Terrestrial Response to Maastrichtian Climate Change Determined from Paleosols of the Dawson Creek Section, Big Bend National Park, Texas
Abstract
:1. Introduction
2. Geologic Setting
2.1. Geology of the Study Area
2.2. Late Cretaceous Paleoclimate
3. Materials and Methods
4. Results
4.1. Mean Annual Precipitation
4.2. Concentration of Redox Sensitive Elements in Pedogenic Calcite
4.3. Alkali Metals
5. Discussion
5.1. Sedimentation, Sea Level, and Climate Change
5.2. Evolution of Hydrologic Conditions in the Tornillo Basin
5.2.1. MME1
5.2.2. MME2
5.2.3. LMWE
5.2.4. Conditions Following the LMWE
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
K-Pg | Cretaceous–Paleogene |
MME | Mid-Maastrichtian Warming Event |
LMWE | Late Maastrichtian Warming Event |
MAP | mean annual precipitation |
CIE | carbon isotope excursion |
ICP-OES | inductively coupled plasma-optical emission spectrometry |
PPM1.0 | Paleosol–paleoclimate model |
WIS | Western Interior Seaway |
References
- Scotese, C.R.; Song, H.; Mills, B.J.W.; Van Der Meer, D.G. Phanerozoic Paleotemperatures: The Earth’s Changing Climate during the Last 540 Million Years. Earth-Sci. Rev. 2021, 215, 103503. [Google Scholar] [CrossRef]
- Lauretano, V.; Littler, K.; Polling, M.; Zachos, J.C.; Lourens, L.J. Frequency, Magnitude and Character of Hyperthermal Events at the Onset of the Early Eocene Climatic Optimum. Clim. Past 2015, 11, 1313–1324. [Google Scholar] [CrossRef]
- Zachos, J. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science 2001, 292, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Clarke, L.J.; Jenkyns, H.C. New Oxygen Isotope Evidence for Long-Term Cretaceous Climatic Change in the Southern Hemisphere. Geol 1999, 27, 699. [Google Scholar] [CrossRef]
- Linnert, C.; Robinson, S.A.; Lees, J.A.; Bown, P.R.; Pérez-Rodríguez, I.; Petrizzo, M.R.; Falzoni, F.; Littler, K.; Arz, J.A.; Russell, E.E. Evidence for Global Cooling in the Late Cretaceous. Nat. Commun. 2014, 5, 4194. [Google Scholar] [CrossRef]
- Sepkoski, J.J. Patterns of Phanerozoic Extinction: A Perspective from Global Data Bases. In Global Events and Event Stratigraphy in the Phanerozoic; Walliser, O.H., Ed.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 35–51. ISBN 978-3-642-79636-4. [Google Scholar]
- Schulte, P.; Alegret, L.; Arenillas, I.; Arz, J.A.; Barton, P.J.; Bown, P.R.; Bralower, T.J.; Christeson, G.L.; Claeys, P.; Cockell, C.S.; et al. The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science 2010, 327, 1214–1218. [Google Scholar] [CrossRef]
- McGhee, G.R.; Clapham, M.E.; Sheehan, P.M.; Bottjer, D.J.; Droser, M.L. A New Ecological-Severity Ranking of Major Phanerozoic Biodiversity Crises. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 370, 260–270. [Google Scholar] [CrossRef]
- Bond, D.P.G.; Grasby, S.E. On the Causes of Mass Extinctions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 478, 3–29. [Google Scholar] [CrossRef]
- Hull, P.M.; Bornemann, A.; Penman, D.E.; Henehan, M.J.; Norris, R.D.; Wilson, P.A.; Blum, P.; Alegret, L.; Batenburg, S.J.; Bown, P.R.; et al. On Impact and Volcanism across the Cretaceous-Paleogene Boundary. Science 2020, 367, 266–272. [Google Scholar] [CrossRef]
