Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = self-healing dental composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2614 KiB  
Article
Synthesis and Characterization of Microcapsules as Fillers for Self-Healing Dental Composites
by Maria Amalia Tăut, Marioara Moldovan, Miuţa Filip, Ioan Petean, Codruţa Saroşi, Stanca Cuc, Adrian Catalin Taut, Ioan Ardelean, Viorica Lazăr and Sorin Claudiu Man
Nanomaterials 2024, 14(22), 1853; https://doi.org/10.3390/nano14221853 - 20 Nov 2024
Viewed by 1279
Abstract
This article proposes the synthesis and characterization of (triethylene glycol dimethacrylate–N,N-dihydroxyethyl-p-toluidine) TEGDMA-DHEPT self-healing microcapsules for their inclusion in dental composite formulations. The obtaining method is the in situ emulsion polymerization of the (poly urea-formaldehyde) (PUF) coatings. The microcapsules were characterized by Fourier transform [...] Read more.
This article proposes the synthesis and characterization of (triethylene glycol dimethacrylate–N,N-dihydroxyethyl-p-toluidine) TEGDMA-DHEPT self-healing microcapsules for their inclusion in dental composite formulations. The obtaining method is the in situ emulsion polymerization of the (poly urea-formaldehyde) (PUF) coatings. The microcapsules were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), high-performance liquid chromatography (HPLC), and low-field nuclear magnetic resonance (NMR) techniques. The optimal formation of uniform microcapsules is achieved at a stirring speed of 800 rpm and centrifugation is no longer necessary. HPLC demonstrates that the microcapsules formed at 800 rpm show a better control of liquid release than the heterogeneous ones obtained at a lower stirring speed. The centrifuged samples have rounded shapes, with dimensions between 80 and 800 nm, while the non-centrifuged samples are more uniform, with a spherical shape and dimensions of approximately 800 nm. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

30 pages, 1793 KiB  
Review
Polyhydroxyalkanoates: Medical Applications and Potential for Use in Dentistry
by Rim Ben Abdeladhim, José Alexandre Reis, Ana Maria Vieira and Catarina Dias de Almeida
Materials 2024, 17(22), 5415; https://doi.org/10.3390/ma17225415 - 6 Nov 2024
Cited by 8 | Viewed by 2328
Abstract
Polyhydroxyalkanoates (PHAs) are promising biopolymers as an alternative to traditional synthetic polymers due to their biodegradability and biocompatibility. The PHA market is blooming in response to the growing demand for biodegradable and environmentally friendly plastics. These biopolyesters are produced and degraded by a [...] Read more.
Polyhydroxyalkanoates (PHAs) are promising biopolymers as an alternative to traditional synthetic polymers due to their biodegradability and biocompatibility. The PHA market is blooming in response to the growing demand for biodegradable and environmentally friendly plastics. These biopolyesters are produced and degraded by a variety of microorganisms, making them environmentally friendly, while offering benefits such as biocompatibility (when adequately processed) and biodegradability. Their versatility extends to various areas, from biomedicine to agriculture and composite materials, where they pave the way for significative innovations. In the field of regenerative medicine, some PHAs have key applications, namely in vascular grafts, oral tissue regeneration, and development of self-healing polymers. In addition, PHAs have the potential to be used in the creation of dental implant materials and dental medical devices. PHAs can also be used to encapsulate hydrophobic drugs, providing an approach for more targeted and effective treatments. To summarize, PHAs open new perspectives in the field of medicine by improving drug delivery and offering ecologically biocompatible solutions for medical devices. The aim of this review is to present the medical and dental applications of PHA, their advantages, disadvantages, and indications. Full article
(This article belongs to the Special Issue Advances in Biomass-Based Materials and Their Applications)
Show Figures

