Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = semi rational mutagenesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3636 KiB  
Article
Improving the Catalytic Efficiency of an AA9 Lytic Polysaccharide Monooxygenase MtLPMO9G by Consensus Mutagenesis
by Yao Meng, Wa Gao, Xiaohua Liu, Tang Li, Kuikui Li and Heng Yin
Catalysts 2024, 14(9), 614; https://doi.org/10.3390/catal14090614 - 12 Sep 2024
Viewed by 964
Abstract
Cellulose is one of the most abundant renewable resources in nature. However, its recalcitrant crystalline structure hinders efficient enzymatic depolymerization. Unlike cellulases, lytic polysaccharide monooxygenases (LPMOs) can oxidatively cleave glycosidic bonds in the crystalline regions of cellulose, playing a crucial role in its [...] Read more.
Cellulose is one of the most abundant renewable resources in nature. However, its recalcitrant crystalline structure hinders efficient enzymatic depolymerization. Unlike cellulases, lytic polysaccharide monooxygenases (LPMOs) can oxidatively cleave glycosidic bonds in the crystalline regions of cellulose, playing a crucial role in its enzymatic depolymerization. An AA9 LPMO from Myceliophthora thermophila was previously identified and shown to exhibit a highly efficient catalytic performance. To further enhance its catalytic efficiency, consensus mutagenesis was applied. Compared with the wild-type enzyme, the oxidative activities of mutants A165S and P167N increased by 1.8-fold and 1.4-fold, respectively, and their catalytic efficiencies (kcat/Km) improved by 1.6-fold and 1.2-fold, respectively. The mutants also showed significantly enhanced activity in the synergistic degradation of cellulose with cellobiohydrolase. Additionally, the P167N mutant exhibited better H2O2 tolerance. A molecular dynamics analysis revealed that the increased activity of mutants A165S and P167N was due to the closer proximity of the active center to the substrate post-mutation. This study demonstrates that selecting appropriate mutation sites via a semi-rational design can significantly improve LPMO activity, providing valuable insights for the protein engineering of similar enzymes. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Graphical abstract

12 pages, 6890 KiB  
Article
Engineering of Substrate-Binding Domain to Improve Catalytic Activity of Chondroitin B Lyase with Semi-Rational Design
by Miao Tian, Yuan-Yuan Xu, Yang-Nan Li, Shen Yu, Yi-Lin Wang, Xiao-Lai Ma and Ye-Wang Zhang
Curr. Issues Mol. Biol. 2024, 46(9), 9916-9927; https://doi.org/10.3390/cimb46090591 - 6 Sep 2024
Cited by 3 | Viewed by 1150
Abstract
Dermatan sulfate and chondroitin sulfate are dietary supplements that can be utilized as prophylactics against thrombus formation. Low-molecular-weight dermatan sulfate (LMWDS) is particularly advantageous due to its high absorbability. The enzymatic synthesis of low-molecular-weight dermatan sulfates (LMWDSs) using chondroitin B lyase is a [...] Read more.
Dermatan sulfate and chondroitin sulfate are dietary supplements that can be utilized as prophylactics against thrombus formation. Low-molecular-weight dermatan sulfate (LMWDS) is particularly advantageous due to its high absorbability. The enzymatic synthesis of low-molecular-weight dermatan sulfates (LMWDSs) using chondroitin B lyase is a sustainable and environmentally friendly approach to manufacturing. However, the industrial application of chondroitin B lyases is severely hampered by their low catalytic activity. To improve the activity, a semi-rational design strategy of engineering the substrate-binding domain of chondroitin B lyase was performed based on the structure. The binding domain was subjected to screening of critical residues for modification using multiple sequence alignments and molecular docking. A total of thirteen single-point mutants were constructed and analyzed to assess their catalytic characteristics. Out of these, S90T, N103C, H134Y, and R159K exhibited noteworthy enhancements in activity. This study also examined combinatorial mutagenesis and found that the mutant H134Y/R159K exhibited a substantially enhanced catalytic activity of 1266.74 U/mg, which was 3.21-fold that of the wild-type one. Molecular docking revealed that the enhanced activity of the mutant could be attributed to the formation of new hydrogen bonds and hydrophobic interactions with the substrate as well as neighbor residues. The highly active mutant would benefit the utilization of chondroitin B lyase in pharmaceuticals and functional foods. Full article
Show Figures