- Voigt, S.; Gale, A.S.; Jung, C.; Jenkyns, H.C. Global Correlation of Upper Campanian—Maastrichtian Successions Using Carbon-Isotope Stratigraphy: Development of a New Maastrichtian Timescale. Newslett. Stratigr. 2012, 45, 25–53. [Google Scholar] [CrossRef]
- Vancoppenolle, I.; Vellekoop, J.; Doubrawa, M.; Kaskes, P.; Sinnesael, M.; Jagt, J.W.M.; Claeys, P.; Speijer, R.P. The Benthic Foraminiferal Response to the Mid-Maastrichtian Event in the NW-European Chalk Sea of the Maastrichtian Type Area. Neth. J. Geosci. 2022, 101, e12. [Google Scholar] [CrossRef]
- Jarvis, I.; Mabrouk, A.; Moody, R.T.J.; De Cabrera, S. Late Cretaceous (Campanian) Carbon Isotope Events, Sea-Level Change and Correlation of the Tethyan and Boreal Realms. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2002, 188, 215–248. [Google Scholar] [CrossRef]
- Voigt, S.; Friedrich, O.; Norris, R.D.; Schönfeld, J. Campanian Maastrichtian Carbon Isotope Stratigraphy: Shelf-Ocean Correlation between the European Shelf Sea and the Tropical Pacific Ocean. Newslett. Stratigr. 2010, 44, 57–72. [Google Scholar] [CrossRef]
- Thibault, N.; Husson, D.; Harlou, R.; Gardin, S.; Galbrun, B.; Huret, E.; Minoletti, F. Astronomical Calibration of Upper Campanian–Maastrichtian Carbon Isotope Events and Calcareous Plankton Biostratigraphy in the Indian Ocean (ODP Hole 762C): Implication for the Age of the Campanian–Maastrichtian Boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 337–338, 52–71. [Google Scholar] [CrossRef]
- Nordt, L.; Atchley, S.; Dworkin, S. Terrestrial Evidence for Two Greenhouse Events in the Latest Cretaceous. GSA Today 2003, 13, 4. [Google Scholar]
- Barrera, E.; Savin, S.M.; Thomas, E.; Jones, C.E. Evidence for Thermohaline-Circulation Reversals Controlled by Sea-Level Change in the Latest Cretaceous. Geol 1997, 25, 715. [Google Scholar] [CrossRef]
- Barnet, J.S.K.; Littler, K.; Kroon, D.; Leng, M.J.; Westerhold, T.; Röhl, U.; Zachos, J.C. A New High-Resolution Chronology for the Late Maastrichtian Warming Event: Establishing Robust Temporal Links with the Onset of Deccan Volcanism. Geology 2018, 46, 147–150. [Google Scholar] [CrossRef]
- Dubicka, Z.; Wierny, W.; Bojanowski, M.J.; Rakociński, M.; Walaszczyk, I.; Thibault, N. Multi-Proxy Record of the Mid-Maastrichtian Event in the European Chalk Sea: Paleoceanographic Implications. Gondwana Res. 2024, 129, 1–22. [Google Scholar] [CrossRef]
- Li, L.; Keller, G. Maastrichtian Climate, Productivity and Faunal Turnovers in Planktic Foraminifera in South Atlantic DSDP Sites 525A and 21. Mar. Micropaleontol. 1998, 33, 55–86. [Google Scholar] [CrossRef]
- Gardin, S.; Galbrun, B.; Thibault, N.; Coccioni, R.; Silva, I.P. Bio-Magnetochronology for the Upper Campanian—Maastrichtian from the Gubbio Area, Italy: New Results from the Contessa Highway and Bottaccione Sections. Newslett. Stratigr. 2012, 45, 75–103. [Google Scholar] [CrossRef]
- Miller, K.G.; Wright, J.D.; Browning, J.V. Visions of Ice Sheets in a Greenhouse World. Mar. Geol. 2005, 217, 215–231. [Google Scholar] [CrossRef]
- Leslie, C.E.; Peppe, D.J.; Williamson, T.E.; Heizler, M.; Jackson, M.; Atchley, S.C.; Nordt, L.; Standhardt, B. Revised Age Constraints for Late Cretaceous to Early Paleocene Terrestrial Strata from the Dawson Creek Section, Big Bend National Park, West Texas. GSA Bull. 2018, 130, 1143–1163. [Google Scholar] [CrossRef]
