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Abstract: L-amino acid deaminases (LAADs) are flavoenzymes that catalyze the stereospecific oxida-
tive deamination of L-amino acids into α-keto acids, which are widely used in the pharmaceutical,
food, chemical, and cosmetic industries. However, the substrate specificity of available LAADs is
limited, and most substrates are concentrated on several bulky or basic L-amino acids. In this study,
we employed a LAAD from Proteus mirabilis (PmiLAAD) and broadened its substrate specificity using
a semi-rational design strategy. Molecular docking and alanine scanning identified F96, Q278, and
E417 as key residues around the substrate-binding pocket of PmiLAAD. Site-directed saturation mu-
tagenesis identified E417 as the key site for substrate specificity expansion. Expansion of the substrate
channel with mutations of E417 (E417L, E417A) improved activity toward the bulky substrate L-Trp,
and mutation of E417 to basic amino acids (E417K, E417H, E417R) enhanced the universal activity
toward various L-amino acid substrates. The variant PmiLAADE417K showed remarkable catalytic
activity improvement on seven substrates (L-Ala, L-Asp, L-Ile, L-Leu, L-Phe, L-Trp, and L-Val). The
catalytic efficiency improvement obtained by E417 mutation may be attributed to the expansion of
the entrance channel and its electrostatic interactions. These PmiLAAD variants with a broadened
substrate spectrum can extend the application potential of LAADs.

Keywords: L-amino deaminase; amino acids; keto acids; substrate spectrum; substrate channel

1. Introduction

L-amino acid deaminases (LAADs) are flavoenzymes containing non-covalently bound
flavin adenine dinucleotide, which catalyzes the stereospecific oxidative deamination of
L-amino acids into α-keto acids and ammonia [1] (Figure 1).
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L-amino acid deaminases (LAADs) are flavoenzymes containing non-covalently 

bound flavin adenine dinucleotide, which catalyzes the stereospecific oxidative deamina-
tion of L-amino acids into α-keto acids and ammonia [1] (Figure 1). 

 
Figure 1. Oxidative deamination of L-amino acids catalyzed by L-amino acid deaminases. 
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Figure 1. Oxidative deamination of L-amino acids catalyzed by L-amino acid deaminases.

A LAAD is an advantageous and suitable catalyst for producing keto acids, because
it can synthesize keto acids in whole cells without the addition of a cofactor or the gener-
ation of potentially harmful by-products (e.g., hydrogen peroxide) compared with other
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enzymes that can produce keto acids, such as L-amino acid oxidase and aminotrans-
ferase [2]. Keto acids are organic acids containing a carboxyl acid group and a ketone
group, which are widely used in the pharmaceutical, food, chemical, and cosmetics in-
dustries [3]. Phenylpyruvic acids are used for the synthesis of D-phenylalanine [4] and
phenyllactic acid, which are applied in medicine [5,6]. α-Keto-γ-methylthiobutyric acids
play an important role in the therapy to limit tumor growth [7] and are used as methionine
supplements in livestock feed [8]. Pyruvic acids are utilized in synthesizing vitamins, cereal
protection agents, and pesticides [9,10]. α-Ketoisovaleric acids stimulate muscle growth in
livestock [11] and reduce renal filtration pressure [12].

Thus, the production of keto acids by LAADs has attracted substantial research at-
tention in recent years. To date, various keto acids have been successfully produced
through bioconversion by LAADs [13–15]. In addition, LAADs are widely used in multi-
enzyme cascade systems to produce expensive D-amino acids, which have diverse ap-
plications in the pharmaceutical, agricultural, food, and cosmetics industries [5,16,17].
Parmeggiani et al. [18] designed a novel one-pot multi-enzyme method employing LAAD,
phenylalanine ammonia lyase, and borane-ammonia to synthesize substituted D-Phe from
cheap cinnamic acid. The same group developed a three-enzyme system to convert L-
arylalanines to D-arylalanines, which combined LAAD and D-amino acid dehydrogenase
with glucose dehydrogenase for cofactor recycling [19]. Zhang et al. [20] also success-
fully synthesized optically pure D-Phe from L-Phe using a similar system. Moreover,
Walton et al. [21] coupled LAADs with aminotransferase to produce a range of D-Phe
derivatives. Considering the wide application of LAADs in keto acid synthesis and multi-
enzyme system construction, it is necessary to expand their substrate specificity because a
LAAD mostly exhibits specificity toward bulky amino acids and basic amino acids [2].