Graphical abstract

12 pages, 3349 KiB  
Article
Enhancing Paenibacillus sp. Cold-Active Acetyl Xylan Esterase Activity through Semi-Rational Protein Engineering
by Keunho Ji, Sondavid Nandanwar, So Yeon Jeon, Gyu Ri Yang, Lixiao Liu, Hyun-Myung Oh and Hak Jun Kim
Appl. Sci. 2024, 14(13), 5546; https://doi.org/10.3390/app14135546 - 26 Jun 2024
Cited by 1 | Viewed by 1567
Abstract
Interest in protein engineering for the enzymatic production of valuable products, such as pharmaceutical compounds and biofuels, is growing rapidly. The cold-active acetyl xylan esterase from Paenibacillus sp. (PbAcE) presents unusually broad substrate specificity. Here, we engineered a hydrophobic substrate-binding pocket to enable [...] Read more.
Interest in protein engineering for the enzymatic production of valuable products, such as pharmaceutical compounds and biofuels, is growing rapidly. The cold-active acetyl xylan esterase from Paenibacillus sp. (PbAcE) presents unusually broad substrate specificity. Here, we engineered a hydrophobic substrate-binding pocket to enable the accommodation of relatively large alcohol substrates, such as linalyl acetate and α-terpinyl acetate. To identify candidate residues for engineering, we performed covalent docking of substrates to the Ser185 active site using the HCovDock program. Functional hotspots were analyzed using HotSpot Wizard 3.1. Lys91, His93, and Tyr182 were selected for site-saturation mutagenesis (SSM). After generating the SSM mutant library, a qualitative colorimetric assay was conducted to identify positive mutants. Three, two, and five single mutants were selected for Lys91, His93, and Tyr182, respectively. The best single mutants were then sequentially combined to generate double and triple mutants. Single mutants exhibited a 10–30% increase in activity compared to that of wild-type PbAcE, while no significant synergistic improvements were observed in the double and triple mutants. The increase in activity against both linalyl acetate and α-terpinyl acetate was similar. Mutation did not affect the acetyl binding and catalysis. Further research on the acetyl binding pocket will provide insights into substrate specificity and aid in efficient biocatalyst development for industrial applications. Full article
Show Figures

Figure 1

14 pages, 2465 KiB  
Article
Improving the Thermostability of Serine Protease PB92 from Bacillus alcalophilus via Site-Directed Mutagenesis Based on Semi-Rational Design
by Huabiao Miao, Xia Xiang, Nanyu Han, Qian Wu and Zunxi Huang
Foods 2023, 12(16), 3081; https://doi.org/10.3390/foods12163081 - 16 Aug 2023
Cited by 8 | Viewed by 2273
Abstract
Proteases have been widely employed in many industrial processes. In this work, we aimed to improve the thermostability of the serine protease PB92 from Bacillus alcalophilus to meet the high-temperature requirements of biotechnological treatments. Eight mutation sites (N18, S97-S101, E110, and R143) were [...] Read more.
Proteases have been widely employed in many industrial processes. In this work, we aimed to improve the thermostability of the serine protease PB92 from Bacillus alcalophilus to meet the high-temperature requirements of biotechnological treatments. Eight mutation sites (N18, S97-S101, E110, and R143) were identified, and 21 mutants were constructed from B-factor comparison and multiple sequence alignment and expressed via Bacillus subtilis. Among them, fifteen mutants exhibited increased half-life (t1/2) values at 65 °C (1.13–31.61 times greater than that of the wild type). Based on the composite score of enzyme activity and thermostability, six complex mutants were implemented. The t1/2 values of these six complex mutants were 2.12–10.05 times greater than that of the wild type at 65 °C. In addition, structural analysis revealed that the increased thermal stability of complex mutants may be related to the formation of additional hydrophobic interactions due to increased hydrophobicity and the decreased flexibility of the structure. In brief, the thermal stability of the complex mutants N18L/R143L/S97A, N18L/R143L/S99L, and N18L/R143L/G100A was increased 4-fold, which reveals application potential in industry. Full article
Show Figures

