Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = seismo-stratigraphic units

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 8632 KiB  
Review
Seismo-Stratigraphic Data of the Gulf of Pozzuoli (Southern Tyrrhenian Sea, Italy): A Review and Their Relationships with the New Bradyseismic Crisis
by Gemma Aiello
GeoHazards 2025, 6(3), 46; https://doi.org/10.3390/geohazards6030046 - 15 Aug 2025
Abstract
Seismo-stratigraphic data of the Gulf of Pozzuoli have been revised with the aim of identifying the tectonic structures controlling the area in more detail and to highlight the possible relationships of the morpho-structures with the new bradyseismic crisis, still in course. In particular, [...] Read more.
Seismo-stratigraphic data of the Gulf of Pozzuoli have been revised with the aim of identifying the tectonic structures controlling the area in more detail and to highlight the possible relationships of the morpho-structures with the new bradyseismic crisis, still in course. In particular, the relationships between the tectonic structures, consisting of both normal faults and folds, and the possible rising of fluids have been analyzed based on seismic interpretation. We hypothesize that the normal faults occurring in this area have possibly controlled the rising of fluids in these extensional structures. The fluid uprising could possibly be related to the increasing gas activity of the Solfatara–Pisciarelli area onshore during the active bradyseismic crisis (2024–2025). The proposed mechanism is controlled by the occurrence of a heat source, possibly a magmatic reservoir, in the continental crust and/or the mantle, genetically related to the presence of submerged hydrothermal discharges in the coastal areas of the Campania region. To achieve this objective, detailed seismo-stratigraphic sections of the Gulf of Pozzuoli have been constructed, focusing on the areas characterized by tectonic activity. Fluid uprising is mainly controlled by the tectonic setting of the Gulf of Pozzuoli, characterized by anticlines and synclines, representing important structural and stratigraphic traps. Full article
Show Figures

Figure 1

23 pages, 13284 KiB  
Article
Reconstruction of a 3D Bedrock Model in an Urban Area Using Well Stratigraphy and Geophysical Data: A Case Study of the City of Palermo
by Alessandro Canzoneri, Raffaele Martorana, Mauro Agate, Maurizio Gasparo Morticelli, Patrizia Capizzi, Alessandra Carollo and Attilio Sulli
Geosciences 2025, 15(5), 174; https://doi.org/10.3390/geosciences15050174 - 14 May 2025
Viewed by 1054
Abstract
A multidisciplinary approach was employed to construct a three-dimensional model of the bedrock top surface within the Palermo Plain, Sicily, Italy. This urban area is characterized by a dense and extensive built environment that largely obscures its geological features, thereby emphasizing the value [...] Read more.
A multidisciplinary approach was employed to construct a three-dimensional model of the bedrock top surface within the Palermo Plain, Sicily, Italy. This urban area is characterized by a dense and extensive built environment that largely obscures its geological features, thereby emphasizing the value of geophysical methods for enhancing subsurface understanding. In this sector, Numidian Flysch deposits constitute the geological bedrock of the plain. The morphology of the top surface of this unit was reconstructed by integrating borehole stratigraphic data with both passive and active seismic surveys. Ambient noise recordings were analyzed using the Horizontal-to-Vertical Spectral Ratio (HVSR) method to obtain spectral curves. These were then inverted into seismostratigraphic models using shear wave velocity profiles derived by Multichannel Analysis of Surface Waves (MASW) and lithostratigraphic information from borehole logs. Finally, the depth of the top of the Numidian Flysch, determined from both the borehole data and the inverted seismic models, was interpolated to generate a comprehensive 3D model of the bedrock top surface. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