Thus, there has been extensive research effort toward engineering LAADs for in-
creased catalytic ability. Wu et al. [22] generated mutations on four essential residues
(F93S/P186A/M394V/F184S) of PmiLAAD, successfully achieving a 6.6-fold higher spe-
cific activity towards L-Phe compared with that of the wild-type. Song et al. [23] engineered
PvLAAD to obtain a higher L-Leu conversion rate (94.25%) by optimizing the plasmid
origin with different copy numbers, modulating messenger RNA structure downstream of
the initiation codon, and designing the sequences at the ribosome binding site. Hossain
et al. [15] have constructed a double mutant (K104/A337) of PvLAAD through error-prone
polymerase chain reaction (erPCR), and a 1.3-fold activity towards L-Met of the wild-type
was achieved. Similar studies have been aimed at enhancing the activity of LAADs toward
substrates such as L-Val [24] and L-1-naphthylalanine [25]. However, the metabolic or pro-
tein engineering of LAADs, including the examples mentioned above, has mostly focused
on improving the activity against a certain substrate, whereas research on the development
of a single LAAD catalyst capable of producing various keto acids is limited.

To address this gap, in this study, we developed new PmiLAAD variants with higher
activity toward various types of L-amino acids via a semi-rational design strategy. Pmi-
LAAD was modeled using the SWISS MODEL server. The docking conformations of seven
L-amino acids into the substrate-binding pocket of PmiLAAD were analyzed, and key
residues were identified for site-directed saturation mutagenesis after alanine scanning of
the relevant sites around the pocket. We then constructed PmiLAAD variants with broader
substrate specificity compared with that of the wild-type, and the involved mechanism was
analyzed by comparing the substrate entrance channel conformation between the wild-type
and the variant with enhanced catalytic ability.

2. Results and Discussion
2.1. Homologous Modeling and Prediction of Functional Sites

Seven L-amino acids were docked into the active site of the homologous model of
PmiLAAD by AutoDock. The residues within 4 Å distance from the L-amino acid ligand
were determined as potential key sites for substrate binding, and the corresponding residues
of each L-amino acid substrate are listed in Table 1. An example of the docking result for



Catalysts 2022, 12, 175 3 of 10

L-Trp is shown in Figure 2, which had the largest number of residues around it compared to
the other substrates. The docking result with the highest score was chosen to predict the key
residues. As shown in Figure 2, the residues Q99 and R315 interact with the carboxyl group
of L-Trp, and the residue G437 is connected to the amino group of L-Trp, which is consistent
with the residues reported to interact with the L-amino acid substrate of PvLAAD [26].
Alanine scanning was then performed on each residue to determine the key residues for
mutation. The sites chosen for alanine scanning in our study were mostly different from the
sites that were selected in previous studies by other researchers (Table 1). Compared with
random mutations, this semi-rational strategy based on the analysis of protein structure
effectively reduced the screening effort.
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Figure 2. The docking results of L-Trp to the PmiLAAD model.

Table 1. The active sites selected in our study and in previous studies by other researchers a.

Substrate Active Sites for Mutation Reference

L-Ala M411 This study
L-Val Y97, Q278, Q280, M411 This study
L-Ile Q278, I317, M411 This study

L-Leu Q278, I317, M411, I413, W438 This study
L-Phe Q278, I317, M411, E417 This study
L-Trp Y97, Q99, Q278, Q280, R315, I317I, M411, I413, E417, G437, W438 This study
L-Asp F96, Y97, G98, Q99, Q278, Q280, M411, G437, W438 This study

L-Phe F93, F184, P186, M394 (Proteus mirabilis) [22]
L-Leu Tuning the transcription and translation levels (Proteus vulgaris) [23]
L-Met K104, A337 (Proteus vulgaris) [15]
L-Val N100,Q276,R316,F318 (Proteus myxofaciens) [24]

L-1-naphthylalanine F318A, V412A, V438P (Proteus myxofaciens) [25]
a Note: The active sites selected for alanine scanning in our study were sites within 4 Å scope of each substrate
according to the docking results.

2.2. Determination of Key Residues via Alanine Scanning

An alanine-scanning strategy was employed to observe and compare the effects of the
mutations at different sites on the activities, which helped to reduce the effort required in the
processes of saturation mutagenesis and mutant screening. Alanine scanning is a method
used in molecular biology and protein biochemistry to identify the molecular components
that are essential for the function, form, and stability of proteins or peptides [27]. The
substitution of alanine for the original amino acid residue causes all side chain atoms of a
certain site to be removed, except for one functionally, largely the neutral methyl group,
which usually leads to changes in protein functions. Alanine scanning was performed
on all 17 residues selected by the results of molecular docking, and the activity assay
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on all of the resulting variants was conducted according to a colorimetric assay using
2,4-dinitrophenylhydrazine (DNPH).