- Westerhold, T.; Röhl, U.; Donner, B.; McCarren, H.K.; Zachos, J.C. A Complete High-resolution Paleocene Benthic Stable Isotope Record for the Central Pacific (ODP Site 1209). Paleoceanography 2011, 26, 2010PA002092. [Google Scholar] [CrossRef]
- Li, L.; Keller, G. Diversification and Extinction in Campanian-Maastrichtian Planktic Foraminifera of Northwestern Tunisia. Eclogae Geol. Helv. 1998, 91, 75–102. [Google Scholar]
- Alvarez, W.; Black, D.; Bourgeois, J.; Burke, K.; Ginsburg, R.; Keller, G.; Koeberl, C.; Longoria, J.; Ryder, G.; Sharpton, V.; et al. New Developments Regarding the KT Event and Other Catastrophes in Earth History; Lunar and Planetary Institute: Houston, TX, USA, 1994; 138p. [Google Scholar]
- Chauris, H.; LeRousseau, J.; Beaudoin, B.; Propson, S.; Montanari, A. Inoceramid Extinction in the Gubbio Basin (Northeastern Apennines of Italy) and Relations with Mid-Maastrichtian Environmental Changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1998, 139, 177–193. [Google Scholar] [CrossRef]
- Jagt, J.W.M.; Jagt-Yazykova, E.A.; Kaddumi, H.F.; Lindgren, J. Ammonite Dating of Latest Cretaceous Mosasaurid Reptiles (Squamata, Mosasauroidea) from Jordan—Preliminary Observations. Alcheringa Australas. J. Palaeontol. 2018, 42, 587–596. [Google Scholar] [CrossRef]
- Frank, T.D.; Arthur, M.A. Tectonic Forcings of Maastrichtian Ocean-Climate Evolution. Paleoceanography 1999, 14, 103–117. [Google Scholar] [CrossRef]
- Keller, G. The End-Cretaceous Mass Extinction in the Marine Realm: Year 2000 Assessment. Planet. Space Sci. 2001, 49, 817–830. [Google Scholar] [CrossRef]
- Barrera, E.; Savin, S.M. Evolution of Late Campanian-Maastrichtian Marine Climates and Oceans. In Evolution of the Cretaceous Ocean-Climate System; Geological Society of America: Boulder, CO, USA, 1999; ISBN 978-0-8137-2332-7. [Google Scholar]
- Abramovich, S.; Keller, G. Planktonic Foraminiferal Response to the Latest Maastrichtian Abrupt Warm Event: A Case Study from South Atlantic DSDP Site 525A. Mar. Micropaleontol. 2003, 48, 225–249. [Google Scholar] [CrossRef]
- Gilabert, V.; Arz, J.A.; Arenillas, I.; Robinson, S.A.; Ferrer, D. Influence of the Latest Maastrichtian Warming Event on Planktic Foraminiferal Assemblages and Ocean Carbonate Saturation at Caravaca, Spain. Cretac. Res. 2021, 125, 104844. [Google Scholar] [CrossRef]
- Wilf, P.; Johnson, K.R.; Huber, B.T. Correlated Terrestrial and Marine Evidence for Global Climate Changes before Mass Extinction at the Cretaceous-Paleogene Boundary. Proc. Natl. Acad. Sci. USA 2003, 100, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Jaramillo, S.; Fowell, S.J.; McCarthy, P.J.; Benowitz, J.A.; Śliwiński, M.G.; Tomsich, C.S. Terrestrial Isotopic Evidence for a Middle-Maastrichtian Warming Event from the Lower Cantwell Formation, Alaska. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 441, 360–376. [Google Scholar] [CrossRef]
- Dworkin, S.I.; Nordt, L.; Atchley, S. Determining Terrestrial Paleotemperatures Using the Oxygen Isotopic Composition of Pedogenic Carbonate. Earth Planet. Sci. Lett. 2005, 237, 56–68. [Google Scholar] [CrossRef]
- Stinchcomb, G.E.; Nordt, L.C.; Driese, S.G.; Lukens, W.E.; Williamson, F.C.; Tubbs, J.D. A Data-Driven Spline Model Designed to Predict Paleoclimate Using Paleosol Geochemistry. Am. J. Sci. 2016, 316, 746–777. [Google Scholar] [CrossRef]