Graphical abstract

17 pages, 3526 KiB  
Article
Functional Delineation of a Protein–Membrane Interaction Hotspot Site on the HIV-1 Neutralizing Antibody 10E8
by Sara Insausti, Miguel Garcia-Porras, Johana Torralba, Izaskun Morillo, Ander Ramos-Caballero, Igor de la Arada, Beatriz Apellaniz, Jose M. M. Caaveiro, Pablo Carravilla, Christian Eggeling, Edurne Rujas and Jose L. Nieva
Int. J. Mol. Sci. 2022, 23(18), 10767; https://doi.org/10.3390/ijms231810767 - 15 Sep 2022
Cited by 2 | Viewed by 3176
Abstract
Antibody engagement with the membrane-proximal external region (MPER) of the envelope glycoprotein (Env) of HIV-1 constitutes a distinctive molecular recognition phenomenon, the full appreciation of which is crucial for understanding the mechanisms that underlie the broad neutralization of the virus. Recognition of the [...] Read more.
Antibody engagement with the membrane-proximal external region (MPER) of the envelope glycoprotein (Env) of HIV-1 constitutes a distinctive molecular recognition phenomenon, the full appreciation of which is crucial for understanding the mechanisms that underlie the broad neutralization of the virus. Recognition of the HIV-1 Env antigen seems to depend on two specific features developed by antibodies with MPER specificity: (i) a large cavity at the antigen-binding site that holds the epitope amphipathic helix; and (ii) a membrane-accommodating Fab surface that engages with viral phospholipids. Thus, besides the main Fab–peptide interaction, molecular recognition of MPER depends on semi-specific (electrostatic and hydrophobic) interactions with membranes and, reportedly, on specific binding to the phospholipid head groups. Here, based on available cryo-EM structures of Fab–Env complexes of the anti-MPER antibody 10E8, we sought to delineate the functional antibody–membrane interface using as the defining criterion the neutralization potency and binding affinity improvements induced by Arg substitutions. This rational, Arg-based mutagenesis strategy revealed the position-dependent contribution of electrostatic interactions upon inclusion of Arg-s at the CDR1, CDR2 or FR3 of the Fab light chain. Moreover, the contribution of the most effective Arg-s increased the potency enhancement induced by inclusion of a hydrophobic-at-interface Phe at position 100c of the heavy chain CDR3. In combination, the potency and affinity improvements by Arg residues delineated a protein–membrane interaction site, whose surface and position support a possible mechanism of action for 10E8-induced neutralization. Functional delineation of membrane-interacting patches could open new lines of research to optimize antibodies of therapeutic interest that target integral membrane epitopes. Full article
(This article belongs to the Special Issue Recent Advances in Biomolecular Recognition II)
Show Figures