20 pages, 15870 KiB  
Article
Regional Geological Data on the Volturno Basin Filling and Its Relationship to the Massico Structure (Southern Tyrrhenian Sea, Italy)
by Gemma Aiello
J. Mar. Sci. Eng. 2025, 13(2), 241; https://doi.org/10.3390/jmse13020241 - 26 Jan 2025
Cited by 2 | Viewed by 816
Abstract
We built a regional geological section founded upon the assessment of a seismic line in the Volturno basin, which is situated on the northern Campania continental shelf of the Tyrrhenian margin of Southern Italy. This section has been integrated with multichannel seismic data [...] Read more.
We built a regional geological section founded upon the assessment of a seismic line in the Volturno basin, which is situated on the northern Campania continental shelf of the Tyrrhenian margin of Southern Italy. This section has been integrated with multichannel seismic data of Zone E (ViDEPI project) to highlight its relationships with the Massico structure. In the Volturno basin, there are four Pleistocene to Holocene units, recognized based on seismic analysis lie above deep seismo-stratigraphic units, related to Campania Latium carbonate platform and The Frosinone Flysch. Onshore and offshore seismic data, calibrated with lithostratigraphic correlation, have displayed the seismo-stratigraphic framework, including both sedimentary and volcanic seismo-stratigraphic units. Of these, the lavas associated with the Northern Campania Volcanic Zone’s Villa Literno volcano are associated with seismic unit 2a. Seismo-stratigraphic data has shown the offshore prolongation of the Massico structure, as involved by normal faults and flower structures. The whole-data interpretation suggests that the tectonic activity acted in correspondence to normal faults, which have controlled half-graben and interposed structural highs, fitting to the regional geological setting of the continental margin. Full article
Show Figures

Figure 1

19 pages, 12546 KiB  
Review
Marine Geological Studies of the Bay of Naples (Southern Tyrrhenian Sea, Italy): Revised Applications of the Seismo-Stratigraphic Concepts and Evolving Technologies to a Late Quaternary Volcanic Area
by Gemma Aiello
J. Mar. Sci. Eng. 2024, 12(3), 416; https://doi.org/10.3390/jmse12030416 - 26 Feb 2024
Cited by 1 | Viewed by 1775
Abstract
Marine geological studies of Naples Bay are discussed and reviewed, focusing on the application of the seismo-stratigraphic concepts to a Late Quaternary volcanic area. The Naples Bay represents an active volcanic area in which the interactions between volcanic and sedimentary processes controlled a [...] Read more.
Marine geological studies of Naples Bay are discussed and reviewed, focusing on the application of the seismo-stratigraphic concepts to a Late Quaternary volcanic area. The Naples Bay represents an active volcanic area in which the interactions between volcanic and sedimentary processes controlled a complex stratigraphic architecture during the Late Quaternary period. While the volcanic processes took place in correspondence with the activity of the Somma–Vesuvius, Campi Flegrei Ischia, and Procida volcanic complexes, the sedimentary processes were controlled by the fluvial processes in the Sarno-Sebeto coastal plain and by the tectonic uplift in correspondence with the Sorrento Peninsula’s structural high Key geophysical and stratigraphic studies of the three active volcanic complexes are revised and discussed. The seismo-stratigraphic concepts applied in the geological interpretation of seismic profiles of Naples Bay are reviewed and discussed: here, the classical concepts of seismic and sequence stratigraphy have been successfully applied, but only partly, due to the occurrence of several buried volcanoes and volcanic seismic units and tephra layers, calibrated by gravity cores. Full article
(This article belongs to the Special Issue Advance in Sedimentology and Coastal and Marine Geology)
Show Figures

Figure 1

8 pages, 4285 KiB  
Proceeding Paper
A Seismo-Stratigraphic Analysis of the Relict Deposits of the Cilento Continental Shelf (Southern Italy)
by Gemma Aiello and Mauro Caccavale
Proceedings 2023, 87(1), 10; https://doi.org/10.3390/IECG2022-14296 - 30 Mar 2023
Cited by 2 | Viewed by 1409
Abstract
The relict (palimpsest and lowstand) deposits of the Cilento continental shelf were analyzed based on the geological interpretation of Sub-Bottom Chirp sections, calibrated with core data. A progradational unit, which is overlying the acoustic basement, is interpreted as the beach deposits of the [...] Read more.
The relict (palimpsest and lowstand) deposits of the Cilento continental shelf were analyzed based on the geological interpretation of Sub-Bottom Chirp sections, calibrated with core data. A progradational unit, which is overlying the acoustic basement, is interpreted as the beach deposits of the isotopic stages 4 and 5. This unit is overlain by a seismo-stratigraphic unit, which is composed of coarse-grained organogenic sands and interpreted as relict sands. This unit consists of sandy ridges, occurring at water depths ranging between 130 and 140 m, and was interpreted as an example of submerged beach deposits, genetically related to the marine isotopic stage 2 (Last Glacial Maximum; starting date 29 ky B.P.). Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Geosciences)
Show Figures