- Lehman, T.M.; Cobb, J.; Sylvester, P.; Souders, A.K. The Cretaceous-Paleogene Contact in the Tornillo Group of Big Bend National Park, West Texas, USA. Geosphere 2022, 18, 1851–1884. [Google Scholar] [CrossRef]
- Lehman, T.M. Sedimentation and Tectonism in the Laramide Tornillo Basin of West Texas. Sediment. Geol. 1991, 75, 9–28. [Google Scholar] [CrossRef]
- González-León, C. Stratigraphy, Geochronology, and Geochemistry of the Laramide Magmatic Arc in North-Central Sonora, Mexico. Geosphere 2011, 7, 1392. [Google Scholar] [CrossRef]
- Atchley, S.C.; Nordt, L.C.; Dworkin, S.I. Eustatic Control on Alluvial Sequence Stratigraphy: A Possible Example from the Cretaceous-Tertiary Transition of the Tornillo Basin, Big Bend National Park, West Texas, U.S.A. J. Sediment. Res. 2004, 74, 391–404. [Google Scholar] [CrossRef]
- Davidoff, A.J.; Yanccy, T.E. Eustatic Cyclicity in the Paleocene and Eocene: Data from the Brazos River Valley, Texas. Tectonophysics 1993, 222, 371–395. [Google Scholar] [CrossRef]
- Lillegraven, J.A.; Ostresh, L.M. Late Cretaceous (Earliest Campanian/Maastrichtian) Evolution of Western Shorelines of the North American Western Interior Seaway in Relation to Known Mammalian Faunas. In Geological Society of America Special Papers; Geological Society of America: Boulder, CO, USA, 1990; Volume 243, pp. 1–30. ISBN 978-0-8137-2243-6. [Google Scholar]
- Morán-Zenteno, D. The Geology of the Mexican Republic; American Association of Petroleum Geologists: Tulsa, OK, USA, 1994; ISBN 978-1-62981-094-2. [Google Scholar]
- Ferrari, L.; Tagami, T.; Eguchi, M.; Orozco-Esquivel, M.T.; Petrone, C.M.; Jacobo-Albarrán, J.; López-Martínez, M. Geology, Geochronology and Tectonic Setting of Late Cenozoic Volcanism along the Southwestern Gulf of Mexico: The Eastern Alkaline Province Revisited. J. Volcanol. Geotherm. Res. 2005, 146, 284–306. [Google Scholar] [CrossRef]
- Galloway, W.E.; Whiteaker, T.L.; Ganey-Curry, P. History of Cenozoic North American Drainage Basin Evolution, Sediment Yield, and Accumulation in the Gulf of Mexico Basin. Geosphere 2011, 7, 938–973. [Google Scholar] [CrossRef]
- González-León, C.M.; Solari, L.; Valencia-Moreno, M.; Heimpel, M.A.R.; Solé, J.; Becuar, E.G.; Santacruz, R.L.; Arvizu, O.P. Late Cretaceous to Early Eocene Magmatic Evolution of the Laramide Arc in the Nacozari Quadrangle, Northeastern Sonora, Mexico and Its Regional Implications. Ore Geol. Rev. 2017, 81, 1137–1157. [Google Scholar] [CrossRef]
- Kortyna, C.; Stockli, D.F.; Lawton, T.F.; Covault, J.A.; Sharman, G.R. Impact of Mexican Border Rift Structural Inheritance on Laramide Rivers of the Tornillo Basin, West Texas (USA): Insights from Detrital Zircon Provenance. Geosphere 2023, 19, 1747–1787. [Google Scholar] [CrossRef]
- Lehman, T.M. Late Cretaceous Sedimentation in Trans-Pecos Texas. In Geology of the Big Bend Area and Solitario Dome, Texas: West Texas Geological Society Fieldtrip Guidebook; Pause, P.H., Spears, R.G., Eds.; West Texas Geological Society: Midland, TX, USA, 1986; pp. 105–110. [Google Scholar]
- Wiest, L.A.; Lukens, W.E.; Peppe, D.J.; Driese, S.G.; Tubbs, J. Terrestrial Evidence for the Lilliput Effect across the Cretaceous-Paleogene (K-Pg) Boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 491, 161–169. [Google Scholar] [CrossRef]
