Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = seven-membered rings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2504 KiB  
Review
The Madangamines: Synthetic Strategies Toward Architecturally Complex Alkaloids
by Valentina Ríos, Cristian Maulen, Claudio Parra and Ben Bradshaw
Mar. Drugs 2025, 23(8), 301; https://doi.org/10.3390/md23080301 - 28 Jul 2025
Viewed by 318
Abstract
Madangamine alkaloids have attracted considerable interest in the scientific community due to their complex polycyclic structures and potent biological activities. The six members identified to date have exhibited diverse and significant cytotoxic activities against various cancer cell lines. Despite their structural complexity, seven [...] Read more.
Madangamine alkaloids have attracted considerable interest in the scientific community due to their complex polycyclic structures and potent biological activities. The six members identified to date have exhibited diverse and significant cytotoxic activities against various cancer cell lines. Despite their structural complexity, seven total syntheses—covering five of the six members—have been reported to date. These syntheses, involving 28 to 36 steps and global yields ranging from 0.006% to 0.029%, highlight the formidable challenge these compounds present. This review summarizes the key synthetic strategies developed to access critical fragments, including the construction of the ABC diazatricyclic core and the ACE ring systems. Approaches to assembling the ABCD and ABCE tetracyclic frameworks are also discussed. Finally, we highlight the completed total syntheses of madangamines A–E, with a focus on pivotal transformations and strategic innovations that have enabled progress in this field. Full article
Show Figures

Figure 1

23 pages, 4488 KiB  
Article
Integrative Taxonomy of Tereancistrum spp. (Monopisthocotyla: Dactylogyridae) Parasites of the Gills of Freshwater Fishes from the Caatinga Domain, Brazil
by Priscilla de Oliveira Fadel Yamada, Wallas Benevides Barbosa de Sousa, Mariana Bertholdi Ebert, Maria Fernanda Barros Gouveia Diniz, Marcos Tavares-Dias, Reinaldo José da Silva and Fabio Hideki Yamada
Pathogens 2025, 14(5), 467; https://doi.org/10.3390/pathogens14050467 - 10 May 2025
Viewed by 509
Abstract
Tereancistrum is a common genus of Neotropical monopisthocotylans; however, information on its diversity and phylogeny remains limited. In this study, we describe four new species of Tereancistrum parasitizing the gills of Prochilodus brevis (Characiformes: Prochilodontidae) from a weir in the state of Ceará, [...] Read more.
Tereancistrum is a common genus of Neotropical monopisthocotylans; however, information on its diversity and phylogeny remains limited. In this study, we describe four new species of Tereancistrum parasitizing the gills of Prochilodus brevis (Characiformes: Prochilodontidae) from a weir in the state of Ceará, Brazil. Tereancistrum spiralocirrum n. sp. and Tereancistrum scleritelongatum n. sp. are characterized by a dextro-ventral vaginal pore and a Y-shaped dorsal bar. Notably, Tereancistrum spiralocirrum n. sp. is the first species in the genus to possess a male copulatory organ (MCO) with multiple rings (16 to 18). In contrast, Tereancistrum ancistrum n. sp. and Tereancistrum kritskyi n. sp. are distinguished by a sinistral vaginal pore, a sclerotized MCO in the form of a coiled tube with slightly more than one clockwise ring, and an accessory piece that is non-articulated with the base of the MCO. However, Tereancistrum ancistrum n. sp. is unique in lacking a dorsal bar. Sequences of the LSU rDNA obtained from seven species of Tereancistrum parasitizing P. brevis and Leporinus piau, along with published sequences of other Dactylogyridae members, were included in the molecular analyses. Phylogenetic reconstructions supported the monophyly of Tereancistrum. Full article
Show Figures