Graphical abstract

23 pages, 12187 KiB  
Article
Improving Self-Healing Dental-Restorative Materials with Functionalized and Reinforced Microcapsules
by Bao Quoc Huynh, Sivashankari Rajasekaran, Joao Batista, Steven Lewis, Mario Alexandre Coelho Sinhoreti, Carmem Silvia Pfeifer and Ana Paula Fugolin
Polymers 2024, 16(17), 2410; https://doi.org/10.3390/polym16172410 - 24 Aug 2024
Cited by 3 | Viewed by 2597
Abstract
Dental resin composites are widely used in clinical settings but often face longevity issues due to the development and accumulation of microcracks, which eventually lead to larger cracks and restoration failure. The incorporation of microcapsules into these resins has been explored to introduce [...] Read more.
Dental resin composites are widely used in clinical settings but often face longevity issues due to the development and accumulation of microcracks, which eventually lead to larger cracks and restoration failure. The incorporation of microcapsules into these resins has been explored to introduce self-healing capability, potentially extending the lifespan of the restorations. This study aims to enhance the performance of self-healing dental resins by optimizing the microcapsules–resin matrix physicochemical interactions. Poly(urea–formaldehyde) (PUF) microcapsules were reinforced with melamine and subsequently subjected to surface functionalization with 3-aminopropyltriethoxysilane (APTES) and (3-mercaptopropyl)trimethoxysilane (MPTMS). Additionally, microcapsules were functionalized with a bilayer approach, incorporating tetraethyl orthosilicate (TEOS) with either APTES or MPTMS. X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) confirmed an increased Si:C ratio from 0.006 to 0.165. The functionalization process did not adversely affect the structure of the microcapsules or their healing agent volume. Compared to PUF controls, the functionalized microcapsules demonstrated enhanced healing efficiency, with TEOS/MPTMS-functionalized microcapsules showing the highest performance, showing a toughness recovery of up to 35%. This work introduces a novel approach to functionalization of microcapsules by employing advanced silanizing agents such as APTES and MPTMS, and pioneering bilayer functionalization protocols through their combination with TEOS. Full article
(This article belongs to the Special Issue Advances in Polymeric Dental Materials)
Show Figures

Graphical abstract

18 pages, 2145 KiB  
Review
A Review on the Current State of Microcapsule-Based Self-Healing Dental Composites
by Xiaoxi Wang and Tian Ding
J. Funct. Biomater. 2024, 15(6), 165; https://doi.org/10.3390/jfb15060165 - 16 Jun 2024
Cited by 4 | Viewed by 4415
Abstract
Resin-based dental composites, commonly used in dentistry, offer several advantages including minimally invasive application, esthetically pleasing appearance, and good physical and mechanical properties. However, these dental composites can be susceptible to microcracks due to various factors in the complex oral environment. These microcracks [...] Read more.
Resin-based dental composites, commonly used in dentistry, offer several advantages including minimally invasive application, esthetically pleasing appearance, and good physical and mechanical properties. However, these dental composites can be susceptible to microcracks due to various factors in the complex oral environment. These microcracks can potentially lead to clinical restoration failure. Conventional materials and methods are inadequate for detecting and repairing these microcracks in situ. Consequently, incorporating self-healing properties into dental composites has become a necessity. Recent years have witnessed rapid advancements in self-healing polymer materials, drawing inspiration from biological bionics. Microcapsule-based self-healing dental composites (SHDCs) represent some of the most prevalent types of self-healing materials utilized in this domain. In this article, we undertake a comprehensive review of the most recent literature, highlighting key insights and findings related to microcapsule-based SHDCs. Our discussion centers particularly on the preparation techniques, application methods, and the promising future of self-healing microcapsules in the field of dentistry. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Graphical abstract

24 pages, 5382 KiB  
Review
POSS and SSQ Materials in Dental Applications: Recent Advances and Future Outlooks
by Jan Ozimek, Izabela Łukaszewska and Krzysztof Pielichowski
Int. J. Mol. Sci. 2023, 24(5), 4493; https://doi.org/10.3390/ijms24054493 - 24 Feb 2023
Cited by 12 | Viewed by 3582
Abstract
Recently, silsesquioxanes (SSQ) and polyhedral oligomeric silsesquioxanes (POSS) have gained much interest in the area of biomaterials, mainly due to their intrinsic properties such as biocompatibility, complete non-toxicity, the ability to self-assemble and to form a porous structure, facilitating cell proliferation, creating a [...] Read more.
Recently, silsesquioxanes (SSQ) and polyhedral oligomeric silsesquioxanes (POSS) have gained much interest in the area of biomaterials, mainly due to their intrinsic properties such as biocompatibility, complete non-toxicity, the ability to self-assemble and to form a porous structure, facilitating cell proliferation, creating a superhydrophobic surface, osteoinductivity, and ability to bind hydroxyapatite. All the above has resulted in new developments in medicine. However, the application of POSS-containing materials in dentistry is still at initial stage and deserves a systematic description to ensure future development. Significant problems, such as reduction of polymerization shrinkage, water absorption, hydrolysis rate, poor adhesion and strength, unsatisfactory biocompatibility, and corrosion resistance of dental alloys, can be addressed by the design of multifunctional POSS-containing materials. Because of the presence of silsesquioxanes, it is possible to obtain smart materials that allow the stimulation of phosphates deposition and repairing of micro-cracks in dental fillings. Hybrid composites result in materials exhibiting shape memory, as well as antibacterial, self-cleaning, and self-healing properties. Moreover, introducing POSS into polymer matrix allows for materials for bone reconstruction, and wound healing. This review covers the recent developments in the field of POSS application in dental materials and gives the future perspectives within a promising field of biomedical material science and chemical engineering. Full article
(This article belongs to the Special Issue New Developments in Dental Implant Materials)
Show Figures