- Jung, C.; Voigt, S.; Friedrich, O.; Koch, M.C.; Frank, M. Campanian-Maastrichtian Ocean Circulation in the Tropical Pacific. Paleoceanography 2013, 28, 562–573. [Google Scholar] [CrossRef]
- Li, L.; Keller, G. Variability in Late Cretaceous Climate and Deep Waters: Evidence from Stable Isotopes. Mar. Geol. 1999, 161, 171–190. [Google Scholar] [CrossRef]
- D’Hondt, S.; Arthur, M.A. Deep Water in the Late Maastrichtian Ocean. Paleoceanography 2002, 17, 8-1–8-11. [Google Scholar] [CrossRef]
- Friedrich, O.; Herrle, J.O.; Wilson, P.A.; Cooper, M.J.; Erbacher, J.; Hemleben, C. Early Maastrichtian Carbon Cycle Perturbation and Cooling Event: Implications from the South Atlantic Ocean. Paleoceanography 2009, 24, 2008PA001654. [Google Scholar] [CrossRef]
- Koch, M.C.; Friedrich, O. Campanian-Maastrichtian Intermediate- to Deep-water Changes in the High Latitudes: Benthic Foraminiferal Evidence. Paleoceanography 2012, 27, 2011PA002259. [Google Scholar] [CrossRef]
- Li, L.; Keller, G.; Adatte, T.; Stinnesbeck, W. Late Cretaceous Sea-level Changes in Tunisia: A Multi-disciplinary Approach. J. Geol. Soc. 2000, 157, 447–458. [Google Scholar] [CrossRef]
- Miller, K.G.; Barrera, E.; Olsson, R.K.; Sugarman, P.J.; Savin, S.M. Does Ice Drive Early Maastrichtian Eustasy? Geol 1999, 27, 783. [Google Scholar] [CrossRef]
- Miller, K.G.; Sugarman, P.J.; Browning, J.V.; Kominz, M.A.; Hernández, J.C.; Olsson, R.K.; Wright, J.D.; Feigenson, M.D.; Van Sickel, W. Late Cretaceous Chronology of Large, Rapid Sea-Level Changes: Glacioeustasy during the Greenhouse World. Geol 2003, 31, 585. [Google Scholar] [CrossRef]
- Font, E.; Adatte, T.; Keller, G.; Abrajevitch, A.; Sial, A.N.; de Lacerda, L.D.; Punekar, J. Mercury Anomaly, Deccan Volcanism and the End-Cretaceous Mass Extinction: REPLY. Geology 2016, 44, e382. [Google Scholar] [CrossRef]
- Schoene, B.; Eddy, M.P.; Samperton, K.M.; Keller, C.B.; Keller, G.; Adatte, T.; Khadri, S.F.R. U-Pb Constraints on Pulsed Eruption of the Deccan Traps across the End-Cretaceous Mass Extinction. Science 2019, 363, 862–866. [Google Scholar] [CrossRef]
- Tobin, T.S.; Bitz, C.M.; Archer, D. Modeling Climatic Effects of Carbon Dioxide Emissions from Deccan Traps Volcanic Eruptions around the Cretaceous–Paleogene Boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 478, 139–148. [Google Scholar] [CrossRef]
- Hernandez Nava, A.; Black, B.A.; Gibson, S.A.; Bodnar, R.J.; Renne, P.R.; Vanderkluysen, L. Reconciling Early Deccan Traps CO2 Outgassing and Pre-KPB Global Climate. Proc. Natl. Acad. Sci. USA 2021, 118, e2007797118. [Google Scholar] [CrossRef]
- Li, X.; Huang, Y.; Zhang, Z.; Wang, C. Chemical Weathering Characteristics of the Late Cretaceous Nenjiang Formation from the Songliao Basin (Northeastern China) Reveal Prominent Milankovitch Band Variations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 601, 111130. [Google Scholar] [CrossRef]
- Keller, G.; Punekar, J.; Mateo, P. Upheavals during the Late Maastrichtian: Volcanism, Climate and Faunal Events Preceding the End-Cretaceous Mass Extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 441, 137–151. [Google Scholar] [CrossRef]