Alanine scanning showed that the sites leading to increased activity were different
for the different substrates (Figures 3 and S1). Taken as a whole, among all the variants
obtained by alanine mutation, PmiLAADF96A and PmiLAADE417A showed activity im-
provement on multiple L-amino acid substrates. PmiLAADF96A showed increased activity
toward L-Ile (1.03-fold), L-Phe (2.71-fold), L-Trp (1.79-fold), and L-Val (1.14-fold), whereas
PmiLAADE417A showed increased activity toward L-Ile (1.87-fold), L-Phe (5.59-fold), L-Trp
(2.58-fold), and L-Val (1.33-fold). PmiLAADQ278A also showed increased activity toward
L-Ala (3.28-fold), L-Leu (1.22-fold), and L-Trp (4.13-fold). In addition, residue Q278 was lo-
cated within a 4 Å scope around the substrate-binding site toward six of the seven L-amino
acid substrates. Based on these results, F96, E417, and Q278 were selected for site-directed
saturation mutagenesis in subsequent experiments.
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Figure 3. The results of alanine scanning on residues F96, Q278, and E417. The black dotted line
indicates the relative activity (100%) of wild-type PmiLAAD.

2.3. Site-Directed Saturation Mutagenesis at Potential Key Residues

To ensure the integrity and dependability of the screening results, site-directed satura-
tion mutagenesis at the three sites was conducted on the three key residues determined
by alanine scanning (F96, E417, and Q278) based on mutation primer design and homol-
ogous recombination of the PmiLAAD wild-type plasmid. Nineteen mutants at each
site were constructed and expressed in Escherichia coli (DE3). The specific activity of all
57 variants of PmiLAAD was measured by the DNPH method according to the intensity
of the reddish-brown color indicating different amounts of keto acids produced, which
is calculated according to the corresponding standard curves. As shown in Figure 4, the
catalytic properties of the seven substrates were obtained by different variants.

Among the mutations on residue F96, except for alanine, only PmiLAADF96K showed
increased activity (1.84-fold) toward L-Asp. Mutations of Q278, including PmiLAADQ278C,
PmiLAADQ278I, PmiLAADQ278L, and PmiLAADQ278S, resulted in enhanced activity toward
L-Trp, among which PmiLAADQ278C had the highest activity (2.44-fold). Mutations at site
E417 improved the catalytic activity toward diverse substrates. For example, the catalytic
activity of PmiLAADE417H toward L-Ala, L-Asp, and L-Trp was 3.25-, 3.30-, and 2.48-fold
higher than that of the wild type, respectively. The catalytic activity of PmiLAADE417R

toward L-Ala, L-Asp, L-Phe, and L-Trp was 3.60-, 1.68-, 3.94-, and 6.10-fold higher than that
of the wild type, respectively. The variant PmiLAADE417S also showed increased activity
toward various substrates, including L-Ala (1.63-fold), L-Asp (2.26-fold), L-Ile (1.80-fold),
L-Leu (1.15-fold), and L-Trp (4.42-fold).
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(A) Site-directed saturation mutagenesis at site F96. (B) Site-directed saturation mutagenesis at site
Q278. (C) Site-directed saturation mutagenesis at site E417. Relative activity higher and lower than
that of the wild-type is shown in red and blue, respectively.

Notably, the majority of variants of PmiLAAD showing significantly increased cat-
alytic efficiency toward the corresponding L-amino acid substrates were those harbor-
ing mutations at residue E417, such as PmiLAADE417A, PmiLAADE417H, PmiLAADE417K,
PmiLAADE417R, PmiLAADE417S, and PmiLAADE417W. On the one hand, the substrate L-Trp
showed the best activity enhancement by the site-directed saturation method: the catalytic
activities of PmiLAADE417L and PmiLAADE417A were 8.44-fold and 2.73-fold versus that of
the PmiLAAD wild-type, respectively. On the other hand, the mutations of E417 to basic
amino acid residues, such as PmiLAADE417K, PmiLAADE417H, and PmiLAADE417R, exhib-
ited obvious activity enhancement toward multiple substrates (Figure S3). PmiLAADE417K

