Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = sequent calculus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 439 KiB  
Article
Merging Intuitionistic and De Morgan Logics
by Minghui Ma and Juntong Guo
Mathematics 2024, 12(1), 146; https://doi.org/10.3390/math12010146 - 2 Jan 2024
Viewed by 1762
Abstract
We introduce De Morgan Heyting logic for Heyting algebras with De Morgan negation (DH-algebras). The variety DH of all DH-algebras is congruence distributive. The lattice of all subvarieties of DH is distributive. We show the discrete dualities between De Morgan frames and DH-algebras. [...] Read more.
We introduce De Morgan Heyting logic for Heyting algebras with De Morgan negation (DH-algebras). The variety DH of all DH-algebras is congruence distributive. The lattice of all subvarieties of DH is distributive. We show the discrete dualities between De Morgan frames and DH-algebras. The Kripke completeness and finite approximability of some DH-logics are proven. Some conservativity of DH expansion of a Kripke complete superintuitionistic logic is shown by the construction of frame expansion. Finally, a cut-free terminating Gentzen sequent calculus for the DH-logic of De Morgan Boolean algebras is developed. Full article
(This article belongs to the Special Issue Algebraic Modal Logic and Proof Theory)
Show Figures

Figure 1

18 pages, 372 KiB  
Article
Residuated Basic Logic
by Zhe Lin and Minghui Ma
Axioms 2023, 12(10), 966; https://doi.org/10.3390/axioms12100966 - 13 Oct 2023
Viewed by 1285
Abstract
Residuated basic logic (RBL) is the logic of residuated basic algebras, which constitutes a conservative extension of basic propositional logic (BPL). The basic implication is a residual of a non-associative binary operator in RBL. The conservativity is shown [...] Read more.
Residuated basic logic (RBL) is the logic of residuated basic algebras, which constitutes a conservative extension of basic propositional logic (BPL). The basic implication is a residual of a non-associative binary operator in RBL. The conservativity is shown by relational semantics. A Gentzen-style sequent calculus GRBL, which is an extension of the distributive full non-associative Lambek calculus, is established for residuated basic logic. The calculus GRBL admits the mix-elimination, subformula, and disjunction properties. Moreover, the class of all residuated basic algebras has the finite embeddability property. The consequence relation of GRBL is decidable. Full article
(This article belongs to the Special Issue Non-classical Logics and Related Algebra Systems)
19 pages, 374 KiB  
Article
Cut-Free Gentzen Sequent Calculi for Tense Logics
by Zhe Lin and Minghui Ma
Axioms 2023, 12(7), 620; https://doi.org/10.3390/axioms12070620 - 21 Jun 2023
Viewed by 1872
Abstract
The cut-free single-succedent Gentzen sequent calculus GKt for the minimal tense logic Kt is introduced. This sequent calculus satisfies the displaying property. The proof proceeds in terms of a Kolmogorov translation and three intermediate sequent systems. Finally, we show that tense [...] Read more.
The cut-free single-succedent Gentzen sequent calculus GKt for the minimal tense logic Kt is introduced. This sequent calculus satisfies the displaying property. The proof proceeds in terms of a Kolmogorov translation and three intermediate sequent systems. Finally, we show that tense logics axiomatized by strictly positive implication have cut-free Gentzen sequent calculi uniformly. Full article
(This article belongs to the Special Issue Modal Logic and Logical Geometry)
29 pages, 424 KiB  
Article
Sequent-Type Calculi for Three-Valued and Disjunctive Default Logic
by Sopo Pkhakadze and Hans Tompits
Axioms 2020, 9(3), 84; https://doi.org/10.3390/axioms9030084 - 21 Jul 2020
Cited by 4 | Viewed by 3318
Abstract
Default logic is one of the basic formalisms for nonmonotonic reasoning, a well-established area from logic-based artificial intelligence dealing with the representation of rational conclusions, which are characterised by the feature that the inference process may require to retract prior conclusions given [...] Read more.
Default logic is one of the basic formalisms for nonmonotonic reasoning, a well-established area from logic-based artificial intelligence dealing with the representation of rational conclusions, which are characterised by the feature that the inference process may require to retract prior conclusions given additional premisses. This nonmonotonic aspect is in contrast to valid inference relations, which are monotonic. Although nonmonotonic reasoning has been extensively studied in the literature, only few works exist dealing with a proper proof theory for specific logics. In this paper, we introduce sequent-type calculi for two variants of default logic, viz., on the one hand, for three-valued default logic due to Radzikowska, and on the other hand, for disjunctive default logic, due to Gelfond, Lifschitz, Przymusinska, and Truszczyński. The first variant of default logic employs Łukasiewicz’s three-valued logic as the underlying base logic and the second variant generalises defaults by allowing a selection of consequents in defaults. Both versions have been introduced to address certain representational shortcomings of standard default logic. The calculi we introduce axiomatise brave reasoning for these versions of default logic, which is the task of determining whether a given formula is contained in some extension of a given default theory. Our approach follows the sequent method first introduced in the context of nonmonotonic reasoning by Bonatti, which employs a rejection calculus for axiomatising invalid formulas, taking care of expressing the consistency condition of defaults. Full article
(This article belongs to the Special Issue Deductive Systems in Traditional and Modern Logic)
Show Figures

Figure 1

19 pages, 366 KiB  
Article
Deduction in Non-Fregean Propositional Logic SCI
by Joanna Golińska-Pilarek and Magdalena Welle
Axioms 2019, 8(4), 115; https://doi.org/10.3390/axioms8040115 - 17 Oct 2019
Cited by 4 | Viewed by 3412
Abstract
We study deduction systems for the weakest, extensional and two-valued non-Fregean propositional logic SCI . The language of SCI is obtained by expanding the language of classical propositional logic with a new binary connective ≡ that expresses the identity of two statements; that [...] Read more.
We study deduction systems for the weakest, extensional and two-valued non-Fregean propositional logic SCI . The language of SCI is obtained by expanding the language of classical propositional logic with a new binary connective ≡ that expresses the identity of two statements; that is, it connects two statements and forms a new one, which is true whenever the semantic correlates of the arguments are the same. On the formal side, SCI is an extension of classical propositional logic with axioms characterizing the identity connective, postulating that identity must be an equivalence and obey an extensionality principle. First, we present and discuss two types of systems for SCI known from the literature, namely sequent calculus and a dual tableau-like system. Then, we present a new dual tableau system for SCI and prove its soundness and completeness. Finally, we discuss and compare the systems presented in the paper. Full article
(This article belongs to the Special Issue Deductive Systems in Traditional and Modern Logic)
Show Figures

Figure 1

Back to TopTop