Figure 1

24 pages, 5400 KiB  
Article
Design, Synthesis, Anticancer Evaluation and Molecular Docking of Pyrimidine, Pyrido[4,3-d]pyrimidine and 5,6,7,8-Tetrahydropyrido[3,4-d]pyrimidine Derivatives as Novel KRAS-G12D Inhibitors and PROTACs
by Hailong Yang, Lu Gan and Huabei Zhang
Pharmaceuticals 2025, 18(5), 696; https://doi.org/10.3390/ph18050696 - 8 May 2025
Viewed by 1639
Abstract
Background: KRAS-G12D mutations drive 20–50% of pancreatic/biliary cancers yet remain challenging to target due to GTP-pocket conservation and high cellular GTP levels. While allosteric inhibitors targeting the SWII pocket (e.g., MRTX1133) show promise, limited chemical diversity and paradoxical cellular/enzymatic activity relationships necessitate [...] Read more.
Background: KRAS-G12D mutations drive 20–50% of pancreatic/biliary cancers yet remain challenging to target due to GTP-pocket conservation and high cellular GTP levels. While allosteric inhibitors targeting the SWII pocket (e.g., MRTX1133) show promise, limited chemical diversity and paradoxical cellular/enzymatic activity relationships necessitate the exploration of novel scaffolds. This study aims to develop KRAS-G12D inhibitors and PROTACs to offer a selection of new chemical entities through systematic structure–activity optimization and evaluate their therapeutic potential through PROTAC derivatization. Methods: Eleven compounds featuring heterocyclic cores (pyrimidine/pyrido[4,3-d]pyrimidine/5,6,7,8-tetrahydroprodo[3,4-d]pyrimidine) were designed via structure-based drug design. Antiproliferative activity against KRAS-G12D (Panc1), KRAS-G13D (HCT116) and wild-type (A549) cells was assessed using the CCK-8 assay. KRAS-G12D enzymatic inhibition was measured using a GTPase activity assay. Molecular docking simulations (Sybyl 2.0; PDB:7RPZ) elucidated binding modes. Two PROTACs were synthesized from lead compounds by conjugating E3 ligase linkers. All the novel inhibitors and PROTACs were characterized by means of NMR or HRMS. Results: Compound 10c demonstrated selective anti-proliferation in Panc1 cells (IC50 = 1.40 μM) with 4.9-fold greater selectivity over wild-type cells, despite weak enzymatic inhibition (IC50 > 10 μM). Docking revealed critical hydrogen bonds between its protonated 3,8-diazabicyclo[3.2.1]octane moiety and Asp12/Gly60. The enzymatic inhibitor 10k showed potent KRAS-G12D inhibition (IC50 = 0.009 μM) through homopiperazine-mediated interactions with Glu92/His95. Derived PROTACs 26a/b exhibited reduced potency (IC50 = 3–5 μM vs. parental 10k: 2.22 μM), potentially due to impaired membrane permeability. Conclusions: Eleven novel KRAS-G12D inhibitors with a seven-membered ring pharmacophore were synthesized. Compound 10c showed strong anti-proliferative activity, while 10k exhibited potent enzymatic inhibition. Two PROTACs were designed but showed no clear advantage over 10k. This study provides valuable insights for KRAS-targeted drug development. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

12 pages, 5015 KiB  
Article
6-(4-Pyridyl)Azulene Derivatives as Hole Transport Materials for Perovskite Solar Cells
by Yuanqing Sun, Zhangyan Wang, Tianyi Geng, Xinyue Liu, Yangyang Su, Yi Tian, Ming Cheng and Hongping Li
Materials 2025, 18(7), 1400; https://doi.org/10.3390/ma18071400 - 21 Mar 2025
Viewed by 505
Abstract
Azulene has been attracting much attention as a charge transfer material in organic electronics due to its inherent large dipole moment and small band gap, but its application in perovskite solar cells (PSCs) is very limited. Herein, azulene was applied as the core [...] Read more.
Azulene has been attracting much attention as a charge transfer material in organic electronics due to its inherent large dipole moment and small band gap, but its application in perovskite solar cells (PSCs) is very limited. Herein, azulene was applied as the core acceptor for hole transport materials (HTMs), and two molecules named Azu-Py-DF and Azu-Py-OMeTPA were designed and synthesized, in which 4-pyridyl was introduced on the 6-position of the 1,3-substituted azulene core to adjust energy levels. The different spatial orientations of pyridine and the azulene core improve the solubility and reduce the crystallinity of the material, which is conducive to creating a thin film morphology. Azu-Py-OMeTPA exhibited good hole and electron mobility compared with standard Spiro-OMeTAD. Applied as an HTM in PSCs, the Azu-Py-OMeTPA-based device achieved a power conversion efficiency (PCE) of 18.10%, which is higher than that of the 6-position unsubstituted counterpart. Nevertheless, the anticipated passivation effect of the 4-pyridyl group was diminished due to the electron-deficient nature of azulene’s seven-membered ring. These results demonstrate that optimizing the structure of azulene-based HTMs can significantly alter molecular spatial structure, film formation properties, electron delocalization characteristics and charge transport, and can lead to improved device performance, providing insights for the future design of novel HTMs. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