was identified as the variant with the most remarkable catalytic activity improvement on
all seven types of L-amino acid substrates. The activity of PmiLAADE417K toward L-Ala,
L-Asp, L-Ile, L-Leu, L-Phe, L-Trp, and L-Val was 3.77-fold, 1.41-fold, 1.34-fold, 1.29-fold,
1.05-fold, 6.65-fold, and 1.68-fold higher, respectively, than that of wild-type PmiLAAD
(Figure S3A). As a result, the E417K mutation effectively enlarged the substrate spectrum
of PmiLAAD, indicating that E417 is a promising site for improving the specific activity of
PmiLAAD toward certain L-amino acids. Consequently, the catalytic ability of PmiLAAD
was enhanced from a new perspective of the substrate spectrum, rather than by merely
increasing the enzyme activity. The variants with broader substrate specificity obtained
in our research have promising application prospects for the synthesis of various keto
acids [28]. Additionally, the variants of PmiLAAD have potential in the production of
different kinds of D-amino acids when constructing multi-enzyme systems with other
catalysts such as D-amino acid dehydrogenase [19,20], ammonia lyase [18], and D-amino
acid transferase [21].

2.4. Structural Analysis of E417 and Its Mutations

The structural analysis showed that residue E417 is located in the loop structure of
the substrate entrance channel of PmiLAAD (Figure S2), and is thus expected to play an
important role in substrate entry and product release [28].

The enzyme activity measurements suggested that the ability to attain activity im-
provement is complex; however, we can identify two general features required. The first
is that mutation on residue E417 to basic amino acid residues (such as E417K) universally
improved the catalytic efficiency on the substrates and broadened the substrate spectrum.
The other feature is that the most significant activity enhancement was achieved for the
bulky substrate L-Trp.



Catalysts 2022, 12, 175 6 of 10

For example, when site 417 was mutated to Leu, the activity improvement was the
highest (8.44-fold of the wild-type). It was speculated that E417L effectively expanded the
substrate channel and alleviated the steric hindrance of the bulky substrate entering the
pocket to improve the catalytic efficiency (Figure 5B). However, the mutant E417A was not
as effective as E417L, with the activity increasing by only 2.73 times. This was probably
attributed to the even larger substrate channel of PmiLAADE417A, which improved the
degree of freedom of the entry of the substrate (Figure 5C), and the result of catalytic
activity suggested that too much freedom of substrate entry would have a negative impact
on the reaction efficiency [29]. Therefore, we measured the kinetic parameters (Table 2,
Figure S4) of wild-type PmiLAAD and the variants PmiLAADE417A and PmiLAADE417L

and found that the mutation of the entrance channel had little effect on the affinity of
the substrate (Km), whereas kcat was increased by mutants E417L and E417A. Thus, we
speculated that moderate and proper expansion of the channel could significantly improve
the catalytic efficiency of the enzyme. The Vmax of the optimal mutant E417L was 4.8-fold
that of wild-type PmiLAAD. We also noticed that the activity of PmiLAADE417I towards
L-Trp was decreased and the size of Ile is between Val and Leu. This may be attributed to
the different position and orientation of the methyl group in the side chain of Ile, which
leads to different molecular interactions in space and may result in decreased activity. In
addition, the catalytic activity may not only be influenced by the size but also the shape of
the entrance tunnel.

Table 2. The apparent kinetic parameters of PmiLAAD variants and the wild-type (WT) a.

Substrate Biocatalyst Km (mM) Vmax (µM·mg−1·min−1)) kcat (s−1) kcat/Km (mM−1·s−1)

L-Trp
E417A 7.92 ± 1.59 3.25 ± 0.14 2.78 ± 0.12 0.35
E417L 7.33 ± 1.76 8.53 ± 0.36 7.31 ± 0.31 1.00

WT 6.01 ± 0.92 1.76 ± 0.05 1.51 ± 0.04 0.25

L-Asp E417K 11.61 ± 2.11 0.94 ± 0.06 0.81 ± 0.05 0.07
WT 21.88 ± 5.20 1.17 ± 0.13 1.00 ± 0.11 0.05

a Note: The method of kinetic analysis using whole-cell biocatalysts referred to the method reported by
Hossain et al. [30]. The reaction mixture consisted of different concentrations of L-amino acids and whole-cell
biocatalysts of PmiLAAD variants. All experiments were conducted at 30 ◦C in 50 mM Tris–HCl buffer (pH 9.0).
The amount of whole-cell biocatalyst in the reaction mixture was equal in quantity. The values were averaged
from triplicate measurements.
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The heatmaps in Figure 4 show that the catalytic efficiency of mutations E417H, E417K,
and E417R (basic amino acids with larger side chains) towards L -Trp was increased, and
these mutations to basic amino acids also generally improved the activity toward various L

