMWE followed by wet conditions that continued across the K-Pg boundary. This study documents the co-occurrence of sedimentation patterns, sea level change, and climate change caused by separate tectonic events prior to the K-Pg boundary. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

26 pages, 29644 KiB  
Article
From Fertile Grounds to Sealed Fields: Assessing and Mapping Soil Ecosystem Services in Forlì’s Urban Landscape (NE Italy)
by Fabrizio Ungaro, Paola Tarocco, Alessandra Aprea, Stefano Bazzocchi and Costanza Calzolari
Land 2025, 14(4), 719; https://doi.org/10.3390/land14040719 - 27 Mar 2025
Viewed by 376
Abstract
Between 2022 and 2023, the urban soils of Forlì (NE Italy) were surveyed, sampled, analyzed, and mapped over an area of ca. 5700 ha, of which 2820 were sealed. The outcomes of the survey allowed the integration of the existing knowledge about soil [...] Read more.
Between 2022 and 2023, the urban soils of Forlì (NE Italy) were surveyed, sampled, analyzed, and mapped over an area of ca. 5700 ha, of which 2820 were sealed. The outcomes of the survey allowed the integration of the existing knowledge about soil and land use with the urban plan and provided the basis to produce a 1:10,000 map of urban soils along with their land capability and an updated 1:50,000 soil map of the municipality. Soil data (textural fractions, pH, organic carbon content) were interpolated over the entire case study area, providing the inputs for locally calibrated pedotransfer functions whose outputs were used to assess a set of seven indicators for the potential supply of soil ecosystem services (SESs): soil biodiversity, buffer capacity, carbon storage, agricultural production, biomass production, water regulation, and water storage. Maps of the seven ecosystem services on a hybrid resolution grid of 25 and 100 m were complemented with an overall urban soil quality map based on the combinations of four different SES indicators. Results show that for several services, hotspots occur not only in the peri-urban agricultural areas but also in unsealed soils within the urban fabric, and that different soils provide high-quality services in diverse constellations depending on the soil characteristics, age and extent of disturbance and degree of sealing. Full article
(This article belongs to the Special Issue Dynamics of Urbanization and Ecosystem Services Provision II)
Show Figures

Figure 1

Back to TopTop