13 pages, 1755 KiB  
Article
Determination of the Enantiomerization Barrier of Midazolam in Aqueous Conditions by Electronic Circular Dichroism and Dynamic Enantioselective HPLC/UHPLC
by Francesca Romana Mammone, Daniele Sadutto, Eleonora Antoniella, Marco Pierini and Roberto Cirilli
Molecules 2025, 30(5), 1108; https://doi.org/10.3390/molecules30051108 - 28 Feb 2025
Viewed by 575
Abstract
Midazolam is a benzodiazepine that is utilized for the induction of anesthesia and the facilitation of procedural sedation. Despite the absence of stereogenic centers, the non-planar seven-membered ring devoid of reflection symmetry elements confers planar stereogenicity to the molecule. Due to the rapid [...] Read more.
Midazolam is a benzodiazepine that is utilized for the induction of anesthesia and the facilitation of procedural sedation. Despite the absence of stereogenic centers, the non-planar seven-membered ring devoid of reflection symmetry elements confers planar stereogenicity to the molecule. Due to the rapid conformational inversion of the Rp and Sp enantiomers, which occurs via a simple ring flip, high-performance liquid chromatography (HPLC) enantiomeric separation is restricted to sub-room temperature conditions. In this study, the energy barriers for the racemization of midazolam at five distinct temperatures and in acetonitrile/water mixtures were determined by monitoring the decay of the circular dichroism signal at a specific wavelength over time. The kinetic and thermodynamic data obtained were compared with those determined by dynamic enantioselective high-performance liquid chromatography using the Chiralpak IG-3 chiral stationary phase, which contains the amylose tris(3-chloro-5-methylphenylcarbamate) as the selector. The temperature-dependent dynamic HPLC of midazolam was carried out at the same temperatures and with the same aqueous mixtures used in parallel kinetic off-column experiments. To simulate dynamic chromatographic profiles, a lab-made computer program based on a stochastic model was utilized. The results indicated that the moderate influence of the stationary phase resulted in a slight increase in the activation barriers, which was more pronounced as the time spent in the column increased. This phenomenon was found to be mitigated when switching from a 250 mm × 4.6 mm, 3 µm, Chiralpak IG-3 column to a 50 mm × 4.6 mm, 1.6 µm, Chiralpak IG-U UHPLC column. The outcomes obtained under UHPLC conditions were found to be more closely aligned with those obtained through the ECD technique, with a discrepancy of only 0.1 kcal/mol or less, indicating a high degree of concordance between the two methods. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Analytical Chemistry)
Show Figures

