Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = semi-covalent imprinting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 983 KiB  
Review
Molecular Imprinting Technology for Advanced Delivery of Essential Oils
by Greta Kaspute, Arunas Ramanavicius and Urte Prentice
Polymers 2024, 16(17), 2441; https://doi.org/10.3390/polym16172441 - 28 Aug 2024
Cited by 5 | Viewed by 1717
Abstract
Essential oils (EOs) hold therapeutic potential, but their conventional delivery systems have some limitations. This review focuses on the critical review and discussion of research related to EO delivery systems. The review also explores how molecular imprinting technologies (MIT) can advance EO delivery. [...] Read more.
Essential oils (EOs) hold therapeutic potential, but their conventional delivery systems have some limitations. This review focuses on the critical review and discussion of research related to EO delivery systems. The review also explores how molecular imprinting technologies (MIT) can advance EO delivery. MIT offer several techniques, namely covalent, non-covalent, and semi-covalent imprinting, creating targeted cavities that selectively bind and release EOs. These approaches promise significant advantages including increased selectivity, controlled release, and protection from environmental degradation. However, some challenges related to the stability and biocompatibility of MIPs remain unsolved. Integrating nanotechnology through methods like nanoparticle imprinting and some lithographic techniques seems promising to overcome these limitations. Some recently established models and systems used for EO-related research are paving the way for a more efficient and targeted EO delivery approach to harnessing the therapeutic power of EOs. Therefore, some recent and future research seems promising, and eventually it will increase the effectiveness of MIP-based EO delivery systems. Full article
(This article belongs to the Special Issue Research and Application of Molecularly Imprinted Polymers)
Show Figures

Figure 1

20 pages, 2323 KiB  
Article
Molecular Imprinting of Benzylpiperazine: A Comparison of the Self-Assembly and Semi-Covalent Approaches
by Kathleen M. Wright, Michael C. Bowyer, Adam McCluskey and Clovia I. Holdsworth
Int. J. Mol. Sci. 2023, 24(6), 5117; https://doi.org/10.3390/ijms24065117 - 7 Mar 2023
Cited by 8 | Viewed by 2909
Abstract
Molecularly imprinted polymers (MIPs) for benzylpiperazine (BZP, 1), an illicit designer drug, were developed by using both self-assembly and semi-covalent approaches. From an array of potential functional monomers (FMs) and using a combination of pre-synthetic interaction studies (by molecular modelling and NMR [...] Read more.
Molecularly imprinted polymers (MIPs) for benzylpiperazine (BZP, 1), an illicit designer drug, were developed by using both self-assembly and semi-covalent approaches. From an array of potential functional monomers (FMs) and using a combination of pre-synthetic interaction studies (by molecular modelling and NMR analysis) and binding assays, the highest performing self-assembly 1-MIPs were confirmed to result from methacrylic acid (7) as FM, ethylene glycol dimethacrylate (EGDMA) or trimethylolpropane trimethacrylate (TRIM) as crosslinkers and chloroform as the porogen and rebinding solvent at template (T): FM ratios of 1:1 and 1:2, giving imprinting factors (IF) 3 to 7. The semi-covalent 1-MIPs were designed using benzylpiperazine (4-vinylphenyl) carbamate (16) as the template–monomer adduct in combination with either EDGMA or TRIM. Our comparative analysis showed the semi-covalent polymers to have a stronger affinity for 1 (significantly lower Kd values and higher IFs) and faster uptake than the self-assembly systems. Both approaches have comparable cross-reactivity: marginal to low against cocaine (17) and morphine (18) and high against ephedrine (19) and phenylpiperazine (20). They also have comparable selectivity: highly selective towards 1 against 17, moderate against 18 and non-selective against 19. EGDMA-based self-assembly MIPs displayed a greater imprinting effect (higher IFs and NIP-to-MIP Kd ratios) than TRIM-based MIPs, while the TRIM-based semi-covalent MIP outperformed its EGDMA-based equivalent. By virtue of its modest selectivity against the test illicit drugs, 1-MIPs could potentially be used as a dummy MIP for the broad-based capture and enrichment of illicit drug blends for subsequent laboratory analysis. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