- Atchley, S.C.; Nordt, L.C.; Dworkin, S.I.; Cleveland, D.M.; Mintz, J.S.; Harlow, R.H. Alluvial Stacking Pattern Analysis and Sequence Stratigraphy: Concepts and Case Studies. In New Frontiers in Paleopedology and Terrestrial Paleoclimatology: Paleosols and Soil Surface Analog Systems; Driese, S.G., Ed.; SEPM (Society for Sedimentary Geology): Broken Arrow, OK, USA, 2013; pp. 109–129. ISBN 978-1-56576-322-7. [Google Scholar]
- Nordt, L.C.; Dworkin, S.I.; Atchley, S.C. Ecosystem Response to Soil Biogeochemical Behavior during the Late Cretaceous and Early Paleocene within the Western Interior of North America. Geol. Soc. Am. Bull. 2011, 123, 1745–1762. [Google Scholar] [CrossRef]
- Parisio, L.; Jourdan, F.; Marzoli, A.; Melluso, L.; Sethna, S.F.; Bellieni, G. 40Ar/39Ar Ages of Alkaline and Tholeiitic Rocks from the Northern Deccan Traps: Implications for Magmatic Processes and the K–Pg Boundary. J. Geol. Soc. 2016, 173, 679–688. [Google Scholar] [CrossRef]
- Manu Prasanth, M.P.; Hari, K.R.; Santosh, M. Tholeiitic Basalts of Deccan Large Igneous Province, India: An Overview. Geol. J. 2019, 54, 2980–2993. [Google Scholar] [CrossRef]
- Chang, C.; Liu, L. Investigating the Formation of the Cretaceous Western Interior Seaway Using Landscape Evolution Simulations. GSA Bull. 2021, 133, 347–361. [Google Scholar] [CrossRef]
- Aguirre Palafox, L.E.; Möller, A.; McLean, N.M.; Ludvigson, G.A.; Colombi, C.E.; Montañez, I.P. U-Pb Geochronology of Paleosol Carbonate Cements by LA-ICP-MS: A Proof of Concept and Strategy for Dating the Terrestrial Record. Geochem. Geophys. Geosyst. 2024, 25, e2024GC011488. [Google Scholar] [CrossRef]
- Glasby, G.P.; Rankin, P.C.; Meylan, M.A. Manganiferous Soil Concretions from Hawaii. Pac. Sci. 1979, 33, 103–115. [Google Scholar]
- Yu, X.-L.; Fu, Y.-N.; Brookes, P.C.; Lu, S.-G. Insights into the Formation Process and Environmental Fingerprints of Iron-Manganese Nodules in Subtropical Soils of China. Soil Sci. Soc. Am. J. 2015, 79, 1101–1114. [Google Scholar] [CrossRef]
- Fischel, M.H.H.; Clarke, C.E.; Sparks, D.L. Synchrotron Resolved Microscale and Bulk Mineralogy in Manganese-Rich Soils and Associated Pedogenic Concretions. Geoderma 2023, 430, 116305. [Google Scholar] [CrossRef]
- Echevarria, G.; Sheppard, M.I.; Morel, J. Effect of pH on the Sorption of Uranium in Soils. J. Environ. Radioact. 2001, 53, 257–264. [Google Scholar] [CrossRef]
- Boos, W.R.; Pascale, S. Mechanical Forcing of the North American Monsoon by Orography. Nature 2021, 599, 611–615. [Google Scholar] [CrossRef]
- Li, S.; Grasby, S.E.; Zhao, X.; Chen, J.; Zheng, D.; Wang, H.; Fang, Y.; Zhang, Q.; Yu, T.; Tian, J.; et al. Mercury Evidence of Deccan Volcanism Driving the Latest Maastrichtian Warming Event. Geology 2022, 50, 1140–1144. [Google Scholar] [CrossRef]
- Rogers, R.R. Sequence Analysis of the Upper Cretaceous Two Medicine and Judith River Formations, Montana; Nonmarine Response to the Claggett and Bearpaw Marine Cycles. J. Sediment. Res. 1998, 68, 615–631. [Google Scholar] [CrossRef]
- Petersen, S.V.; Dutton, A.; Lohmann, K.C. End-Cretaceous Extinction in Antarctica Linked to Both Deccan Volcanism and Meteorite Impact via Climate Change. Nat. Commun. 2016, 7, 12079. [Google Scholar] [CrossRef] [PubMed]
- Woelders, L.; Vellekoop, J.; Kroon, D.; Smit, J.; Casadío, S.; Prámparo, M.B.; Dinarès-Turell, J.; Peterse, F.; Sluijs, A.; Lenaerts, J.T.M.; et al. Latest Cretaceous Climatic and Environmental Change in the South Atlantic Region: LATEST CRETACEOUS CHANGE SOUTH ATLANTIC. Paleoceanography 2017, 32, 466–483. [Google Scholar] [CrossRef]
