Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = semi-synthetic libraries

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 123395 KB  
Article
Semi-Supervised Image-Dehazing Network Based on a Trusted Library
by Wan Li and Chenyang Chang
Electronics 2025, 14(15), 2956; https://doi.org/10.3390/electronics14152956 - 24 Jul 2025
Cited by 1 | Viewed by 679
Abstract
In the field of image dehazing, many deep learning-based methods have demonstrated promising results. However, these methods often neglect crucial frequency-domain information and rely heavily on labeled datasets, which limits their applicability to real-world hazy images. To address these issues, we propose a [...] Read more.
In the field of image dehazing, many deep learning-based methods have demonstrated promising results. However, these methods often neglect crucial frequency-domain information and rely heavily on labeled datasets, which limits their applicability to real-world hazy images. To address these issues, we propose a semi-supervised image-dehazing network based on a trusted library (WTS-Net). We construct a dual-branch wavelet transform network (DBWT-Net). It fuses high- and low-frequency features via a frequency-mixing module and enhances global context through attention mechanisms. Building on DBWT-Net, we embed this backbone in a teacher–student model to reduce reliance on labeled data. To enhance the reliability of the teacher network, we introduce a trusted library guided by NR-IQA. In addition, we employ a two-stage training strategy for the network. Experiments show that WTS-Net achieves superior generalization and robustness in both synthetic and real-world dehazing scenarios. Full article
Show Figures

Figure 1

16 pages, 983 KB  
Article
Exploring the Potential of Phytocannabinoids Against Multidrug-Resistant Bacteria
by Carmina Sirignano, Simona De Vita, Ernesto Gargiulo, Massimiliano Lucidi, Daniela Visaggio, Maria Giovanna Chini, Gianluigi Lauro, Giuseppina Chianese, Paolo Visca, Giuseppe Bifulco and Orazio Taglialatela-Scafati
Plants 2025, 14(13), 1901; https://doi.org/10.3390/plants14131901 - 20 Jun 2025
Viewed by 996
Abstract
The rapid emergence of multidrug-resistant (MDR) bacterial pathogens poses a critical threat to global health, creating an urgent need for novel antimicrobial agents. In this study, we evaluated a small library of natural and semisynthetic phytocannabinoids against a broad panel of MDR Gram-positive [...] Read more.
The rapid emergence of multidrug-resistant (MDR) bacterial pathogens poses a critical threat to global health, creating an urgent need for novel antimicrobial agents. In this study, we evaluated a small library of natural and semisynthetic phytocannabinoids against a broad panel of MDR Gram-positive bacterial strains, evidencing very good activity in the low µM range. We provide evidence of the antibacterial activity of the two separated enantiomers of cannabidiol, offering novel insights into the stereochemical aspects of their bioactivity. To investigate the possible molecular targets and clarify the mechanism of action, we employed Inverse Virtual Screening (IVS), a computational approach optimized for predicting potential protein–ligand interactions, on three selected MDR bacterial species. Interestingly, key targets belonging to important bacterial metabolic pathways and defense mechanisms were retrieved, and the results were used to rationalize the observed biological activities. To the best of our knowledge, this study marks the first application of IVS to microorganisms, offering a novel strategy for identifying bacterial protein targets. The results pave the way for future experimental validation, structure-based drug design, and the development of novel antibacterial agents. Full article
Show Figures