-amino acids. This is likely attributed to the basic side chain residue at site 417, which had
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an affinity with the carboxyl group of the L-amino acid substrate. The kinetic parameters
(Table 2) showed that the Km of PmiLAADE417K to L -Asp was significantly decreased
compared to that of the wild-type, which confirmed that the affinity between the variant
and the substrate was increased. This suggests that the catalytic efficiency of the enzyme
was affected by not only the size of the entrance channel residues, but also the electrostatic
condition of the channel. The influence of charged side chains on the substrate channel
requires further study.

3. Materials and Methods
3.1. Materials

The host strain E. coli BL21 (DE3) harboring the expression plasmid pET-28a and
the PmiLAAD gene from P. mirabilis (GenBank accession no. EU669819.1) were stored
in our laboratory [20]. The DNA purification kit, PrimeSTAR® HS DNA polymerase
premix, a one-step cloning kit, NdeI, and other reagents were acquired from Takara Bio
Co. (Kawasaki, Japan) and Vazyme Biotech Co., Ltd. (Nanjing, China). L-Amino acids
were purchased from Aladdin Biochemical Technology Co., Ltd. (Shanghai, China) and
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Keto acids were purchased
from Sigma-Aldrich (St. Louis, MO, USA). DNPH used for high-throughput screening was
purchased from Sinopharm Chemical Reagent Co., Ltd. Sulfuric acid for high-performance
liquid chromatography (HPLC) was purchased from Sinopharm Chemical Reagent Co., Ltd.

3.2. Molecular Modeling and Docking Calculations

The homologous structural models of PmiLAAD and its mutants were constructed
using the SWISS-MODEL online server (https://swissmodel.expasy.org/interactive, ac-
cessed on 1 January 2022), based on the X-ray crystal structures of PvLAAD with 91.93%
identity (PDB ID: 5hxw, GenBank accession no. AB030003.1). The structures of L-Ala,
L-Asp, L-Ile, L-Leu, L-Phe, L-Trp, and L-Val were downloaded from PubChem (https:
//pubchem.ncbi.nlm.nih.gov, accessed on 1 January 2022). The seven L-amino acids were
docked to the PmiLAAD receptor using AutoDock. The rank of docking results for each
ligand was listed in Table S2. Analysis of the structures and identification of potential
binding sites were performed using PyMOL.

3.3. Alanine Scanning and Site-Directed Saturation Mutagenesis

The residues within a 4 Å scope around the substrate-binding site were selected
for alanine scanning, and three key residues with higher activity were determined for
site-directed saturation mutagenesis. Site-directed saturation mutants were constructed
by homologous recombination according to a previously published method [31]. Primer
synthesis and DNA sequencing were performed by Genewiz Biotech Co., Ltd. (Suzhou,
China). The primers used in this study are listed in Table S1.

3.4. Cell Culture and Protein Expression of PmiLAAD Mutants

The site-directed saturation mutants of PmiLAAD expressed in E. coli BL21(DE3) were
inoculated into 48-well plates with 2 mL of Luria–Bertani medium containing 5 mg·mL−1

kanamycin per well, and cultured at 37 ◦C. The culture was induced by the addition of
isopropyl β-D-1-thiogalactopyranoside to a final concentration of 0.5 mM when the optical
density at 600 nm was 0.6–0.8, followed by incubation for an additional 16 h at 17 ◦C with
shaking at 200 rpm. The mutants were harvested by centrifugation at 4500 rpm and 4 ◦C
for 20 min, and the mutant PmiLAAD whole cells were used for further activity screening.