Figure 1

14 pages, 3262 KiB  
Article
Engineering the Activity of Old Yellow Enzyme NemR-PS for Efficient Reduction of (E/Z)-Citral to (S)-Citronellol
by Binbin Feng, Xia Li, Lijun Jin, Yi Wang, Yi Tang, Yuhao Hua, Chenze Lu, Jie Sun, Yinjun Zhang and Xiangxian Ying
Catalysts 2022, 12(6), 631; https://doi.org/10.3390/catal12060631 - 9 Jun 2022
Cited by 2 | Viewed by 2720
Abstract
The cascade catalysis of old yellow enzyme, alcohol dehydrogenase and glucose dehydrogenase has become a promising approach for one pot, two-step reduction of (E/Z)-citral to (S)-citronellol, serving as a chiral alcohol with rose fragrance. During the multi-enzymatic [...] Read more.
The cascade catalysis of old yellow enzyme, alcohol dehydrogenase and glucose dehydrogenase has become a promising approach for one pot, two-step reduction of (E/Z)-citral to (S)-citronellol, serving as a chiral alcohol with rose fragrance. During the multi-enzymatic cascade catalysis, old yellow enzyme is responsible for the reduction of the conjugated C=C and the introduction of the chiral center, requiring high activity and (S)-enantioselectiviy. Herein, to improve the activity of the old yellow enzyme from Providencia stuartii (NemR-PS) with strict (S)-enantioselectivity, the semi-rational design on its substrate binding pocket was performed through a combination of homology modeling, molecular docking analysis, alanine scanning and iterative saturation mutagenesis. The NemR-PS variant D275G/F351A with improved activity was obtained and then purified for characterization, obeying the substrate inhibition kinetics. Compared with the wild type, the parameters Ki and Kcat/Km were increased from 39.79 mM and 2.09 s−1mM−1 to 128.50 mM and 5.01 s−1mM−1, respectively. Moreover, the variant D275G/F351A maintained strict (S)-enantioselectivity, avoiding the trade-off effect between activity and enantioselectivity. Either the enzyme NemR-PS or the variant D275G/F351A was co-expressed with alcohol dehydrogenase from Yokenella sp. WZY002 (YsADH) and glucose dehydrogenase from Bacillus megaterium (BmGDHM6). In contrast to the whole-cell biocatalyst co-expressing NemR-PS, that co-expressing the variant D275G/F351A shortened the reaction time from 36 h to 12 h in the reduction of 400 mM (E/Z)-citral. In the manner of substrate constant feeding, the accumulated product concentration reached up to 500 mM and completely eliminate the residual intermediate and by-product, suggesting the effectiveness of protein engineering and substrate engineering to improve catalytic efficiency. Full article
(This article belongs to the Special Issue Current State-of-the-Art of Biocatalysts)
Show Figures

Figure 1

10 pages, 1468 KiB  
Article
Semi-Rational Design of Proteus mirabilis l-Amino Acid Deaminase for Expanding Its Substrate Specificity in α-Keto Acid Synthesis from l-Amino Acids
by Anwen Fan, Ziyao Wang, Haojie Qu, Yao Nie and Yan Xu
Catalysts 2022, 12(2), 175; https://doi.org/10.3390/catal12020175 - 29 Jan 2022
Cited by 6 | Viewed by 3478
Abstract
l-amino acid deaminases (LAADs) are flavoenzymes that catalyze the stereospecific oxidative deamination of l-amino acids into α-keto acids, which are widely used in the pharmaceutical, food, chemical, and cosmetic industries. However, the substrate specificity of available LAADs is limited, and most [...] Read more.
l-amino acid deaminases (LAADs) are flavoenzymes that catalyze the stereospecific oxidative deamination of l-amino acids into α-keto acids, which are widely used in the pharmaceutical, food, chemical, and cosmetic industries. However, the substrate specificity of available LAADs is limited, and most substrates are concentrated on several bulky or basic l-amino acids. In this study, we employed a LAAD from Proteus mirabilis (PmiLAAD) and broadened its substrate specificity using a semi-rational design strategy. Molecular docking and alanine scanning identified F96, Q278, and E417 as key residues around the substrate-binding pocket of PmiLAAD. Site-directed saturation mutagenesis identified E417 as the key site for substrate specificity expansion. Expansion of the substrate channel with mutations of E417 (E417L, E417A) improved activity toward the bulky substrate l-Trp, and mutation of E417 to basic amino acids (E417K, E417H, E417R) enhanced the universal activity toward various l-amino acid substrates. The variant PmiLAADE417K showed remarkable catalytic activity improvement on seven substrates (l-Ala, l-Asp, l-Ile, l-Leu, l-Phe, l-Trp, and l-Val). The catalytic efficiency improvement obtained by E417 mutation may be attributed to the expansion of the entrance channel and its electrostatic interactions. These PmiLAAD variants with a broadened substrate spectrum can extend the application potential of LAADs. Full article
Show Figures

