Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = seleno-L-methionine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1256 KiB  
Review
Druggable Biomarkers Altered in Clear Cell Renal Cell Carcinoma: Strategy for the Development of Mechanism-Based Combination Therapy
by Youcef M. Rustum, Ryan Reis and Tara M. Rustum
Int. J. Mol. Sci. 2023, 24(2), 902; https://doi.org/10.3390/ijms24020902 - 4 Jan 2023
Cited by 6 | Viewed by 3590
Abstract
Targeted therapeutics made significant advances in the treatment of patients with advanced clear cell renal cell carcinoma (ccRCC). Resistance and serious adverse events associated with standard therapy of patients with advanced ccRCC highlight the need to identify alternative ‘druggable’ targets to those currently [...] Read more.
Targeted therapeutics made significant advances in the treatment of patients with advanced clear cell renal cell carcinoma (ccRCC). Resistance and serious adverse events associated with standard therapy of patients with advanced ccRCC highlight the need to identify alternative ‘druggable’ targets to those currently under clinical development. Although the Von Hippel-Lindau (VHL) and Polybromo1 (PBRM1) tumor-suppressor genes are the two most frequently mutated genes and represent the hallmark of the ccRCC phenotype, stable expression of hypoxia-inducible factor-1α/2α (HIFs), microRNAs-210 and -155 (miRS), transforming growth factor-beta (TGF-ß), nuclear factor erythroid 2-related factor 2 (Nrf2), and thymidine phosphorylase (TP) are targets overexpressed in the majority of ccRCC tumors. Collectively, these altered biomarkers are highly interactive and are considered master regulators of processes implicated in increased tumor angiogenesis, metastasis, drug resistance, and immune evasion. In recognition of the therapeutic potential of the indicated biomarkers, considerable efforts are underway to develop therapeutically effective and selective inhibitors of individual targets. It was demonstrated that HIFS, miRS, Nrf2, and TGF-ß are targeted by a defined dose and schedule of a specific type of selenium-containing molecules, seleno-L-methionine (SLM) and methylselenocystein (MSC). Collectively, the demonstrated pleiotropic effects of selenium were associated with the normalization of tumor vasculature, and enhanced drug delivery and distribution to tumor tissue, resulting in enhanced efficacy of multiple chemotherapeutic drugs and biologically targeted molecules. Higher selenium doses than those used in clinical prevention trials inhibit multiple targets altered in ccRCC tumors, which could offer the potential for the development of a new and novel therapeutic modality for cancer patients with similar selenium target expression. Better understanding of the underlying mechanisms of selenium modulation of specific targets altered in ccRCC could potentially have a significant impact on the development of a more efficacious and selective mechanism-based combination for the treatment of patients with cancer. Full article
Show Figures

Figure 1

12 pages, 1544 KiB  
Article
Selenium Forms and Dosages Determined Their Biological Actions in Mouse Models of Parkinson’s Disease
by Chongchong Sun, Zhongrui Du, Xin Liu, Ye Yang, Sainan Zhou, Chong Li, Xu Cao, Qing Zhao, Kahing Wong, Wenfang Chen and Xiaoli Dong
Nutrients 2023, 15(1), 11; https://doi.org/10.3390/nu15010011 - 20 Dec 2022
Cited by 12 | Viewed by 3824
Abstract
Selenium (Se), an essential antioxidant trace element, is reported to play a role in Parkinson’s disease (PD). However, there is a lack of systematic studies on different Se forms against PD. Our study is designed to compare the neuroprotective effects of inorganic and [...] Read more.
Selenium (Se), an essential antioxidant trace element, is reported to play a role in Parkinson’s disease (PD). However, there is a lack of systematic studies on different Se forms against PD. Our study is designed to compare the neuroprotective effects of inorganic and organic Se in two classical PD mice models and investigate the underlying mechanisms for their potentially differential actions against PD. In this study, different dosages of inorganic sodium selenite (Se-Na) or organic seleno-L-methionine (Se-Met) were fed to either acute or chronic PD mice models, and their neuroprotective effects and mechanisms were explored and compared. Se-Na provided better neuroprotective effects in PD mice than Se-Met administered at the same but at a relatively low Se dosage. Se-Na treatment could influence GPX activities but not their mRNA expressions in the midbrains of PD mice. The enhanced GPX activities caused by Se-Na, but not Se-Met, in PD mice could be the major reason for the positive actions of inorganic Se to prevent dopaminergic neuronal loss in this study. In vivo bio-distribution experiments found MPTP injection greatly changed Se bio-distribution in mice, which led to reversed alterations in the bioavailability of Se-Met and Se-Na. Se-Na had higher bioavailability than Se-Met in PD mice, which could explain its better neuroprotective effects compared to Se-Met. Our results proved that Se forms and dosages determined their biological actions in mouse models of PD. Our study will provide valuable scientific evidence to researchers and/or medical professionals in using Se for PD prevention or therapy. Full article
(This article belongs to the Special Issue Trace Elements and Minerals in Aging and Age-Related Diseases)
Show Figures