3.5. Measurement of Enzymatic Activity

The whole-cell catalysts in the 48-well plates obtained by centrifugation (as described
above) were incubated with 2 mL of 50 mM L-amino acid solution at 30 ◦C with shaking at
200 rpm for the oxidative reaction. The reaction mixture was centrifuged (4500 rpm, 20 min)
at 1 h, 3 h, and 5 h, and 100 µL of the supernatant was transferred to a 96-well plate to

https://swissmodel.expasy.org/interactive
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
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measure keto acids. The biocatalytic activity of the PmiLAAD mutants was measured using
the DNPH method reported by Zhou et al. [32]. Briefly, 50 µL DNPH (2 mM, dissolved in
1.2 mM diluted sulfuric acid) was added to 100 µL of the above-mentioned samples and
incubated at 30 ◦C for 5 min. Then, 50 µL NaOH (4 M) was added, and the absorbance of
the reddish-brown solution in the plates was measured at the corresponding wavelength of
each keto acid using an absorbance microplate reader (CYTATION3, BioTek, Winooski, VT,
US). The wavelength for the concentration measurement of each keto acid was determined
by full-wavelength scanning. The wavelength with maximum absorbance was determined
as the detection wavelength. The standard curves of the seven types of keto acids with
different concentrations were obtained using the same DNPH-based method. One unit
of PmiLAAD catalytic activity was defined as 1 µmol of keto acid generated per minute
under the assay conditions. All experiments were conducted in triplicate.

3.6. Determination of Kinetic Parameters

The method of kinetic analysis using whole-cell biocatalysts was reported by Hossain
et al. [30]. Kinetic analysis of keto acid production by PmiLAAD mutants was conducted
by measuring the concentration of keto acids produced with different concentrations of
L-amino acids at 30 ◦C for 40 min. The concentrations of L-Asp were 0–50 mM, and
the concentrations of L-Trp were 0–80 mM. L-amino acids and whole-cell biocatalysts
of PmiLAAD variants were mixed in 50 mM Tris–HCl buffer (pH 9.0). The amount of
whole-cell biocatalyst in the reaction mixture was equal in quantity. The apparent Km and
kcat values were then calculated using the Michaelis–Menten equation. The values were
averaged from triplicate measurements.

3.7. Analysis of Produced Keto Acids

The reaction samples (100 µL) were filtered through a 0.45 µm pore filter membrane
(Organo system), and the resulting filtrate samples were tested using HPLC (Chromaster
CM5110, Hitachi, Tokyo, Japan) with an Aminex HPX-87H column (300 × 7.8 mm, 9 µm).
The mobile phase was 5 mM sulfuric acid (H2SO4) at a constant flow rate of 0.6 mL·min−1

(40 ◦C). The injection volume was 10 µL, and the injection time was 30 min. The ultraviolet
detection wavelength was 210 nm. The retention time of each keto acid is listed in Table S3.
The standard curves of keto acids obtained by HPLC were compared with those obtained by
the DNPH method, and the feasibility and validity of the DNPH method were confirmed.

4. Conclusions

In this study, we employed a semi-rational design strategy to broaden the substrate
spectrum of PmiLAAD. The molecular docking method was used to predict the residues
around the substrate-binding sites, and the alanine-scanning strategy was employed to
determine the key residues for site-directed saturation. By site-directed saturation muta-
genesis, site E417 was identified as a key site for catalytic efficiency improvement. The
catalytic efficiency improvement obtained by a mutation on E417 may be attributed to
the expansion of the substrate channel and its electrostatic condition. Expansion of the
substrate channel (such as via the E417L mutation) improved the activity toward the bulky
substrate L-Trp, and the mutation of E417 to basic amino acids (such as E417K) had a
universal enhanced activity towards various L-amino acids. The substrate specificity of
the PmiLAAD wild-type is mostly concentrated on several bulky or basic L-amino acids
such as L-Phe, L-Leu, and L-His. In addition to these, the PmiLAAD variants in our study
exhibited improved activity toward various kinds of L-amino acids, including non-polar
L-amino acids (e.g., L-Trp and L-Val) and acidic L-amino acids (e.g., L-Asp). Consequently,
the substrate spectrum of PmiLAAD was broadened on some level. Our study helps to
expand the catalytic ability of PmiLAAD from a new perspective and provides a great
candidate site, E417, to increase the substrate specificity of PmiLAAD. These PmiLAAD
variants with broadened substrate specificity can not only be used for synthesizing keto
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acids, but they also have the potential to be applied in multi-enzyme cascade systems with
other catalysts for producing D-amino acids.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12020175/s1, Figure S1: The results of alanine scanning;
Figure S2: Structure of PmiLAAD; Figure S3: Relative activity of PmLAADE417K (A), PmLAADE417H

(B), and PmLAADE417R (C) toward seven kinds of L-amino acids; Figure S4: Plots for the apparent
kinetic parameter determination of PmiLAAD variants and wild-type; Table S1: Primers used in
this study; Table S2: The rank of docking results of each ligand; Table S3: The retention times of
high-performance liquid chromatography (HPLC).
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