Figure 1

18 pages, 2773 KiB  
Article
Expanding the Scope of Orthogonal Translation with Pyrrolysyl-tRNA Synthetases Dedicated to Aromatic Amino Acids
by Hsueh-Wei Tseng, Tobias Baumann, Huan Sun, Yane-Shih Wang, Zoya Ignatova and Nediljko Budisa
Molecules 2020, 25(19), 4418; https://doi.org/10.3390/molecules25194418 - 25 Sep 2020
Cited by 17 | Viewed by 5920
Abstract
In protein engineering and synthetic biology, Methanosarcina mazei pyrrolysyl-tRNA synthetase (MmPylRS), with its cognate tRNAPyl, is one of the most popular tools for site-specific incorporation of non-canonical amino acids (ncAAs). Numerous orthogonal pairs based on engineered MmPylRS variants [...] Read more.
In protein engineering and synthetic biology, Methanosarcina mazei pyrrolysyl-tRNA synthetase (MmPylRS), with its cognate tRNAPyl, is one of the most popular tools for site-specific incorporation of non-canonical amino acids (ncAAs). Numerous orthogonal pairs based on engineered MmPylRS variants have been developed during the last decade, enabling a substantial genetic code expansion, mainly with aliphatic pyrrolysine analogs. However, comparatively less progress has been made to expand the substrate range of MmPylRS towards aromatic amino acid residues. Therefore, we set to further expand the substrate scope of orthogonal translation by a semi-rational approach; redesigning the MmPylRS efficiency. Based on the randomization of residues from the binding pocket and tRNA binding domain, we identify three positions (V401, W417 and S193) crucial for ncAA specificity and enzyme activity. Their systematic mutagenesis enabled us to generate MmPylRS variants dedicated to tryptophan (such as β-(1-Azulenyl)-l-alanine or 1-methyl-l-tryptophan) and tyrosine (mainly halogenated) analogs. Moreover, our strategy also significantly improves the orthogonal translation efficiency with the previously activated analog 3-benzothienyl-l-alanine. Our study revealed the engineering of both first shell and distant residues to modify substrate specificity as an important strategy to further expand our ability to discover and recruit new ncAAs for orthogonal translation Full article
(This article belongs to the Special Issue Natural Product-Inspired Molecules: From Weed to Remedy)
Show Figures