Figure 1

10 pages, 1009 KiB  
Communication
Targeted Metabolomics to Assess Exposure to Environmental Chemicals of Concern in Japanese Quail at Two Life Stages
by Elena Legrand, Niladri Basu, Markus Hecker, Doug Crump, Jianguo Xia, Bharat Chandramouli, Heather Butler and Jessica A. Head
Metabolites 2021, 11(12), 850; https://doi.org/10.3390/metabo11120850 - 8 Dec 2021
Cited by 6 | Viewed by 3056
Abstract
This proof-of-concept study characterizes the Japanese quail (Coturnix japonica) hepatic metabolome following exposure to benzo[a]pyrene, chlorpyrifos, ethinylestradiol, fluoxetine hydrochloride, hexabromocyclododecane, lead(II)nitrate, seleno-L-methionine, and trenbolone in embryos and adults. The analysis revealed effects on lipid metabolism following exposure to several chemicals at [...] Read more.
This proof-of-concept study characterizes the Japanese quail (Coturnix japonica) hepatic metabolome following exposure to benzo[a]pyrene, chlorpyrifos, ethinylestradiol, fluoxetine hydrochloride, hexabromocyclododecane, lead(II)nitrate, seleno-L-methionine, and trenbolone in embryos and adults. The analysis revealed effects on lipid metabolism following exposure to several chemicals at both life stages. The most pronounced effects were observed in embryos exposed to 41.1 μg/g chlorpyrifos. This work highlighted challenges and the need for further avian metabolomics studies. Full article
(This article belongs to the Special Issue Application of Metabolomic in Ecotoxicology)
Show Figures

Figure 1

14 pages, 2240 KiB  
Article
Selenium Modulates the Allergic Response to Whey Protein in a Mouse Model for Cow’s Milk Allergy
by Xiaoli Zhao, Suzan Thijssen, Hongbing Chen, Johan Garssen, Leon M. J. Knippels and Astrid Hogenkamp
Nutrients 2021, 13(8), 2479; https://doi.org/10.3390/nu13082479 - 22 Jul 2021
Cited by 12 | Viewed by 4364
Abstract
Cow’s milk allergy is a common food allergy in infants, and is associated with an increased risk of developing other allergic diseases. Dietary selenium (Se), one of the essential micronutrients for humans and animals, is an important bioelement which can influence both innate [...] Read more.
Cow’s milk allergy is a common food allergy in infants, and is associated with an increased risk of developing other allergic diseases. Dietary selenium (Se), one of the essential micronutrients for humans and animals, is an important bioelement which can influence both innate and adaptive immune responses. However, the effects of Se on food allergy are still largely unknown. In the current study it was investigated whether dietary Se supplementation can inhibit whey-induced food allergy in an animal research model. Three-week-old female C3H/HeOuJ mice were intragastrically sensitized with whey protein and cholera toxin and randomly assigned to receive a control, low, medium or high Se diet. Acute allergic symptoms, allergen specific immunoglobulin (Ig) E levels and mast cell degranulation were determined upon whey challenge. Body temperature was significantly higher in mice that received the medium Se diet 60 min after the oral challenge with whey compared to the positive control group, which is indicative of impaired anaphylaxis. This was accompanied by reductions in antigen-specific immunoglobulins and reduced levels of mouse mast cell protease-1 (mMCP-1). This study demonstrates that oral Se supplementation may modulate allergic responses to whey by decreasing specific antibody responses and mMCP-1 release. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