15 pages, 3814 KiB  
Article
Preparation of Magnetic Dummy Molecularly Imprinted Meso-Porous Silica Nanoparticles Using a Semi-Covalent Imprinting Approach for the Rapid and Selective Removal of Bisphenols from Environmental Water Samples
by Jing Chen, Xiaoli Sun, Muhua Wang, Yan Wang, Qinyao Wu, Shurong Wu and Sisi Fang
Water 2022, 14(24), 4125; https://doi.org/10.3390/w14244125 - 18 Dec 2022
Cited by 1 | Viewed by 2524
Abstract
Bisphenol compounds (BPs) are a severe threat to humans and creatures; hence it is critical to develop a quick and simple approach for removing trace BPs from water. This research synthesized a novel template–monomer complex, phenolphthalein-(3-isocyanatopropyl)triethoxysilane (PP-ICPTES), as a dummy template, and a [...] Read more.
Bisphenol compounds (BPs) are a severe threat to humans and creatures; hence it is critical to develop a quick and simple approach for removing trace BPs from water. This research synthesized a novel template–monomer complex, phenolphthalein-(3-isocyanatopropyl)triethoxysilane (PP-ICPTES), as a dummy template, and a molecularly imprinted polymer for bisphenol was made via a semi-covalent approach. By successfully coating the imprinted layer on the Fe3O4@SiO2@mSiO2 structure, a magnetic dummy molecularly imprinted mesoporous silica nanoparticles (m-DMI-MSNPs) with a core-shell structure and superefficient aqueous phase selectivity for bisphenols was synthesized. The morphology and structure of the m-DMI-MSNPs were characterized using transmission electron microscopy (TEM), nitrogen adsorption-desorption analysis, Fourier transform infrared spectroscopy (FT-IR), and vibrating sample magnetometry (VSM). The prepared m-DMI-MSNPs presented excellent water compatibility and magnetic separation abilities. The m-DMI-MSNPs showed excellent recognition selectivity towards BPs with imprinting factors of 7.6, 8.2, and 7.5 for bisphenol F (BPF), bisphenol E (BPE), and bisphenol A (BPA), respectively. Fast binding kinetics (equilibrium time < 1 min) and a high rebinding capacity (maximum adsorption capacity, 38.75 mg g–1) were observed in the adsorption experiments. More importantly, the m-DMI-MSNPs, which combine good water compatibility, class selectivity, and magnetic separation performance, exhibited excellent performance for the removal of BPF, BPE, and BPA from tap water, mineral water, and sewage water samples, with removal efficiencies in the ranges of 96.6–97.8, 95.6–97.1, and 93.1–95.3%, respectively. Full article
Show Figures

Graphical abstract

17 pages, 4886 KiB  
Article
Magnetic Core-Shell Nanoparticles Using Molecularly Imprinted Polymers for Zearalenone Determination
by Luis Calahorra-Rio, Miriam Guadaño-Sánchez, Tamara Moya-Cavas and Javier Lucas Urraca
Molecules 2022, 27(23), 8166; https://doi.org/10.3390/molecules27238166 - 23 Nov 2022
Cited by 11 | Viewed by 2875
Abstract
This paper describes the synthesis of novel molecularly imprinted magnetic nano-beads for the selective extraction (MISPE) of zearalenone mycotoxin in river and tap waters and further analysis by high-performance liquid chromatography (HPLC) with fluorescence detection (FLD). A semi-covalent imprinting approach was achieved for [...] Read more.
This paper describes the synthesis of novel molecularly imprinted magnetic nano-beads for the selective extraction (MISPE) of zearalenone mycotoxin in river and tap waters and further analysis by high-performance liquid chromatography (HPLC) with fluorescence detection (FLD). A semi-covalent imprinting approach was achieved for the synthesis of the molecularly imprinted polymers (MIP). The nanoparticles were prepared by covering the starting Fe3O4 material with a first layer of tetraethyl orthosilicate (TEOS) and then with a second layer using cyclododecyl 2-hydroxy-4-(3-triethoxysilylpropylcarbamoyloxy) benzoate. The last was used with a dual role, template and functional monomer after the extraction of the template molecule. The material was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopies (FT-IR). The solid phase extraction was optimized in all the steps: loading, washing and elution. The optimal conditions allowed the determination of zearalenone in trace levels of 12.5, 25 and 50 µg L−1 without significant differences between the fortified and found level concentrations. Full article
(This article belongs to the Section Cross-Field Chemistry)
Show Figures