Graphical abstract

24 pages, 5676 KiB  
Article
Deletion and Randomization of Structurally Variable Regions in B. subtilis Lipase A (BSLA) Alter Its Stability and Hydrolytic Performance Against Long Chain Fatty Acid Esters
by Ronny Martínez, Claudia Bernal, Rodrigo Álvarez, Christopher Concha, Fernando Araya, Ricardo Cabrera, Gaurao V. Dhoke and Mehdi D. Davari
Int. J. Mol. Sci. 2020, 21(6), 1990; https://doi.org/10.3390/ijms21061990 - 14 Mar 2020
Cited by 10 | Viewed by 3582
Abstract
The continuous search for novel enzyme backbones and the engineering of already well studied enzymes for biotechnological applications has become an increasing challenge, especially by the increasing potential diversity space provided by directed enzyme evolution approaches and the demands of experimental data generated [...] Read more.
The continuous search for novel enzyme backbones and the engineering of already well studied enzymes for biotechnological applications has become an increasing challenge, especially by the increasing potential diversity space provided by directed enzyme evolution approaches and the demands of experimental data generated by rational design of enzymes. In this work, we propose a semi-rational mutational strategy focused on introducing diversity in structurally variable regions in enzymes. The identified sequences are subjected to a progressive deletion of two amino acids and the joining residues are subjected to saturation mutagenesis using NNK degenerate codons. This strategy offers a novel library diversity approach while simultaneously decreasing enzyme size in the variable regions. In this way, we intend to identify and reduce variable regions found in enzymes, probably resulting from neutral drift evolution, and simultaneously studying the functional effect of said regions. This strategy was applied to Bacillus. subtilis lipase A (BSLA), by selecting and deleting six variable enzyme regions (named regions 1 to 6) by the deletion of two amino acids and additionally randomizing the joining amino acid residues. After screening, no active variants were found in libraries 1% and 4%, 15% active variants were found in libraries 2% and 3%, and 25% for libraries 5 and 6 (n = 3000 per library, activity detected using tributyrin agar plates). Active variants were assessed for activity in microtiter plate assay (pNP-butyrate), thermal stability, substrate preference (pNP-butyrate, -palmitate), and compared to wildtype BSLA. From these analyses, variant P5F3 (F41L-ΔW42-ΔD43-K44P), from library 3 was identified, showing increased activity towards longer chain p-nitrophenyl fatty acid esters, when compared to BSLA. This study allowed to propose the targeted region 3 (positions 40–46) as a potential modulator for substrate specificity (fatty acid chain length) in BSLA, which can be further studied to increase its substrate spectrum and selectivity. Additionally, this variant showed a decreased thermal resistance but interestingly, higher isopropanol and Triton X-100 resistance. This deletion-randomization strategy could help to expand and explore sequence diversity, even in already well studied and characterized enzyme backbones such as BSLA. In addition, this strategy can contribute to investigate and identify important non-conserved regions in classic and novel enzymes, as well as generating novel biocatalysts with increased performance in specific processes, such as enzyme immobilization. Full article
Show Figures

Graphical abstract

16 pages, 5475 KiB  
Article
Decoding Essential Amino Acid Residues in the Substrate Groove of a Non-Specific Nuclease from Pseudomonas syringae
by Lynn Sophie Schwardmann, Sarah Schmitz, Volker Nölle and Skander Elleuche
Catalysts 2019, 9(11), 941; https://doi.org/10.3390/catal9110941 - 9 Nov 2019
Cited by 3 | Viewed by 3698
Abstract
Non-specific nucleases (NSN) are of interest for biotechnological applications, including industrial downstream processing of crude protein extracts or cell-sorting approaches in microfabricated channels. Bacterial nucleases belonging to the superfamily of phospholipase D (PLD) are featured for their ability to catalyze the hydrolysis of [...] Read more.
Non-specific nucleases (NSN) are of interest for biotechnological applications, including industrial downstream processing of crude protein extracts or cell-sorting approaches in microfabricated channels. Bacterial nucleases belonging to the superfamily of phospholipase D (PLD) are featured for their ability to catalyze the hydrolysis of nucleic acids in a metal-ion-independent manner. In order to gain a deeper insight into the composition of the substrate groove of a NSN from Pseudomonas syringae, semi-rational mutagenesis based on a structure homology model was applied to identify amino acid residues on the protein’s surface adjacent to the catalytic region. A collection of 12 mutant enzymes each with a substitution to a positively charged amino acid (arginine or lysine) was produced in recombinant form and biochemically characterized. Mutations in close proximity to the catalytic region (inner ring) either dramatically impaired or completely abolished the enzymatic performance, while amino acid residues located at the border of the substrate groove (outer ring) only had limited or no effects. A K119R substitution mutant displayed a relative turnover rate of 112% compared to the original nuclease. In conclusion, the well-defined outer ring of the substrate groove is a potential target for modulation of the enzymatic performance of NSNs belonging to the PLD superfamily. Full article
(This article belongs to the Special Issue Novel Enzyme and Whole-Cell Biocatalysts)
Show Figures