Figure 1

61 pages, 30573 KiB  
Article
Anti-Butterfly Effect in Ribavirin Studied by Combined Experiment (PXRD/1H-14N NQR Cross-Relaxation Spectroscopy), Quantum Chemical Calculations, Molecular Docking, Molecular Dynamics Simulations, and Novel Structure-Binding Strength and Quadrupolar Indices
by Jolanta Natalia Latosińska, Magdalena Latosińska, Janez Seliger, Veselko Žagar and Tomaž Apih
Molecules 2025, 30(5), 1096; https://doi.org/10.3390/molecules30051096 - 27 Feb 2025
Viewed by 680
Abstract
Ribavirin, 1-(β-D-Ribofuranosyl)-1H-1,2,4-triazole-3-carboxamide, which is included in the list of drugs recommended in the guidelines for the diagnosis and treatment of SARS-CoV-2 infection, has been the subject of experimental and theoretical investigation. The most thermodynamically stable polymorphic form was studied using 1 [...] Read more.
Ribavirin, 1-(β-D-Ribofuranosyl)-1H-1,2,4-triazole-3-carboxamide, which is included in the list of drugs recommended in the guidelines for the diagnosis and treatment of SARS-CoV-2 infection, has been the subject of experimental and theoretical investigation. The most thermodynamically stable polymorphic form was studied using 1H-14N NQR cross-relaxation, periodic DFT/QTAIM/RDS/3D Hirshfeld surfaces, and molecular docking. For the first time, a 1H-14N cross-relaxation spectrum of ribavirin was recorded and interpreted. Twelve resonance frequencies were assigned to four inequivalent nitrogen positions in the molecule using combined experimental techniques and solid-state quantum chemical calculations. The influence of the structural alteration on the NQR parameters was modeled using GGA/RPBE. The differences in the binding pattern of ribavirin, acadesine, inosine, guanosine, and favipiravir-ribofuranosyl in the solid state and the protein-ligand complex were assessed to elucidate the differences in the binding mechanism at the molecular level due to aglycone modification. The replacement of the carbon adjacent to the ribose with nitrogen, in conjunction with the absence of oxygen at the 2-position of the ring, resulted in an increased flexibility of the RBV structure in comparison to the favipiravir-ribofuranosyl structure. The present study identified the intramolecular hydrogen bond NH···N in RBV as playing a crucial role in the formation of a quasi-five-membered ring. However, this bond was proven to be too weak to force positioning of the amide group in the ring plane. The ribofuranosyl in RBV inhibits tautomerism and freezes the conformation of the amide group. The results of the molecular dynamics simulations demonstrated that RBV and favipiravir-ribofuranosyl incorporated into the RNA primer exhibited comparable stability within the protein binding region. The titular anti-butterfly (inverted butterfly) effect is associated with the consequences of both the changes in aglycone moiety and the neighborhood alteration. Seven structure-binding strength indices and six novel quadrupolar indices defined in this study have been proven to facilitate the evaluation of the similarity of binding motifs in the solid state and protein-ligand complex. Full article
Show Figures

Graphical abstract

15 pages, 4270 KiB  
Article
The Homopolyatomic Sulfur Cation [S20]2+
by Janis Derendorf, Lara Heiderich, Carsten Jenne and Marc C. Nierstenhöfer
Inorganics 2025, 13(1), 23; https://doi.org/10.3390/inorganics13010023 - 15 Jan 2025
Viewed by 1216
Abstract
Homopolyatomic cations of the main group elements and of the element sulfur, in particular, are used as tutorial examples to teach structure and bonding in inorganic chemistry. So far, the cations [S4]2+, [S8]2+, [S19 [...] Read more.
Homopolyatomic cations of the main group elements and of the element sulfur, in particular, are used as tutorial examples to teach structure and bonding in inorganic chemistry. So far, the cations [S4]2+, [S8]2+, [S19]2+, [S5]•+, and [S8]•+ are known experimentally. In this report, the generation and crystal structure determination of the salt Na2[S20]2[B12Cl12]3, containing the new homopolyatomic sulfur cation [S20]2+, is reported. The structure of the latter cation consists of two seven-membered homocycles, which are bridged by a six-membered sulfur chain. This structure is strongly related to that of [S19]2+. The heptasulfur rings show pronounced bond alternation. Comparison with the experimental structures of [S7X]+ (X = I, Br) and the application of quantum chemical calculations show unambiguously that the observed structural features are intrinsic properties of the cationic cyclo-heptasulfur moieties. The latter can occupy different conformations, which only slightly differ in energy. Charge delocalization and negative hyperconjugation contribute to the stability of the observed structures. The discovery of the [S20]2+ cation fits well into range of known homopolyatomic sulfur cations, which can be classified by their averaged oxidation state of sulfur. Full article
(This article belongs to the Special Issue State-of-the-Art Inorganic Chemistry in Germany)
Show Figures