Figure 1

22 pages, 2019 KB  
Article
A Single-Domain VNAR Nanobody Binds with High-Affinity and Selectivity to the Heparin Pentasaccharide Fondaparinux
by Martha Gschwandtner, Rupert Derler, Elisa Talker, Christina Trojacher, Nina Gubensäk, Walter Becker, Tanja Gerlza, Zangger Klaus, Pawel Stocki, Frank S. Walsh, Julia Lynn Rutkowski and Andreas Kungl
Int. J. Mol. Sci. 2025, 26(9), 4045; https://doi.org/10.3390/ijms26094045 - 24 Apr 2025
Viewed by 1795
Abstract
Glycosaminoglycans (GAGs) are key ligands for proteins involved in physiological and pathological processes. Specific GAG-binding patterns are rarely identified, with the heparin pentasaccharide as an Antithrombin-III ligand being the best characterized. Generating glycan-specific antibodies is difficult due to their size, pattern dispersion, and [...] Read more.
Glycosaminoglycans (GAGs) are key ligands for proteins involved in physiological and pathological processes. Specific GAG-binding patterns are rarely identified, with the heparin pentasaccharide as an Antithrombin-III ligand being the best characterized. Generating glycan-specific antibodies is difficult due to their size, pattern dispersion, and flexibility. Single-domain variable new antigen receptors (VNAR nanobodies) from nurse sharks are highly soluble, stable, and versatile. Their unique properties suggest advantages over conventional antibodies, particularly for challenging biotherapeutic targets. Here we have used VNAR semi-synthetic phage libraries to select high-affinity fondaparinux-binding VNARs that did not show cross-reactivity with other GAG species. Competition ELISA and surface plasmon resonance identified a single fondaparinux-selective VNAR clone. This VNAR exhibited an extraordinarily stable protein fold: the beta-strands are stabilized by a robust hydrophobic network, as revealed by heteronuclear NMR. Docking fondaparinux to the VNAR structure revealed a large contact surface area between the CDR3 loop of the antibody and the glycan. Fusing the VNAR with a human Fc domain resulted in a stable product with a high affinity for fondaparinux (Kd = 9.3 × 10−8 M) that could efficiently discriminate between fondaparinux and other glycosaminoglycans. This novel glycan-targeting screening technology represents a promising therapeutic strategy for addressing GAG-related diseases. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

14 pages, 1431 KB  
Article
Modulation of the Antimelanoma Activity Imparted to Artemisinin Hybrids by the Monoterpene Counterpart
by Elisa De Marchi, Silvia Filippi, Silvia Cesarini, Beatrice Di Maio, Bruno Mattia Bizzarri, Raffaele Saladino and Lorenzo Botta
Molecules 2024, 29(14), 3421; https://doi.org/10.3390/molecules29143421 - 21 Jul 2024
Viewed by 1679
Abstract
Molecular hybridization is a widely used strategy in drug discovery and development processes that consists of the combination of two bioactive compounds toward a novel entity. In the current study, two libraries of hybrid derivatives coming from the linkage of sesquiterpene counterparts dihydroartemisinin [...] Read more.
Molecular hybridization is a widely used strategy in drug discovery and development processes that consists of the combination of two bioactive compounds toward a novel entity. In the current study, two libraries of hybrid derivatives coming from the linkage of sesquiterpene counterparts dihydroartemisinin and artesunic acid, with a series of monoterpenes, were synthesized and evaluated by cell viability assay on primary and metastatic melanoma cell lines. Almost all the obtained compounds showed micromolar antimelanoma activity and selectivity toward the metastatic form of this cancer. Four hybrid derivatives containing perillyl alcohol, citronellol, and nerol as monoterpene counterpart emerged as the best compounds of the series, with nerol being active in combination with both sesquiterpenes, dihydroartemisinin and artesunic acid. Preliminary studies on the mechanism of action have shown the dependence of the pharmacological activity of newly synthesized hybrids on the formation of carbon- and oxygen-centered radical species. This study demonstrated the positive modulation of the pharmacodynamic effect of artemisinin semisynthetic derivatives dihydroartemisinin and artesunic acid due to the hybridization with monoterpene counterparts. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