Graphical abstract

25 pages, 1661 KiB  
Review
Genetically Engineered Proteins to Improve Biomass Conversion: New Advances and Challenges for Tailoring Biocatalysts
by Lucas Ferreira Ribeiro, Vanesa Amarelle, Luana de Fátima Alves, Guilherme Marcelino Viana de Siqueira, Gabriel Lencioni Lovate, Tiago Cabral Borelli and María-Eugenia Guazzaroni
Molecules 2019, 24(16), 2879; https://doi.org/10.3390/molecules24162879 - 8 Aug 2019
Cited by 29 | Viewed by 9559
Abstract
Protein engineering emerged as a powerful approach to generate more robust and efficient biocatalysts for bio-based economy applications, an alternative to ecologically toxic chemistries that rely on petroleum. On the quest for environmentally friendly technologies, sustainable and low-cost resources such as lignocellulosic plant-derived [...] Read more.
Protein engineering emerged as a powerful approach to generate more robust and efficient biocatalysts for bio-based economy applications, an alternative to ecologically toxic chemistries that rely on petroleum. On the quest for environmentally friendly technologies, sustainable and low-cost resources such as lignocellulosic plant-derived biomass are being used for the production of biofuels and fine chemicals. Since most of the enzymes used in the biorefinery industry act in suboptimal conditions, modification of their catalytic properties through protein rational design and in vitro evolution techniques allows the improvement of enzymatic parameters such as specificity, activity, efficiency, secretability, and stability, leading to better yields in the production lines. This review focuses on the current application of protein engineering techniques for improving the catalytic performance of enzymes used to break down lignocellulosic polymers. We discuss the use of both classical and modern methods reported in the literature in the last five years that allowed the boosting of biocatalysts for biomass degradation. Full article
(This article belongs to the Special Issue Protein Engineering: Different Biotechnology Applications)
Show Figures

Figure 1

12 pages, 2684 KiB  
Article
Change of the Product Specificity of a Cyclodextrin Glucanotransferase by Semi-Rational Mutagenesis to Synthesize Large-Ring Cyclodextrins
by Christian Sonnendecker and Wolfgang Zimmermann
Catalysts 2019, 9(3), 242; https://doi.org/10.3390/catal9030242 - 6 Mar 2019
Cited by 21 | Viewed by 4565
Abstract
Cyclodextrin glucanotransferases (CGTases) convert starch to cyclodextrins (CD) of various sizes. To engineer a CGTase for the synthesis of large-ring CD composed of 9 to 12 glucose units, a loop structure of the protein involved in substrate binding was targeted for semi-rational mutagenesis. [...] Read more.
Cyclodextrin glucanotransferases (CGTases) convert starch to cyclodextrins (CD) of various sizes. To engineer a CGTase for the synthesis of large-ring CD composed of 9 to 12 glucose units, a loop structure of the protein involved in substrate binding was targeted for semi-rational mutagenesis. Based on multiple protein alignments and protein structure information, a mutagenic megaprimer was designed to encode a partial randomization of eight amino acid residues within the loop region. The library obtained encoding amino acid sequences occurring in wild type CGTases in combination with a screening procedure yielded sequences displaying a changed CD product specificity. As a result, variants of the CGTase from the alkaliphilic Bacillus sp. G825-6 synthesizing mainly CD9 to CD12 could be obtained. When the mutagenesis experiment was performed with the CGTase G825-6 variant Y183R, the same loop alterations that increased the total CD synthesis activity resulted in lower activities of the variant enzymes created. In the presence of the amino acid residue R183, the synthesis of CD8 was suppressed and larger CD were obtained as the main products. The alterations not only affected the product specificity, but also influenced the thermal stability of some of the CGTase variants indicating the importance of the loop structure for the stability of the CGTase. Full article
(This article belongs to the Special Issue Novel Enzyme and Whole-Cell Biocatalysts)
Show Figures

Graphical abstract

Back to TopTop