Graphical abstract

11 pages, 1191 KiB  
Communication
Novel β-Benzyloxy-Substituted Copolymers of Seven-Membered Cyclic Carbonate: Ring-Opening Polymerization with L-Lactide, ε-Caprolactone and Trimethylenecarbonate
by Valeriia A. Serova, Badma N. Mankaev, Milana U. Agaeva, Elena V. Chernikova, Anna K. Berkovich, Roman S. Alekseyev, Aleksei V. Khvostov, Sergey V. Timofeev and Sergey S. Karlov
Polymers 2024, 16(23), 3364; https://doi.org/10.3390/polym16233364 - 29 Nov 2024
Viewed by 1031
Abstract
To prepare novel biodegradable copolymers with functional substituents that are distributed statistically or randomly over the macromolecule chain and have improved characteristics compared to homopolymers, we conducted a series of synthetic experiments with a novel cyclic monomer, 5-(benzyloxy)-1,3-dioxepan-2-one (4). This compound [...] Read more.
To prepare novel biodegradable copolymers with functional substituents that are distributed statistically or randomly over the macromolecule chain and have improved characteristics compared to homopolymers, we conducted a series of synthetic experiments with a novel cyclic monomer, 5-(benzyloxy)-1,3-dioxepan-2-one (4). This compound was synthesized, and its homopolymer, as well as its copolymers with L-lactide, ε-caprolactone and trimethylene carbonate, were prepared in a polymerization solution with stannous octoate as the initiator. The formation of the copolymers was confirmed using NMR spectroscopy and DSC data. The distribution of the monomeric units of the substituted 7CC in the copolymers with L-lactide and ε-caprolactone is random, as it is close to a statistical distribution. The copolymer with TMC is a gradient copolymer due to the different rates of monomer polymerization. The copolymer with a composition of 10(ε-CL):1(carbonate 4) can be considered a promising polymer after the deprotection of the hydroxy group for the inoculation of the functional substituents due to its convenience of preparation and properties similar to those of poly(ε-caprolactone). Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

24 pages, 3148 KiB  
Article
Nitroxyl Hybrids with Curcumin and Stilbene Scaffolds Display Potent Antioxidant Activity, Remodel the Amyloid Beta Oligomer, and Reverse Amyloid Beta-Induced Cytotoxicity
by Madhu S. Budamagunta, Hidetoshi Mori, Joshua Silk, Ryan R. Slez, Balázs Bognár, Ulises Ruiz Mendiola, Tamás Kálai, Izumi Maezawa and John C. Voss
Antioxidants 2024, 13(11), 1411; https://doi.org/10.3390/antiox13111411 - 18 Nov 2024
Viewed by 1259
Abstract
The disorder and heterogeneity of low-molecular-weight amyloid-beta oligomers (AβOs) underlie their participation in multiple modes of cellular dysfunction associated with the etiology of Alzheimer’s disease (AD). The lack of specified conformational states in these species complicates efforts to select or design small molecules [...] Read more.
The disorder and heterogeneity of low-molecular-weight amyloid-beta oligomers (AβOs) underlie their participation in multiple modes of cellular dysfunction associated with the etiology of Alzheimer’s disease (AD). The lack of specified conformational states in these species complicates efforts to select or design small molecules to targeting discrete pathogenic states. Furthermore, targeting AβOs alone may be therapeutically insufficient, as AD progresses as a multifactorial, self-amplifying cascade. To address these challenges, we have screened the activity of seven new candidates that serve as Paramagnetic Amyloid Ligand (PAL) candidates. PALs are bifunctional small molecules that both remodel the AβO structure and localize a potent antioxidant that mimics the activity of SOD within live cells. The candidates are built from either a stilbene or curcumin scaffold with nitroxyl moiety to serve as catalytic antioxidants. Measurements of PAL AβO binding and remolding along with assessments of bioactivity allow for the extraction of useful SAR information from screening data. One candidate (HO-4450; PMT-307), with a six-membered nitroxyl ring attached to a stilbene ring, displays the highest potency in protecting against cell-derived Aβ. A preliminary low-dose evaluation in AD model mice provides evidence of modest treatment effects by HO-4450. The results for the curcumin PALs demonstrate that the retention of the native curcumin phenolic groups is advantageous to the design of the hybrid PAL candidates. Finally, the PAL remodeling of AβO secondary structures shows a reasonable correlation between a candidate’s bioactivity and its ability to reduce the fraction of antiparallel β-strand. Full article
Show Figures