19 pages, 2859 KB  
Article
Australian Marine and Terrestrial Streptomyces-Derived Surugamides, and Synthetic Analogs, and Their Ability to Inhibit Dirofilaria immitis (Heartworm) Motility
by Taizong Wu, Waleed M. Hussein, Kaumadi Samarasekera, Yuxuan Zhu, Zeinab G. Khalil, Shengbin Jin, David F. Bruhn, Yovany Moreno, Angela A. Salim and Robert J. Capon
Mar. Drugs 2024, 22(7), 312; https://doi.org/10.3390/md22070312 - 9 Jul 2024
Cited by 4 | Viewed by 6782
Abstract
A bioassay-guided chemical investigation of a bacterium, Streptomyces sp. CMB-MRB032, isolated from sheep feces collected near Bathurst, Victoria, Australia, yielded the known polyketide antimycins A4a (1) and A2a (2) as potent inhibitors of Dirofilaria immitis (heartworm) microfilaria (mf) motility [...] Read more.
A bioassay-guided chemical investigation of a bacterium, Streptomyces sp. CMB-MRB032, isolated from sheep feces collected near Bathurst, Victoria, Australia, yielded the known polyketide antimycins A4a (1) and A2a (2) as potent inhibitors of Dirofilaria immitis (heartworm) microfilaria (mf) motility (EC50 0.0013–0.0021 µg/mL), along with the octapeptide surugamide A (3) and the new N-methylated analog surugamide K (4). With biological data suggesting surugamides may also exhibit activity against D. immitis, a GNPS molecular network analysis of a library of microbes sourced from geographically diverse Australian ecosystems identified a further five taxonomically and chemically distinct surugamide producers. Scaled-up cultivation of one such producer, Streptomyces sp. CMB-M0112 isolated from a marine sediment collected at Shorncliff, Qld, Australia, yielded 3 along with the new acyl-surugamides A1–A4 (58). Solid-phase peptide synthesis provided additional synthetic analogs, surugamides S1–S3 (911), while derivatization of 3 returned the semi-synthetic surugamide S4 (12) and acyl-surugamides AS1–AS3 (1315). The natural acyl-surugamide A3 (7) and semi-synthetic acyl-surugamide AS3 (15) were shown to selectively inhibit D. immitis mf motility (EC50 3.3–3.4 µg/mL), however, unlike antimycins 1 and 2, were inactive against the gastrointestinal nematode Haemonchus contortus L1–L3 larvae (EC50 > 25 µg/mL) and were not cytotoxic to mammalian cells (human colorectal carcinoma SW620, IC50 > 30 µg/mL). A structure–activity relationship (SAR) study on the surugamides 315 revealed that selective acylation of the Lys3-ε-NH2 correlates with anthelmintic activity. Full article
(This article belongs to the Section Marine Biotechnology Related to Drug Discovery or Production)
Show Figures

Graphical abstract

12 pages, 1352 KB  
Article
Semisynthesis and Cytotoxic Evaluation of an Ether Analogue Library Based on a Polyhalogenated Diphenyl Ether Scaffold Isolated from a Lamellodysidea Sponge
by Kelsey S. Ramage, Aaron Lock, Jonathan M. White, Merrick G. Ekins, Milton J. Kiefel, Vicky M. Avery and Rohan A. Davis
Mar. Drugs 2024, 22(1), 33; https://doi.org/10.3390/md22010033 - 3 Jan 2024
Cited by 2 | Viewed by 3049
Abstract
The known oxygenated polyhalogenated diphenyl ether, 2-(2′,4′-dibromophenoxy)-3,5-dibromophenol (1), with previously reported activity in multiple cytotoxicity assays was isolated from the sponge Lamellodysidea sp. and proved to be an amenable scaffold for semisynthetic library generation. The phenol group of 1 was targeted [...] Read more.
The known oxygenated polyhalogenated diphenyl ether, 2-(2′,4′-dibromophenoxy)-3,5-dibromophenol (1), with previously reported activity in multiple cytotoxicity assays was isolated from the sponge Lamellodysidea sp. and proved to be an amenable scaffold for semisynthetic library generation. The phenol group of 1 was targeted to generate 12 ether analogues in low-to-excellent yields, and the new library was fully characterized by NMR, UV, and MS analyses. The chemical structures for 2, 8, and 9 were additionally determined via single-crystal X-ray diffraction analysis. All natural and semisynthetic compounds were evaluated for their ability to inhibit the growth of DU145, LNCaP, MCF-7, and MDA-MB-231 cancer cell lines. Compound 3 was shown to have near-equivalent activity compared to scaffold 1 in two in vitro assays, and the activity of the compounds with an additional benzyl ring appeared to be reliant on the presence and position of additional halogens. Full article
Show Figures