Figure 1

35 pages, 12529 KiB  
Article
New Seismoacoustic Data on Shallow Gas in Holocene Marine Shelf Sediments, Offshore from the Cilento Promontory (Southern Tyrrhenian Sea, Italy)
by Gemma Aiello and Mauro Caccavale
J. Mar. Sci. Eng. 2022, 10(12), 1992; https://doi.org/10.3390/jmse10121992 - 14 Dec 2022
Cited by 8 | Viewed by 2075
Abstract
High-resolution seismoacoustic data represent a useful tool for the investigations of gas-charged sediments occurring beneath the seabed through the identification of the diagnostic intrasedimentary features associated with them. Acoustic blanking revealed shallow gas pockets in the seismostratigraphic units of the inner shelf off [...] Read more.
High-resolution seismoacoustic data represent a useful tool for the investigations of gas-charged sediments occurring beneath the seabed through the identification of the diagnostic intrasedimentary features associated with them. Acoustic blanking revealed shallow gas pockets in the seismostratigraphic units of the inner shelf off the Northern Cilento promontory. Six main seismostratigraphic units were recognized based on the geological interpretation of the seismic profiles. Large shallow gas pockets, reaching a lateral extension of 1 km, are concentrated at the depocenter of Late Pleistocene–Holocene marine sediments that are limited northwards by the Solofrone River mouth and southwards by the Licosa Cape promontory. A morphobathymetric interpretation, reported in a GIS environment, was constructed in order to show the main morphological lineaments and to link them with the acoustic anomalies interpreted through the Sub-bottom chirp profiles. A newly constructed workflow was assessed to perform data elaboration with Seismic Unix software by comparing and improving the seismic data of the previously processed profiles that used Seisprho software. The identification of these anomalies and the corresponding units from the offshore Cilento promontory represent a useful basis for an assessment of marine geohazards and could help to plan for the mitigation of geohazards in the Cilento region. Full article
(This article belongs to the Special Issue Advance in Sedimentology and Coastal and Marine Geology)
Show Figures

Figure 1

22 pages, 17653 KiB  
Article
Submarine Stratigraphy of the Eastern Bay of Naples: New Seismo-Stratigraphic Data and Implications for the Somma-Vesuvius and Campi Flegrei Volcanic Activity
by Gemma Aiello
J. Mar. Sci. Eng. 2022, 10(10), 1520; https://doi.org/10.3390/jmse10101520 - 18 Oct 2022
Cited by 6 | Viewed by 2775
Abstract
The submarine stratigraphy of the eastern Bay of Naples is studied through seismo-stratigraphic data correlated with borehole data. Multichannel seismic profiles are interpreted in order to reconstruct the stratigraphic relationships between the Quaternary marine seismic units and the volcanic acoustic substratum. Seven seismic [...] Read more.
The submarine stratigraphy of the eastern Bay of Naples is studied through seismo-stratigraphic data correlated with borehole data. Multichannel seismic profiles are interpreted in order to reconstruct the stratigraphic relationships between the Quaternary marine seismic units and the volcanic acoustic substratum. Seven seismic units are recognized based on the geological interpretation of seismic profiles and using seismo-stratigraphic criteria. The top of the lowest seismic unit was correlated with the Campanian Ignimbrite (Southern Campania Volcanic Zone). The stratigraphic setting of the eastern Bay of Naples is characterized by NE-SW trending seismic structures, probably corresponding with tuff rings. These tuff rings can be compared with the Porto Miseno, the Archiaverno and Averno, and the Astroni tuff rings (Campi Flegrei). Offshore, the Somma-Vesuvius a seismic unit was interpreted as the fallout deposits representing the base of the AD 79 eruption. However, since a branch of the isopach of 5 m of the “Pomici di Avellino” pyroclastic deposits is very close to the Tyrrhenian coastline and near our GRNA01 and GRNA03 seismic profiles, we cannot exclude that the seismic unit could be also correlated with the deposits of this eruption. Full article
Show Figures