Figure 1

12 pages, 2509 KiB  
Article
Ringing the Changes: Effects of Heterocyclic Ring Size on Stereoselectivity in [(η5-C5Me5)RhCl], [(η5-C5Me5)IrCl] and [Ru(η6-cymene)Cl] Complexes of Chiral 3-Amino-1-Azacycles
by Vladimir Y. Vladimirov, Matheo Charrier-Chardin, Benson M. Kariuki, Benjamin D. Ward and Paul D. Newman
Molecules 2024, 29(19), 4659; https://doi.org/10.3390/molecules29194659 - 30 Sep 2024
Viewed by 845
Abstract
Ring size-dependent diastereoselective coordination of unsymmetrical diamines containing one azacyclic nitrogen and one exocyclic nitrogen to [(η5-C5Me5)MCl]+ cores where M = Rh, Ir and [Ru(η6-cymene)Cl]+ is reported herein. Total stereoselectivity was observed with [...] Read more.
Ring size-dependent diastereoselective coordination of unsymmetrical diamines containing one azacyclic nitrogen and one exocyclic nitrogen to [(η5-C5Me5)MCl]+ cores where M = Rh, Ir and [Ru(η6-cymene)Cl]+ is reported herein. Total stereoselectivity was observed with the six- and seven-membered azacycles, whereas the five-derivative proved poorly selective. All complexes were active for transfer hydrogenation but showed no enantioselectivity with prochiral ketones. Full article
Show Figures

Graphical abstract

34 pages, 7698 KiB  
Review
The Application of Green Solvents in the Synthesis of S-Heterocyclic Compounds—A Review
by Tomasz Kosmalski, Renata Kołodziejska, Monika Przybysz, Łukasz Szeleszczuk, Hanna Pawluk, Katarzyna Mądra-Gackowska and Renata Studzińska
Int. J. Mol. Sci. 2024, 25(17), 9474; https://doi.org/10.3390/ijms25179474 - 31 Aug 2024
Cited by 1 | Viewed by 4304
Abstract
Cyclic organic compounds containing sulfur atoms constitute a large group, and they play an important role in the chemistry of heterocyclic compounds. They are valuable intermediates for the synthesis of other compounds or biologically active compounds themselves. The synthesis of heterocyclic compounds poses [...] Read more.
Cyclic organic compounds containing sulfur atoms constitute a large group, and they play an important role in the chemistry of heterocyclic compounds. They are valuable intermediates for the synthesis of other compounds or biologically active compounds themselves. The synthesis of heterocyclic compounds poses a major challenge for organic chemists, especially in the context of applying the principles of “green chemistry”. This work is a review of the methods of synthesis of various S-heterocyclic compounds using green solvents such as water, ionic liquids, deep eutectic solvents, glycerol, ethylene glycol, polyethylene glycol, and sabinene. The syntheses of five-, six-, and seven-membered heterocyclic compounds containing a sulfur atom or atoms, as well as those with other heteroatoms and fused-ring systems, are described. It is shown that using green solvents determines the attractiveness of conditions for many reactions; for others, such use constitutes a real compromise between efficiency and mild reaction conditions. Full article
Show Figures