Graphical abstract

12 pages, 3589 KB  
Article
Repurposing Glutathione Transferases: Directed Evolution Combined with Chemical Modification for the Creation of a Semisynthetic Enzyme with High Hydroperoxidase Activity
by Irene Axarli, Farid Ataya and Nikolaos E. Labrou
Antioxidants 2024, 13(1), 41; https://doi.org/10.3390/antiox13010041 - 25 Dec 2023
Cited by 4 | Viewed by 2778
Abstract
Glutathione peroxidases (GPXs) are antioxidant selenoenzymes, which catalyze the reduction of hydroperoxides via glutathione (GSH), providing protection to cells against oxidative stress metabolites. The present study aims to create an efficient semisynthetic GPX based on the scaffold of tau class glutathione transferase (GSTU). [...] Read more.
Glutathione peroxidases (GPXs) are antioxidant selenoenzymes, which catalyze the reduction of hydroperoxides via glutathione (GSH), providing protection to cells against oxidative stress metabolites. The present study aims to create an efficient semisynthetic GPX based on the scaffold of tau class glutathione transferase (GSTU). A library of GSTs was constructed via DNA shuffling, using three homologue GSTUs from Glycine max as parent sequences. The DNA library of the shuffled genes was expressed in E. coli and the catalytic activity of the shuffled enzymes was screened using cumene hydroperoxide (CuOOH) as substrate. A chimeric enzyme variant (named Sh14) with 4-fold enhanced GPX activity, compared to the wild-type enzyme, was identified and selected for further study. Selenocysteine (Sec) was substituted for the active-site Ser13 residue of the Sh14 variant via chemical modification. The GPX activity (kcat) and the specificity constant (kcatm) of the evolved seleno-Sh14 enzyme (SeSh14) was increased 177- and 2746-fold, respectively, compared to that of the wild-type enzyme for CuOOH. Furthermore, SeSh14 effectively catalyzed the reduction of hydrogen peroxide, an activity that is completely undetectable in all GSTs. Such an engineered GPX-like biocatalyst based on the GSTU scaffold might serve as a catalytic bioscavenger for the detoxification of hazardous hydroperoxides. Furthermore, our results shed light on the evolution of GPXs and their structural and functional link with GSTs. Full article
Show Figures

Figure 1

23 pages, 5086 KB  
Article
Yeast Surface Dual Display Platform for Rapid Discovery of Shark VNAR from a Semi-Synthetic Library Followed by Next-Generation Sequencing
by Chia-Hung Tsai, Kuang-Teng Wang, Xuan Guo and Tsung-Meng Wu
Appl. Sci. 2023, 13(20), 11520; https://doi.org/10.3390/app132011520 - 20 Oct 2023
Cited by 1 | Viewed by 3307
Abstract
The shark-derived single-domain antibody VNAR (variable domain of new antigen receptor) has many advantageous features that make the VNAR suitable for improving current monoclonal antibody therapy deficiencies or disease diagnosis methods. In order to discover more VNARs, it is necessary to improve the [...] Read more.
The shark-derived single-domain antibody VNAR (variable domain of new antigen receptor) has many advantageous features that make the VNAR suitable for improving current monoclonal antibody therapy deficiencies or disease diagnosis methods. In order to discover more VNARs, it is necessary to improve the efficiency of the isolation process. This research aims to enhance the VNAR discovery platform by dual displaying the semi-synthetic VNAR library and green fluorescent protein tag on the yeast surface. The GFP tag can be used to determine the degree of VNAR expression. The diversity of the semi-synthetic VNAR library constructed in this study is verified to be 1.97 × 109 by next-generation sequencing (NGS). We conveniently screened VNARs against the feline neonatal Fc receptor or feline infectious peritonitis virus nucleocapsid protein by sequential MACS and FACS. To find more diverse VNARs, we analyzed the NGS data of VNAR CDR3 genes before and after biopanning. By comparing the frequency change of each sequence, we found that the amplification factor of sequences was increased by biopanning. Four VNAR candidates selected by the high-frequency and high-amplification factor criteria showed an antigen-binding ability. The results demonstrate that biopanning from a yeast surface displaying a semi-synthetic VNAR library followed by the NGS assay can generate antigen binders rapidly without the need for shark rearing and long-term immunization. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