19 pages, 3943 KiB  
Article
NLRP3 Inflammasome: A New Pharmacological Target for Reducing Testicular Damage Associated with Varicocele
by Pietro Antonuccio, Antonio Girolamo Micali, Carmelo Romeo, Jose Freni, Giovanna Vermiglio, Domenico Puzzolo, Francesco Squadrito, Natasha Irrera, Herbert R. Marini, Rosa Alba Rana, Giovanni Pallio and Letteria Minutoli
Int. J. Mol. Sci. 2021, 22(3), 1319; https://doi.org/10.3390/ijms22031319 - 28 Jan 2021
Cited by 30 | Viewed by 3722
Abstract
Many bioactive natural compounds are being increasingly used for therapeutics and nutraceutical applications to counteract male infertility, particularly varicocele. The roles of selenium and Polydeoxyribonucleotide (PDRN) were investigated in an experimental model of varicocele, with particular regard to the role of NLRP3 inflammasome. [...] Read more.
Many bioactive natural compounds are being increasingly used for therapeutics and nutraceutical applications to counteract male infertility, particularly varicocele. The roles of selenium and Polydeoxyribonucleotide (PDRN) were investigated in an experimental model of varicocele, with particular regard to the role of NLRP3 inflammasome. Male rats underwent sham operation and were daily administered with vehicle, seleno-L-methionine (Se), PDRN, and with the association Se-PDRN. Another group of rats were operated for varicocele. After twenty-eight days, sham and varicocele rats were sacrificed and both testes were weighted and analyzed. All the other rats were challenged for one month with the same compounds. In varicocele animals, lower testosterone levels, testes weight, NLRP3 inflammasome, IL-1β and caspase-1 increased gene expression were demonstrated. TUNEL assay showed an increased number of apoptotic cells. Structural and ultrastructural damage to testes was also shown. PDRN alone significantly improved all considered parameters more than Se. The Se-PDRN association significantly improved all morphological parameters, significantly increased testosterone levels, and reduced NLRP3 inflammasome, caspase-1 and IL-1β expression and TUNEL-positive cell numbers. Our results suggest that NLRP3 inflammasome can be considered an interesting target in varicocele and that Se-PDRN may be a new medical approach in support to surgery. Full article
(This article belongs to the Special Issue Molecular Research on Urology 2.0)
Show Figures

Graphical abstract

14 pages, 1667 KiB  
Article
Effects of Selenium- and Zinc-Enriched Lactobacillus plantarum SeZi on Antioxidant Capacities and Gut Microbiome in an ICR Mouse Model
by Sini Kang, Rui Li, Hui Jin, Hyun Ju You and Geun Eog Ji
Antioxidants 2020, 9(10), 1028; https://doi.org/10.3390/antiox9101028 - 21 Oct 2020
Cited by 25 | Viewed by 5437
Abstract
Selenium and zinc are essential trace minerals for humans with various biological functions. In this study, selenium- and zinc-tolerant lactic acid bacteria (LAB) isolates were screened out from human fecal samples. Amongst three hundred LAB isolates, the Lactobacillus plantarum SeZi strain displayed the [...] Read more.
Selenium and zinc are essential trace minerals for humans with various biological functions. In this study, selenium- and zinc-tolerant lactic acid bacteria (LAB) isolates were screened out from human fecal samples. Amongst three hundred LAB isolates, the Lactobacillus plantarum SeZi strain displayed the tolerance against selenium and zinc with the greatest biomass production and bioaccumulation of selenium and zinc. To further assess the characteristics of this strain, the lyophilized L. plantarum SeZi were prepared and administered to Institute of Cancer Research (ICR) mice. The mice were divided into four groups, provided with normal chow (Con), or normal chow supplemented with Na2SeO3 and ZnSO4∙7H2O (SZ), L. plantarum SeZi (Lp), or selenium- and zinc-enriched L. plantarum SeZi (SZ + Lp), respectively. After 4 weeks of oral administration, the concentrations of selenium and zinc in blood were significantly increased in the SZ + Lp group when compared to the control or SZ group (p < 0.05). The increased selenium level led to an enhanced glutathione peroxidase activity and decreased blood malondialdehyde level in the SZ + Lp group (p < 0.05). Meanwhile, the results of bacterial community and microbial metabolic pathway analysis via 16S rRNA gene amplicon sequencing showed that L. plantarum SeZi significantly promoted the utilization of selenocysteine, seleno-cystathionine and seleno-methionine in the selenocompounds metabolism. Here, the in vivo antioxidant capacities of the selenium- and zinc-enriched lactobacillus strain showed us the utilization of a unique probiotic as a Se/Zn supplement with high availability, low toxicity, and additional probiotic advantages. Full article
Show Figures