- Vellekoop, J.; Sluijs, A.; Smit, J.; Schouten, S.; Weijers, J.W.H.; Sinninghe Damsté, J.S.; Brinkhuis, H. Rapid Short-Term Cooling Following the Chicxulub Impact at the Cretaceous–Paleogene Boundary. Proc. Natl. Acad. Sci. USA 2014, 111, 7537–7541. [Google Scholar] [CrossRef]
- Woelders, L.; Vellekoop, J.; Weltje, G.J.; De Nooijer, L.; Reichart, G.-J.; Peterse, F.; Claeys, P.; Speijer, R.P. Robust Multi-Proxy Data Integration, Using Late Cretaceous Paleotemperature Records as a Case Study. Earth Planet. Sci. Lett. 2018, 500, 215–224. [Google Scholar] [CrossRef]
- Thibault, N.; Harlou, R.; Schovsbo, N.H.; Stemmerik, L.; Surlyk, F. Late Cretaceous (Late Campanian–Maastrichtian) Sea-Surface Temperature Record of the Boreal Chalk Sea. Clim. Past 2016, 12, 429–438. [Google Scholar] [CrossRef]
- Barclay, R.S. Stratigraphy and Megaflora of a K-T Boundary Section in the Eastern Denver Basin, Colorado. Rocky Mt. Geol. 2003, 38, 45–71. [Google Scholar] [CrossRef]
- Johnson, K.R. Overview of the Late Cretaceous, Early Paleocene, and Early Eocene Megafloras of the Denver Basin, Colorado. Rocky Mt. Geol. 2003, 38, 101–120. [Google Scholar] [CrossRef]
- Peppe, D.J. Megafloral Change in the Early and Middle Paleocene in the Williston Basin, North Dakota, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 298, 224–234. [Google Scholar] [CrossRef]
- Davis, A.J.; Peppe, D.J.; Atchley, S.C.; Williamson, T.E.; Flynn, A.G. Climate and Landscape Reconstruction of the Arroyo Chijuillita Member of the Nacimiento Formation, San Juan Basin, New Mexico: Providing Environmental Context to Early Paleocene Mammal Evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 463, 27–44. [Google Scholar] [CrossRef]
- Marcot, J.D.; Fox, D.L.; Niebuhr, S.R. Late Cenozoic Onset of the Latitudinal Diversity Gradient of North American Mammals. Proc. Natl. Acad. Sci. USA 2016, 113, 7189–7194. [Google Scholar] [CrossRef]
- Flynn, A.G.; Peppe, D.J. Early Paleocene Tropical Forest from the Ojo Alamo Sandstone, San Juan Basin, New Mexico, USA. Paleobiology 2019, 45, 612–635. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lesko, A.K.; Dworkin, S.I.; Atchley, S.C. Terrestrial Response to Maastrichtian Climate Change Determined from Paleosols of the Dawson Creek Section, Big Bend National Park, Texas. Geosciences 2025, 15, 119. https://doi.org/10.3390/geosciences15040119
Lesko AK, Dworkin SI, Atchley SC. Terrestrial Response to Maastrichtian Climate Change Determined from Paleosols of the Dawson Creek Section, Big Bend National Park, Texas. Geosciences. 2025; 15(4):119. https://doi.org/10.3390/geosciences15040119
Chicago/Turabian StyleLesko, Anna K., Steve I. Dworkin, and Stacy C. Atchley. 2025. "Terrestrial Response to Maastrichtian Climate Change Determined from Paleosols of the Dawson Creek Section, Big Bend National Park, Texas" Geosciences 15, no. 4: 119. https://doi.org/10.3390/geosciences15040119
APA StyleLesko, A. K., Dworkin, S. I., & Atchley, S. C. (2025). Terrestrial Response to Maastrichtian Climate Change Determined from Paleosols of the Dawson Creek Section, Big Bend National Park, Texas. Geosciences, 15(4), 119. https://doi.org/10.3390/geosciences15040119