Figure 1

13 pages, 2258 KiB  
Article
Properties of A Model Self-Healing Microcapsule-Based Dental Composite Reinforced with Silica Nanoparticles
by Khaled Abid Althaqafi, Abdulrahman Alshabib, Julian Satterthwaite and Nikolaos Silikas
J. Funct. Biomater. 2022, 13(1), 19; https://doi.org/10.3390/jfb13010019 - 14 Feb 2022
Cited by 14 | Viewed by 6645
Abstract
Aim: The purpose of this study was to evaluate the mechanical properties of an experimental self-healing dental composite model (SHDC) composed of SiO2 nanoparticles with varying percentages of triethylene glycol dimethacrylate (TEGDMA) monomer and N,N-dihydroxyethyl-p-toluidine (DHEPT) amine [...] Read more.
Aim: The purpose of this study was to evaluate the mechanical properties of an experimental self-healing dental composite model (SHDC) composed of SiO2 nanoparticles with varying percentages of triethylene glycol dimethacrylate (TEGDMA) monomer and N,N-dihydroxyethyl-p-toluidine (DHEPT) amine microcapsules. Materials and methods: Microcapsules were prepared by in-situ polymerisation of PUF shells, as explained in our previous work. The model SHDC included bisphenol A glycidyl dimethacrylate (Bis-GMA:TEGDMA) (1:1), 1 wt% phenyl bis(2,4,6-trimethylbenzoyl) phosphine oxide (BAPO), 0.5 wt% benzoyl peroxide (BPO) catalyst, 20 wt% silanised silica dioxide (SiO2) (15 nm) and (0, 2.5, 5, 7.5, 10 wt%) of microcapsules (120 ± 45 μm). Light transmission, hardness, degree of conversion (DC), flexural strength and elastic modulus of the SHDC model were measured. Results: The degree of conversion of the SHDC ranged from 73 to 76% 24 h after polymerisation. Hardness measurements ranged from 22 to 26 VHN (p > 0.05); however, the flexural strength was adversely affected from 80 to 55 MPa with increasing microcapsules of up to 10 wt% in the composites (p < 0.05). Conclusion: Only flexural strength decreased drastically ~30% with increasing microcapsules (>10 wt%) in the composites. All other measured properties were not significantly affected. Accordingly, we recommend a stronger composite material that could be created by increasing the filler content distribution in order to achieve a hybrid self-healing composite with enhanced mechanical properties. Full article
(This article belongs to the Special Issue Feature Papers in Dental Biomaterials)
Show Figures

Graphical abstract

13 pages, 5080 KiB  
Review
Dental Restorative Materials for Elderly Populations
by Yuyao Huang, Bingqing Song, Xuedong Zhou, Hui Chen, Haohao Wang and Lei Cheng
Polymers 2021, 13(5), 828; https://doi.org/10.3390/polym13050828 - 8 Mar 2021
Cited by 7 | Viewed by 4690
Abstract
The incidence of dental caries, especially root caries, has risen in elderly populations in recent years. Specialized restorative materials are needed due to the specific site of root caries and the age-related changes in general and oral health in the elderly. Unfortunately, the [...] Read more.
The incidence of dental caries, especially root caries, has risen in elderly populations in recent years. Specialized restorative materials are needed due to the specific site of root caries and the age-related changes in general and oral health in the elderly. Unfortunately, the restorative materials commonly used clinically cannot fully meet the requirements in this population. Specifically, the antibacterial, adhesive, remineralization, mechanical, and anti-aging properties of the materials need to be significantly improved for dental caries in the elderly. This review mainly discusses the strengths and weaknesses of currently available materials, including amalgam, glass ionomer cement, and light-cured composite resin, for root caries. It also reviews the studies on novel anti-caries materials divided into three groups, antimicrobial, remineralization, and self-healing materials, and explores their potential in the clinical use for caries in the elderly. Therefore, specific restorative materials for caries in the elderly, especially for root caries, need to be further developed and applied in clinical practice. Full article
Show Figures

Figure 1

10 pages, 3064 KiB  
Article
Development of an Innovative Urease-Aided Self-Healing Dental Composite
by Mostafa Seifan, Zahra Sarabadani and Aydin Berenjian
Catalysts 2020, 10(1), 84; https://doi.org/10.3390/catal10010084 - 7 Jan 2020
Cited by 10 | Viewed by 4333
Abstract
Dental restorative materials suffer from major drawbacks, namely fracture and shrinkage, which result in failure and require restoration and replacement. There are different methods to address these issues, such as increasing the filler load or changing the resin matrix of the composite. In [...] Read more.
Dental restorative materials suffer from major drawbacks, namely fracture and shrinkage, which result in failure and require restoration and replacement. There are different methods to address these issues, such as increasing the filler load or changing the resin matrix of the composite. In the present work, we introduce a new viable process to heal the generated cracks with the aid of urease enzyme. In this system, urease breaks down the salivary urea which later binds with calcium to form calcium carbonate (CaCO3). The formation of insoluble CaCO3 fills any resultant fracture or shrinkage from the dental composure hardening step. The healing process and the formation of CaCO3 within dental composites were successfully confirmed by optical microscope, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDS) methods. This research demonstrates a new protocol to increase the service life of dental restoration composites in the near future. Full article
(This article belongs to the Special Issue Role of Enzymes in Designing Self-Healing Biological Based Materials)
Show Figures