Figure 1

13 pages, 7534 KiB  
Article
A Modeling Approach to Studying the Influence of Grafting on the Anatomical Features and SAUR Gene Expression in Watermelons
by Rita Márkus, Marianna Kocsis, Ágnes Farkas, Dávid U. Nagy, Paul Helfrich, Damir Kutyáncsánin, Gergely Nyitray, Szilvia Czigle and Szilvia Stranczinger
Agronomy 2024, 14(7), 1472; https://doi.org/10.3390/agronomy14071472 - 7 Jul 2024
Cited by 1 | Viewed by 1789
Abstract
Grafting alters the genetic and anatomical features of plants. Although grafting has been widely applied in plant propagation, the underlying processes that govern the effects of the procedure are not fully understood. Samples were collected to study the long-term influence of grafting on [...] Read more.
Grafting alters the genetic and anatomical features of plants. Although grafting has been widely applied in plant propagation, the underlying processes that govern the effects of the procedure are not fully understood. Samples were collected to study the long-term influence of grafting on the leaf-shoot morphology, leaf-shoot anatomy, and genetic signature of the grafted plants. Citrulus lanatus (Thunb.) Matsum. & Nakai (cv. Lady) was used as the scion, and Lagenaria siceraria (Molina) Standl (cv. Argentario) as a rootstock. In grafted plants, leaf blades and petioles were 20.92% and 12.82% longer, respectively, while the midrib collenchyma was 35.68% thicker, and the diameter of the vessel member was 11.17% larger than in ungrafted plants. In the stem, grafting affected the arrangement and number of vascular bundles (from 1 to 2 rings). The thickness of the epidermis decreased by 69.79%, and the size of the external fascicular phloem decreased by 23.56%. The diameter of the vessel member of the grafted plants increased by 28.94%. Eight out of ten evaluated primers met the requirements (stability in both watermelons and bottle gourd, tissue-specific). In the genetic tests, we examined whether this change in the gene expression pattern is due to the grafting and, if so, to what extent. Seven out of eight tested Small Auxin Up-Regulated RNA (SAUR) genes were expressed in the ungrafted and grafted C. lanatus lines in four cases; the expression increased by more than 10% after grafting. The morpho-anatomical changes and genetic variation reported in this study for grafted lines of C. lanatus contribute to the understanding of the underlying mechanisms of plant growth observations resulting from grafting. Full article
(This article belongs to the Special Issue Recent Insights in Sustainable Agriculture and Nutrient Management)
Show Figures

Figure 1

19 pages, 1998 KiB  
Article
Non-Symmetrically Fused Bis(arylimino)pyridines with para-Phenyl Substitution: Exploring Their Use as N′,N,N″-Supports in Iron Ethylene Polymerization Catalysis
by Yizhou Wang, Zheng Wang, Qiuyue Zhang, Yanping Ma, Gregory A. Solan, Yang Sun and Wen-Hua Sun
Catalysts 2024, 14(3), 213; https://doi.org/10.3390/catal14030213 - 21 Mar 2024
Cited by 2 | Viewed by 1632
Abstract
Through the implementation of a one-pot strategy, five examples of non-symmetrical [N,N-diaryl-11-phenyl-1,2,3,7,8,9,10-heptahydrocyclohepta[b]quinoline-4,6-diimine]iron(II) chloride complexes (aryl = 2,6-Me2Ph Fe1, 2,6-Et2Ph Fe2, 2,6-i-Pr2Ph Fe3, 2,4,6-Me3Ph Fe4 [...] Read more.
Through the implementation of a one-pot strategy, five examples of non-symmetrical [N,N-diaryl-11-phenyl-1,2,3,7,8,9,10-heptahydrocyclohepta[b]quinoline-4,6-diimine]iron(II) chloride complexes (aryl = 2,6-Me2Ph Fe1, 2,6-Et2Ph Fe2, 2,6-i-Pr2Ph Fe3, 2,4,6-Me3Ph Fe4, and 2,6-Et2-4-MePh Fe5), incorporating fused six- and seven-membered carbocyclic rings and appended with a remote para-phenyl group, were readily prepared. The molecular structures of Fe2 and Fe3 emphasize the variation in fused ring size and the skewed disposition of the para-phenyl group present in the N′,N,N″-ligand support. Upon activation with MAO or MMAO, Fe1Fe5 all showed high catalytic activity for ethylene polymerization, with an exceptional level of 35.92 × 106 g (PE) mol−1 (Fe) h−1 seen for mesityl-substituted Fe4/MMAO operating at 60 °C. All catalysts generated highly linear polyethylene with good control of the polymer molecular weight achievable via straightforward manipulation of run temperature. Typically, low molecular weight polymers with narrow dispersity (Mw/Mn = 1.5) were produced at 80 °C (MMAO: 3.7 kg mol−1 and MAO: 4.9 kg mol−1), while at temperatures between 40 °C and 50 °C, moderate molecular weight polymers were obtained (MMAO: 35.6–51.6 kg mol−1 and MAO: 72.4–95.5 kg mol−1). Moreover, analysis of these polyethylenes by 1H and 13C NMR spectroscopy highlighted the role played by both β-H elimination and chain transfer to aluminum during chain termination, with the highest rate of β-H elimination seen at 60 °C for the MMAO-activated system and 70 °C for the MAO system. Full article
(This article belongs to the Special Issue State of the Art in Molecular Catalysis in Europe)
Show Figures