Figure 1

16 pages, 2929 KiB  
Article
Protective Effects of Myo-Inositol and Selenium on Cadmium-Induced Thyroid Toxicity in Mice
by Salvatore Benvenga, Herbert R. Marini, Antonio Micali, Jose Freni, Giovanni Pallio, Natasha Irrera, Francesco Squadrito, Domenica Altavilla, Alessandro Antonelli, Silvia Martina Ferrari, Poupak Fallahi, Domenico Puzzolo and Letteria Minutoli
Nutrients 2020, 12(5), 1222; https://doi.org/10.3390/nu12051222 - 26 Apr 2020
Cited by 44 | Viewed by 5087
Abstract
Cadmium (Cd) damages the thyroid gland. We evaluated the effects of myo-inositol (MI), seleno-L-methionine (Se) or their combination on the thyroids of mice simultaneously administered with Cd chloride (CdCl2). Eighty-four male mice were divided into 12 groups (seven mice each). Six [...] Read more.
Cadmium (Cd) damages the thyroid gland. We evaluated the effects of myo-inositol (MI), seleno-L-methionine (Se) or their combination on the thyroids of mice simultaneously administered with Cd chloride (CdCl2). Eighty-four male mice were divided into 12 groups (seven mice each). Six groups (controls) were treated with 0.9% NaCl (vehicle), Se (0.2 mg/kg/day), Se (0.4 mg/kg/day), MI (360 mg/kg/day), MI+Se (0.2 mg/kg) and MI+Se (0.4 mg/kg). The other six groups were treated with CdCl2 (2 mg/kg), CdCl2+MI, CdCl2+Se (0.2 mg/kg), CdCl2+Se (0.4 mg/kg), CdCl2+MI+Se (0.2 mg/kg) and CdCl2+MI+Se (0.4 mg/kg). An additional group of CdCl2-challenged animals (n = 7) was treated with resveratrol (20 mg/kg), an effective and potent antioxidant. All treatments lasted 14 days. After sacrifice, the thyroids were evaluated histologically and immunohistochemically. CdCl2 reduced the follicular area, increased the epithelial height, stroma, and cells expressing monocyte chemoattractant protein-1 (MCP-1) and C-X-C motif chemokine 10 (CXCL10). CdCl2+Se at 0.2/0.4 mg/kg insignificantly reversed the follicular and stromal structure, and significantly decreased the number of MCP-1 and CXCL10-positive cells. CdCl2+MI significantly reversed the thyroid structure and further decreased the number of MCP-1 and CXCL10-positive cells. CdCl2+MI+Se, at both doses, brought all indices to those of CdCl2-untreated mice. MI, particularly in association with Se, defends mice from Cd-induced damage. The efficacy of this combination was greater than that of resveratrol, at least when using the follicular structure as a read-out for a comparison. We suggest that the use of these nutraceuticals, more specifically the combination of MI plus SE, can protect the thyroid of Cd-exposed subjects. Full article
(This article belongs to the Special Issue Effects of Iodine Intake on Human Health)
Show Figures