Figure 1

24 pages, 5210 KiB  
Review
Cellulose Nanomaterials—Binding Properties and Applications: A Review
by Ali H. Tayeb, Ezatollah Amini, Shokoofeh Ghasemi and Mehdi Tajvidi
Molecules 2018, 23(10), 2684; https://doi.org/10.3390/molecules23102684 - 18 Oct 2018
Cited by 353 | Viewed by 25993
Abstract
Cellulose nanomaterials (CNs) are of increasing interest due to their appealing inherent properties such as bio-degradability, high surface area, light weight, chirality and the ability to form effective hydrogen bonds across the cellulose chains or within other polymeric matrices. Extending CN self-assembly into [...] Read more.
Cellulose nanomaterials (CNs) are of increasing interest due to their appealing inherent properties such as bio-degradability, high surface area, light weight, chirality and the ability to form effective hydrogen bonds across the cellulose chains or within other polymeric matrices. Extending CN self-assembly into multiphase polymer structures has led to useful end-results in a wide spectrum of products and countless innovative applications, for example, as reinforcing agent, emulsion stabilizer, barrier membrane and binder. In the current contribution, after a brief description of salient nanocellulose chemical structure features, its types and production methods, we move to recent advances in CN utilization as an ecofriendly binder in several disparate areas, namely formaldehyde-free hybrid composites and wood-based panels, papermaking/coating processes, and energy storage devices, as well as their potential applications in biomedical fields as a cost-effective and tissue-friendly binder for cartilage regeneration, wound healing and dental repair. The prospects of a wide range of hybrid materials that may be produced via nanocellulose is introduced in light of the unique behavior of cellulose once in nano dimensions. Furthermore, we implement some principles of colloidal and interfacial science to discuss the critical role of cellulose binding in the aforesaid fields. Even though the CN facets covered in this study by no means encompass the great amount of literature available, they may be regarded as the basis for future developments in the binder applications of these highly desirable materials. Full article
(This article belongs to the Special Issue Emerging Trends in Nanocelluloses)
Show Figures

Figure 1

12 pages, 1444 KiB  
Article
Dental Composite Formulation Design with Bioactivity on Protein Adsorption Combined with Crack-Healing Capability
by Chen Chen, Junling Wu, Michael D. Weir, Lin Wang, Xuedong Zhou, Hockin H. K. Xu and Mary Anne S. Melo
J. Funct. Biomater. 2017, 8(3), 40; https://doi.org/10.3390/jfb8030040 - 7 Sep 2017
Cited by 14 | Viewed by 7260
Abstract
Fracture and secondary caries are the primary reasons for the failure of dental restorations. To face this omnipresent problem, we report the formulation design and synthesis of a protein-resistant dental composite composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) that also can self-repair damage and recover [...] Read more.
Fracture and secondary caries are the primary reasons for the failure of dental restorations. To face this omnipresent problem, we report the formulation design and synthesis of a protein-resistant dental composite composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) that also can self-repair damage and recover the load-bearing capability via microencapsulated triethylene glycol dimethacrylate (TEGDMA) and N,N-dihydroxy ethyl-p-toluidine (DHEPT). The bioactivity of the resulting MPC-microencapsulated TEGDMA-DHEPT was evaluated on protein adsorption through early bacterial attachment. Its mechanical properties were also investigated, including self-healing assessment. Microcapsules of poly (urea-formaldehyde) (PUF) were synthesized by incorporating a TEGDMA-DHEPT healing liquid. A set of composites that contained 7.5% of MPC, 10% of microcapsules, and without MPC/microcapsules were also prepared as controls. The two distinct characteristics of strong protein repellency and load-bearing recovery were achieved by the combined strategies. The novel dual composite with a combination of protein-repellent MPC and PUF microcapsules for restoring microcracks is a promising strategy for dental restorations to address the two main challenges of fracture and secondary caries. The new dual composite formulation design has the potential to improve the longevity of dental restorations significantly. Full article
(This article belongs to the Special Issue Journal of Functional Biomaterials: Feature Papers 2016)
Show Figures

Figure 1

Back to TopTop