Figure 1

12 pages, 6768 KiB  
Article
Theoretical Study on the Structures and Stabilities of CunZn3O3 (n = 1–4) Clusters: Sequential Doping of Zn3O3 Cluster with Cu Atoms
by Zhi-Wei Tao, Han-Yi Zou, Hong-Hui Li, Bin Wang and Wen-Jie Chen
Inorganics 2024, 12(2), 56; https://doi.org/10.3390/inorganics12020056 - 9 Feb 2024
Viewed by 1967
Abstract
Density functional theory (DFT) and coupled cluster theory (CCSD(T)) calculations are performed to investigate the geometric and electronic structures and chemical bonding of a series of Cu-doped zinc oxide clusters: CunZn3O3 (n = 1–4). The structural evolution [...] Read more.
Density functional theory (DFT) and coupled cluster theory (CCSD(T)) calculations are performed to investigate the geometric and electronic structures and chemical bonding of a series of Cu-doped zinc oxide clusters: CunZn3O3 (n = 1–4). The structural evolution of CunZn3O3 (n = 1–4) clusters may reveal the aggregation behavior of Cu atoms on the Zn3O3 cluster. The planar seven-membered ring of the CuZn3O3 cluster plays an important role in the structural evolution; that is, the Cu atom, Cu dimer (Cu2) and Cu trimer (Cu3) anchor on the CuZn3O3 cluster. Additionally, it is found that CunZn3O3 clusters become more stable as the Cu content (n) increases. Bader charge analysis points out that with the doping of Cu atoms, the reducibility of Cu aggregation (Cun−1) on the CuZn3O3 cluster increases. Combined with the d-band centers and the surface electrostatic potential (ESP), the reactivity and the possible reaction sites of CunZn3O3 (n = 1–4) clusters are also illustrated. Full article
Show Figures

Graphical abstract

31 pages, 8090 KiB  
Review
Synthesis of 1,3,5-Triazepines and Benzo[f][1,3,5]triazepines and Their Biological Activity: Recent Advances and New Approaches
by Ameen Ali Abu-Hashem, Othman Hakami, Nasser Amri, Yousef E. Mukhrish and Ahmed A. M. Abdelgawad
Molecules 2024, 29(3), 632; https://doi.org/10.3390/molecules29030632 - 29 Jan 2024
Cited by 3 | Viewed by 4231
Abstract
This review article discusses the recent progress in synthesizing seven-membered ring 1,3,5-triazepine and benzo[f][1,3,5]triazepine derivatives. These derivatives can be either unsaturated, saturated, fused, or separated. This review covers strategies and procedures developed over the past two decades, including cyclo-condensation, cyclization, methylation, [...] Read more.
This review article discusses the recent progress in synthesizing seven-membered ring 1,3,5-triazepine and benzo[f][1,3,5]triazepine derivatives. These derivatives can be either unsaturated, saturated, fused, or separated. This review covers strategies and procedures developed over the past two decades, including cyclo-condensation, cyclization, methylation, chlorination, alkylation, addition, cross-coupling, ring expansions, and ring-closing metathesis. This review discusses the synthesis of 1,3,5-triazepine derivatives using nucleophilic or electrophilic substitution reactions with various reagents such as o-phenylenediamine, 2-aminobenzamide, isothiocyanates, pyrazoles, thiazoles, oxadiazoles, oxadiazepines, and hydrazonoyl chloride. This article systematically presents new approaches and techniques for preparing these compounds. It also highlights the biological importance of benzo[f][1,3,5]triazepine derivatives, which have been used as drugs for treating nervous system diseases. This review aims to provide researchers with the necessary information to create and develop new derivatives of these compounds as quickly as possible. Full article
Show Figures

Graphical abstract

Back to TopTop