20 pages, 2442 KB  
Article
An Investigation of Structure–Activity Relationships and Cell Death Mechanisms of the Marine Alkaloids Discorhabdins in Merkel Cell Carcinoma Cells
by Maria Orfanoudaki, Emily A. Smith, Natasha T. Hill, Khalid A. Garman, Isaac Brownell, Brent R. Copp, Tanja Grkovic and Curtis J. Henrich
Mar. Drugs 2023, 21(9), 474; https://doi.org/10.3390/md21090474 - 29 Aug 2023
Cited by 6 | Viewed by 4641
Abstract
A library of naturally occurring and semi-synthetic discorhabdins was assessed for their effects on Merkel cell carcinoma (MCC) cell viability. The set included five new natural products and semi-synthetic compounds whose structures were elucidated with NMR, HRMS, and ECD techniques. Several discorhabdins averaged [...] Read more.
A library of naturally occurring and semi-synthetic discorhabdins was assessed for their effects on Merkel cell carcinoma (MCC) cell viability. The set included five new natural products and semi-synthetic compounds whose structures were elucidated with NMR, HRMS, and ECD techniques. Several discorhabdins averaged sub-micromolar potency against the MCC cell lines tested and most of the active compounds showed selectivity towards virus-positive MCC cell lines. An investigation of structure–activity relationships resulted in an expanded understanding of the crucial structural features of the discorhabdin scaffold. Mechanistic cell death assays suggested that discorhabdins, unlike many other MCC-active small molecules, do not induce apoptosis, as shown by the lack of caspase activation, annexin V staining, and response to caspase inhibition. Similarly, discorhabdin treatment failed to increase MCC intracellular calcium and ROS levels. In contrast, the rapid loss of cellular reducing potential and mitochondrial membrane potential suggested that discorhabdins induce mitochondrial dysfunction leading to non-apoptotic cell death. Full article
(This article belongs to the Special Issue Marine Natural Products as Anticancer Agents 3.0)
Show Figures

Graphical abstract

17 pages, 3573 KB  
Review
Theonella: A Treasure Trove of Structurally Unique and Biologically Active Sterols
by Carmen Festa, Simona De Marino, Angela Zampella and Stefano Fiorucci
Mar. Drugs 2023, 21(5), 291; https://doi.org/10.3390/md21050291 - 8 May 2023
Cited by 6 | Viewed by 3365
Abstract
The marine environment is considered a vast source in the discovery of structurally unique bioactive secondary metabolites. Among marine invertebrates, the sponge Theonella spp. represents an arsenal of novel compounds ranging from peptides, alkaloids, terpenes, macrolides, and sterols. In this review, we summarize [...] Read more.
The marine environment is considered a vast source in the discovery of structurally unique bioactive secondary metabolites. Among marine invertebrates, the sponge Theonella spp. represents an arsenal of novel compounds ranging from peptides, alkaloids, terpenes, macrolides, and sterols. In this review, we summarize the recent reports on sterols isolated from this amazing sponge, describing their structural features and peculiar biological activities. We also discuss the total syntheses of solomonsterols A and B and the medicinal chemistry modifications on theonellasterol and conicasterol, focusing on the effect of chemical transformations on the biological activity of this class of metabolites. The promising compounds identified from Theonella spp. possess pronounced biological activity on nuclear receptors or cytotoxicity and result in promising candidates for extended preclinical evaluations. The identification of naturally occurring and semisynthetic marine bioactive sterols reaffirms the utility of examining natural product libraries for the discovery of new therapeutical approach to human diseases. Full article
Show Figures

Graphical abstract

26 pages, 7595 KB  
Article
Isolation and Molecular Characterization of Indigenous Penicillium chrysogenum/rubens Strain Portfolio for Penicillin V Production
by Amol M. Sawant, Vishwambar D. Navale and Koteswara Rao Vamkudoth
Microorganisms 2023, 11(5), 1132; https://doi.org/10.3390/microorganisms11051132 - 26 Apr 2023
Cited by 10 | Viewed by 12614
Abstract
Beta (β)-lactam antibiotic is an industrially important molecule produced by Penicillium chrysogenum/rubens. Penicillin is a building block for 6-aminopenicillanic acid (6-APA), an important active pharmaceutical intermediate (API) used for semi-synthetic antibiotics biosynthesis. In this investigation, we isolated and identified Penicillium [...] Read more.
Beta (β)-lactam antibiotic is an industrially important molecule produced by Penicillium chrysogenum/rubens. Penicillin is a building block for 6-aminopenicillanic acid (6-APA), an important active pharmaceutical intermediate (API) used for semi-synthetic antibiotics biosynthesis. In this investigation, we isolated and identified Penicillium chrysogenum, P. rubens, P. brocae, P. citrinum, Aspergillus fumigatus, A. sydowii, Talaromyces tratensis, Scopulariopsis brevicaulis, P. oxalicum, and P. dipodomyicola using the internal transcribed spacer (ITS) region and the β-tubulin (BenA) gene for precise species identification from Indian origin. Furthermore, the BenA gene distinguished between complex species of P. chrysogenum and P. rubens to a certain extent which partially failed by the ITS region. In addition, these species were distinguished by metabolic markers profiled by liquid chromatography–high resolution mass spectrometry (LC-HRMS). Secalonic acid, Meleagrin, and Roquefortine C were absent in P. rubens. The crude extract evaluated for PenV production by antibacterial activities by well diffusion method against Staphylococcus aureus NCIM-2079. A high-performance liquid chromatography (HPLC) method was developed for simultaneous detection of 6-APA, phenoxymethyl penicillin (PenV), and phenoxyacetic acid (POA). The pivotal objective was the development of an indigenous strain portfolio for PenV production. Here, a library of 80 strains of P. chrysogenum/rubens was screened for PenV production. Results showed 28 strains capable of producing PenV in a range from 10 to 120 mg/L when 80 strains were screened for its production. In addition, fermentation parameters, precursor concentration, incubation period, inoculum size, pH, and temperature were monitored for the improved PenV production using promising P. rubens strain BIONCL P45. In conclusion, P. chrysogenum/rubens strains can be explored for the industrial-scale PenV production. Full article
Show Figures