Figure 1

26 pages, 7199 KiB  
Article
From Siliciclastic to Bioclastic Deposits in the Gulf of Naples: New Highlights from Offshore Ischia and Procida–Pozzuoli Based on Sedimentological and Seismo-Stratigraphic Data
by Gemma Aiello and Mauro Caccavale
Quaternary 2021, 4(4), 44; https://doi.org/10.3390/quat4040044 - 3 Dec 2021
Cited by 3 | Viewed by 3064
Abstract
This study discusses the siliciclastic to bioclastic deposits (in particular, the rhodolith deposits) in the Gulf of Naples based on sedimentological and seismo-stratigraphic data. The selected areas are offshore Ischia Island (offshore Casamicciola, Ischia Channel), where a dense network of sea-bottom samples has [...] Read more.
This study discusses the siliciclastic to bioclastic deposits (in particular, the rhodolith deposits) in the Gulf of Naples based on sedimentological and seismo-stratigraphic data. The selected areas are offshore Ischia Island (offshore Casamicciola, Ischia Channel), where a dense network of sea-bottom samples has been collected, coupled with Sparker Multi-tip seismic lines, and offshore Procida–Pozzuoli (Procida Channel), where sea-bottom samples are available, in addition to Sparker seismic profiles. The basic methods applied in this research include sedimentological analysis, processing sedimentological data, and assessing seismo-stratigraphic criteria and techniques. In the Gulf of Naples, and particularly offshore Ischia, bioclastic sedimentation has been controlled by seafloor topography coupled with the oceanographic setting. Wide seismo-stratigraphic units include the bioclastic deposits in their uppermost part. Offshore Procida–Pozzuoli, siliciclastic deposits appear to prevail, coupled with pyroclastic units, and no significant bioclastic or rhodolith deposits have been outlined based on sedimentological and seismo-stratigraphic data. The occurrence of mixed siliciclastic–carbonate depositional systems is highlighted in this section of the Gulf of Naples based on the obtained results, which can be compared with similar systems recognized in the central Tyrrhenian Sea (Pontine Islands). Full article
Show Figures

Figure 1

17 pages, 10235 KiB  
Article
The Depositional Environments in the Cilento Offshore (Southern Tyrrhenian Sea, Italy) Based on Marine Geological Data
by Gemma Aiello and Mauro Caccavale
J. Mar. Sci. Eng. 2021, 9(10), 1083; https://doi.org/10.3390/jmse9101083 - 4 Oct 2021
Cited by 4 | Viewed by 2689
Abstract
The depositional environments offshore of the Cilento Promontory have been reconstructed based on the geological studies performed in the frame of the marine geological mapping of the geological sheet n. 502 “Agropoli”. The littoral environment (toe-of-coastal cliff deposits and submerged beach deposits), the [...] Read more.
The depositional environments offshore of the Cilento Promontory have been reconstructed based on the geological studies performed in the frame of the marine geological mapping of the geological sheet n. 502 “Agropoli”. The littoral environment (toe-of-coastal cliff deposits and submerged beach deposits), the inner continental shelf environment (inner shelf deposits and bioclastic deposits), the outer continental shelf environment (outer shelf deposits and bioclastic deposits), the lowstand system tract and the Pleistocene relict marine units have been singled out. The littoral, inner shelf and outer shelf environments have been interpreted as the highstand system tract of the Late Quaternary depositional sequence. This sequence overlies the Cenozoic substratum (ssi unit), composed of Cenozoic siliciclastic rocks, genetically related with the Cilento Flysch. On the inner shelf four main seismo-stratigraphic units, overlying the undifferentiated acoustic basement have been recognized based on the geological interpretation of seismic profiles. On the outer shelf, palimpsest deposits of emerged to submerged beach and forming elongated dunes have been recognized on sub-bottom profiles and calibrated with gravity core data collected in previous papers. The sedimentological analysis of sea bottom samples has shown the occurrence of several grain sizes occurring in this portion of the Cilento offshore. Full article
(This article belongs to the Special Issue Advance in Sedimentology and Coastal and Marine Geology)
Show Figures

Figure 1

Back to TopTop