Figure 1

10 pages, 2285 KiB  
Article
Micronutrients Selenomethionine and Selenocysteine Modulate the Redox Status of MCF-7 Breast Cancer Cells
by Daniel Gabriel Pons, Carmen Moran, Marina Alorda-Clara, Jordi Oliver, Pilar Roca and Jorge Sastre-Serra
Nutrients 2020, 12(3), 865; https://doi.org/10.3390/nu12030865 - 24 Mar 2020
Cited by 27 | Viewed by 5334
Abstract
Selenium is a micronutrient which is found in many foods, with redox status modulation activity. Our aim was to evaluate the effects of two chemical forms of selenoamino acids, Seleno-L-methionine and Seleno-L-cystine (a diselenide derived from selenocysteine), at different concentrations on cell viability, [...] Read more.
Selenium is a micronutrient which is found in many foods, with redox status modulation activity. Our aim was to evaluate the effects of two chemical forms of selenoamino acids, Seleno-L-methionine and Seleno-L-cystine (a diselenide derived from selenocysteine), at different concentrations on cell viability, hydrogen peroxide production, antioxidant enzymes, UCP2 protein expression, as well as lipid and protein oxidative damage in MCF-7 breast cancer cells. Results showed that Seleno-L-methionine did not cause an increase in hydrogen peroxide production at relatively low concentrations, accompanied by a rise in the antioxidant enzymes catalase and MnSOD, and UCP2 protein expression levels. Furthermore, a decrease in protein and lipid oxidative damage was observed at 10 µM concentration. Otherwise, Seleno-L-cystine increased hydrogen peroxide production from relatively low concentrations (100 nM) to a large increase at high concentrations. Moreover, at 10 µM, Seleno-L-cystine decreased UCP2 and MnSOD protein expression. In conclusion, the chemical form of selenoamino acid and their incorporation to selenoproteins could affect the regulation of the breast cancer cell redox status. Taken together, the results obtained in this study imply that it is important to control the type of selenium-enriched nutrient consumption, taking into consideration their composition and concentration. Full article
(This article belongs to the Special Issue Nutrition and Mitochondrial Function)
Show Figures

Graphical abstract

20 pages, 7275 KiB  
Review
Non-Coding Micro RNAs and Hypoxia-Inducible Factors Are Selenium Targets for Development of a Mechanism-Based Combination Strategy in Clear-Cell Renal Cell Carcinoma—Bench-to-Bedside Therapy
by Youcef M. Rustum, Sreenivasulu Chintala, Farukh A. Durrani and Arup Bhattacharya
Int. J. Mol. Sci. 2018, 19(11), 3378; https://doi.org/10.3390/ijms19113378 - 29 Oct 2018
Cited by 22 | Viewed by 4167
Abstract
Durable response, inherent or acquired resistance, and dose-limiting toxicities continue to represent major barriers in the treatment of patients with advanced clear-cell renal cell carcinoma (ccRCC). The majority of ccRCC tumors are characterized by the loss of Von Hippel–Lindau tumor suppressor gene function, [...] Read more.
Durable response, inherent or acquired resistance, and dose-limiting toxicities continue to represent major barriers in the treatment of patients with advanced clear-cell renal cell carcinoma (ccRCC). The majority of ccRCC tumors are characterized by the loss of Von Hippel–Lindau tumor suppressor gene function, a stable expression of hypoxia-inducible factors 1α and 2α (HIFs), an altered expression of tumor-specific oncogenic microRNAs (miRNAs), a clear cytoplasm with dense lipid content, and overexpression of thymidine phosphorylase. The aim of this manuscript was to confirm that the downregulation of specific drug-resistant biomarkers deregulated in tumor cells by a defined dose and schedule of methylselenocysteine (MSC) or seleno-l-methionine (SLM) sensitizes tumor cells to mechanism-based drug combination. The inhibition of HIFs by selenium was necessary for optimal therapeutic benefit. Durable responses were achieved only when MSC was combined with sunitinib (a vascular endothelial growth factor receptor (VEGFR)-targeted biologic), topotecan (a topoisomerase 1 poison and HIF synthesis inhibitor), and S-1 (a 5-fluorouracil prodrug). The documented synergy was selenium dose- and schedule-dependent and associated with enhanced prolyl hydroxylase-dependent HIF degradation, stabilization of tumor vasculature, downregulation of 28 oncogenic miRNAs, as well as the upregulation of 12 tumor suppressor miRNAs. The preclinical results generated provided the rationale for the development of phase 1/2 clinical trials of SLM in sequential combination with axitinib in ccRCC patients refractory to standard therapies. Full article
Show Figures

Figure 1

Back to TopTop