Figure 1

16 pages, 2076 KB  
Article
Discovery and Optimization of Neutralizing SARS-CoV-2 Antibodies Using ALTHEA Gold Plus Libraries™
by Omar U. Guzmán-Bringas, Keyla M. Gómez-Castellano, Edith González-González, Juana Salinas-Trujano, Said Vázquez-Leyva, Luis Vallejo-Castillo, Sonia M. Pérez-Tapia and Juan C. Almagro
Int. J. Mol. Sci. 2023, 24(5), 4609; https://doi.org/10.3390/ijms24054609 - 27 Feb 2023
Cited by 2 | Viewed by 3242
Abstract
We recently reported the isolation and characterization of anti-SARS-CoV-2 antibodies from a phage display library built with the VH repertoire of a convalescent COVID-19 patient, paired with four naïve synthetic VL libraries. One of the antibodies, called IgG-A7, neutralized the Wuhan, Delta (B.1.617.2) [...] Read more.
We recently reported the isolation and characterization of anti-SARS-CoV-2 antibodies from a phage display library built with the VH repertoire of a convalescent COVID-19 patient, paired with four naïve synthetic VL libraries. One of the antibodies, called IgG-A7, neutralized the Wuhan, Delta (B.1.617.2) and Omicron (B.1.1.529) strains in authentic neutralization tests (PRNT). It also protected 100% transgenic mice expressing the human angiotensin-converting enzyme 2 (hACE-2) from SARS-CoV-2 infection. In this study, the four synthetic VL libraries were combined with the semi-synthetic VH repertoire of ALTHEA Gold Libraries™ to generate a set of fully naïve, general-purpose, libraries called ALTHEA Gold Plus Libraries™. Three out of 24 specific clones for the RBD isolated from the libraries, with affinity in the low nanomolar range and sub-optimal in vitro neutralization in PRNT, were affinity optimized via a method called “Rapid Affinity Maturation” (RAM). The final molecules reached sub-nanomolar neutralization potency, slightly superior to IgG-A7, while the developability profile over the parental molecules was improved. These results demonstrate that general-purpose libraries are a valuable source of potent neutralizing antibodies. Importantly, since general-purpose libraries are “ready-to-use”, it could expedite isolation of antibodies for rapidly evolving viruses such as SARS-CoV-2. Full article
(This article belongs to the Special Issue Novel Antivirals against Respiratory Viruses)
Show Figures

Figure 1

13 pages, 2933 KB  
Article
VH-Based Mini Q-Body: A Novel Quench-Based Immunosensor
by Jinhua Dong, Bhagat Banwait, Hiroshi Ueda and Peter Kristensen
Sensors 2023, 23(4), 2251; https://doi.org/10.3390/s23042251 - 17 Feb 2023
Cited by 6 | Viewed by 3249
Abstract
Quenchbodies (Q-bodies), a type of biosensor, are antibodies labeled with a fluorescent dye near the antigen recognition site. In the absence of an antigen, the dye is quenched by tryptophans in the antibody sequence; however, in its presence, the dye is displaced and [...] Read more.
Quenchbodies (Q-bodies), a type of biosensor, are antibodies labeled with a fluorescent dye near the antigen recognition site. In the absence of an antigen, the dye is quenched by tryptophans in the antibody sequence; however, in its presence, the dye is displaced and therefore de-quenched. Although scFv and Fab are mainly used to create Q-bodies, this is the first report where a single-domain heavy chain VH from a semi-synthetic human antibody library formed the basis. To create a proof of concept “mini Q-body”, a human anti-lysozyme single-domain VH antibody C3 was used. Mini Q-bodies were successfully developed using seven dyes. Different responses were observed depending on the dye and linker length; it was concluded that the optimal linker length for the TAMRA dye was C5, and rhodamine 6G was identified as the dye with the largest de-quenching response. Three single-domain antibodies with sequences similar to that of the C3 antibody were chosen, and the results confirmed the applicability of this method in developing mini Q-bodies. In summary, mini Q-bodies are an easy-to-use and time-saving method for detecting proteins. Full article
(This article belongs to the Special Issue Affinity-Based Sensors)
Show Figures