Graphical abstract

12 pages, 3588 KiB  
Article
N-(2-Arylethyl)-2-methylprop-2-enamides as Versatile Reagents for Synthesis of Molecularly Imprinted Polymers
by Monika Sobiech, Dorota Maciejewska and Piotr Luliński
Polymers 2022, 14(13), 2738; https://doi.org/10.3390/polym14132738 - 4 Jul 2022
Cited by 3 | Viewed by 2333
Abstract
The paper describes the formation of six aromatic N-(2-arylethyl)-2-methylprop-2-enamides with various substituents in benzene ring, viz., 4-F, 4-Cl, 2,4-Cl2, 4-Br, 4-OMe, and 3,4-(OMe)2 from 2-arylethylamines and methacryloyl chloride in ethylene dichloride with high yields (46–94%). The structure of the [...] Read more.
The paper describes the formation of six aromatic N-(2-arylethyl)-2-methylprop-2-enamides with various substituents in benzene ring, viz., 4-F, 4-Cl, 2,4-Cl2, 4-Br, 4-OMe, and 3,4-(OMe)2 from 2-arylethylamines and methacryloyl chloride in ethylene dichloride with high yields (46–94%). The structure of the compounds was confirmed by 1H NMR, 13C NMR, IR, and HR-MS. Those compounds were obtained to serve as functionalized templates for the fabrication of molecularly imprinted polymers followed by the hydrolysis of an amide linkage. In an exemplary experiment, the imprinted polymer was produced from N-(2-(4-bromophenyl)ethyl)-2-methylprop-2-enamide and divinylbenzene, acting as cross-linker. The hydrolysis of 2-(4-bromophenyl)ethyl residue proceeded and the characterization of material including SEM, EDS, 13C CP MAS NMR, and BET on various steps of preparation was carried out. The adsorption studies proved that there was a high affinity towards the target biomolecules tyramine and L-norepinephrine, with imprinting factors equal to 2.47 and 2.50, respectively, when compared to non-imprinted polymer synthesized from methacrylic acid and divinylbenzene only. Full article
(This article belongs to the Special Issue Advance in Molecularly Imprinted Polymers)
Show Figures

Figure 1

13 pages, 3504 KiB  
Article
Phytosterol Recognition via Rationally Designed Molecularly Imprinted Polymers
by Lachlan J. Schwarz, Brenda K. Y. Leung, Basil Danylec, Simon J. Harris, Reinhard I. Boysen and Milton T. W. Hearn
C 2018, 4(1), 13; https://doi.org/10.3390/c4010013 - 12 Feb 2018
Cited by 7 | Viewed by 4958
Abstract
Molecularly imprinted polymers (MIPs) prepared via a semi-covalent imprinting strategy using stigmasteryl methacrylate as a polymerisable template have been evaluated by static binding methods for their ability to selectively capture other valuable phytosterol targets, including campesterol and brassicasterol. Design criteria based on molecular [...] Read more.
Molecularly imprinted polymers (MIPs) prepared via a semi-covalent imprinting strategy using stigmasteryl methacrylate as a polymerisable template have been evaluated by static binding methods for their ability to selectively capture other valuable phytosterol targets, including campesterol and brassicasterol. Design criteria based on molecular modelling procedures and interaction energy calculations were employed to aid the selection of the co-monomer type, as well as the choice of co-monomer:template ratios for the formation of the pre-polymerisation complex. These novel hybrid semi-covalently imprinted polymers employed N,N′-dimethylacryl-amide (N,N′-DMAAM) as the functional co-monomer and displayed specific binding capacities in the range 5.2–5.9 mg sterol/g MIP resin. Their binding attributes and selectivities towards phytosterol compounds were significantly different to the corresponding MIPs prepared via non-covalent procedures or when compared to non-imprinted polymers. Cross-reactivity studies using stigmasterol, ergosterol, cholesterol, campesterol, and brassicasterol as single analytes revealed the importance of the A-ring C-3-β-hydroxyl group and the orientational preferences of the D-ring alkyl chain structures in their interaction in the templated cavity with the N,N′-dimethylamide functional groups of the MIP. Finally, to obtain useful quantities of both campersterol and brassicasterol for these investigations, improved synthetic routes have been developed to permit the conversion of the more abundant, lower cost stigmasterol via a reactive aldehyde intermediate to these other sterols. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymers—Molecular Recognition)
Show Figures

Graphical abstract

1 pages, 147 KiB  
Abstract
Semi-Covalent Imprinting for Selective Protein Sensing at a Femtomolar Concentration Level
by Marcin Dabrowski, Maciej Cieplak, Piyush Sindhu Sharma, Pawel Borowicz, Krzysztof Noworyta, Alexander Kuhn, Francis D’Souza and Wlodzimierz Kutner
Proceedings 2017, 1(8), 771; https://doi.org/10.3390/proceedings1080771 - 4 Dec 2017
Viewed by 1911
Abstract
Protein imprinting is challenging mainly because of their large molecular size. It is very difficult [...] Full article
Back to TopTop