Figure 1

17 pages, 5430 KB  
Article
Construction of a Fab Library Merging Chains from Semisynthetic and Immune Origin, Suitable for Developing New Tools for Gluten Immunodetection in Food
by Eduardo Garcia-Calvo, Aina García-García, Santiago Rodríguez, Sergio Farrais, Rosario Martín and Teresa García
Foods 2023, 12(1), 149; https://doi.org/10.3390/foods12010149 - 28 Dec 2022
Cited by 9 | Viewed by 2647
Abstract
The observed increase in the prevalence of gluten-related disorders has prompted the development of novel immunological systems for gluten detection in foodstuff. The innovation on these methods relies on the generation of new antibodies, which might alternatively be obtained by molecular evolution methods [...] Read more.
The observed increase in the prevalence of gluten-related disorders has prompted the development of novel immunological systems for gluten detection in foodstuff. The innovation on these methods relies on the generation of new antibodies, which might alternatively be obtained by molecular evolution methods such as phage display. This work presents a novel approach for the generation of a Fab library by merging semi-synthetic heavy chains built-up from a pre-existent recombinant antibody fragment (dAb8E) with an immune light chain set derived from celiac donors. From the initial phage population (107 candidates) and after three rounds of selection and amplification, four different clones were isolated for further characterization. The phage Fab8E-4 presented the best features to be applied in an indirect ELISA for the detection of gluten in foods, resulting in improved specificity and sensitivity. Full article
(This article belongs to the Special Issue Gluten-Free Food and Celiac Disease)
Show Figures

Graphical abstract

15 pages, 2423 KB  
Article
Discovery and Characterization of an ALFA-Tag-Specific Affinity Resin Optimized for Protein Purification at Low Temperatures in Physiological Buffer
by Markus Kilisch, Hansjörg Götzke, Maja Gere-Becker, Alexander Crauel, Felipe Opazo and Steffen Frey
Biomolecules 2021, 11(2), 269; https://doi.org/10.3390/biom11020269 - 12 Feb 2021
Cited by 8 | Viewed by 8748
Abstract
Epitope tags are widely employed as tools to detect, purify and manipulate proteins in various experimental systems. We recently introduced the ALFA-tag together with two ALFA-specific single-domain antibodies (sdAbs), NbALFA and NbALFAPE, featuring high or intermediate affinity, respectively. Together, the ALFA [...] Read more.
Epitope tags are widely employed as tools to detect, purify and manipulate proteins in various experimental systems. We recently introduced the ALFA-tag together with two ALFA-specific single-domain antibodies (sdAbs), NbALFA and NbALFAPE, featuring high or intermediate affinity, respectively. Together, the ALFA system can be employed for a broad range of applications in microscopy, cell biology and biochemistry requiring either extraordinarily stable binding or mild competitive elution at room temperature. In order to further enhance the versatility of the ALFA system, we, here, aimed at developing an sdAb optimized for efficient elution at low temperatures. To achieve this, we followed a stringent selection scheme tailored to the specific application. We found candidates combining a fast capture of ALFA-tagged proteins with an efficient competitive elution at 4 °C in physiological buffer. Importantly, by employing a structure-guided semisynthetic library based on well-characterized NbALFA variants, the high specificity and consistent binding of proteins harboring ALFA-tags at either terminus could be maintained. ALFA SelectorCE, a resin presenting the cold-elutable NbALFACE, is an ideal tool for the one-step purification of sensitive protein complexes or temperature-labile enzymes. We believe that the general approach followed during the selection and screening can be transferred to other challenging sdAb discovery projects. Full article
(This article belongs to the Special Issue The Therapeutic and Diagnostic Potential of Nanobodies)
Show Figures

Figure 1

Back to TopTop