Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = seismic tsunami

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2987 KiB  
Communication
Robust Estimation of Earthquake Magnitude in Indonesia Using PGD Scaling Law from Regional High-Rate GNSS Data
by Thomas Hardy, Irwan Meilano, Hasanuddin Z. Abidin, Susilo, Ajat Sudrajat, Supriyanto Rohadi, Retno Agung P. Kambali, Aditya Rahman, Brilian Tatag Samapta, Muhammad Al Kautsar, Alpon Sepriando Manurung and Putu Hendra Widyadharma
Sensors 2025, 25(13), 4113; https://doi.org/10.3390/s25134113 - 1 Jul 2025
Viewed by 906
Abstract
The accurate and timely estimation of earthquake magnitude is essential for effective tsunami early warning, particularly in seismically active regions such as Indonesia. Conventional seismic approaches are often hindered by magnitude saturation in significant events (Mw > 7.5), resulting in systematically underestimated magnitudes. [...] Read more.
The accurate and timely estimation of earthquake magnitude is essential for effective tsunami early warning, particularly in seismically active regions such as Indonesia. Conventional seismic approaches are often hindered by magnitude saturation in significant events (Mw > 7.5), resulting in systematically underestimated magnitudes. To address this limitation, we develop a regional peak ground displacement (PGD) scaling law using high-rate GNSS (HR-GNSS) data from 21 moderate to large earthquakes in Indonesia. Based on 87 PGD observations, we construct a regression model that relates PGD, hypocentral distance, and moment magnitude (Mw). The PGD-derived magnitudes (MPGD) exhibit strong concordance with catalog moment magnitudes, achieving a mean absolute deviation (MAD) of 0.21 and surpassing the accuracy of previously published global models. Retrospective analyses reveal that MPGD estimates converge within 2–3 min for well-recorded events and remain robust, even for great and tsunamigenic earthquakes. These results underscore the potential of HR-GNSS data to complement conventional seismic networks, providing rapid and reliable magnitude estimates for operational tsunami early warning in Indonesia. Full article
(This article belongs to the Special Issue Advances in GNSS Signal Processing and Navigation)
Show Figures

Figure 1

24 pages, 17868 KiB  
Article
Shallow Structural Deformation Reveals Intraplate Seismicity Triggered by Graben Motion in the South China Littoral Fault Zone
by Hu Yi, Wenhuan Zhan, Xiaodong Yang, Jian Li, Xiaochuan Wu, Jie Sun, Yantao Yao, Jiaxian Huang and Zelong Ju
Remote Sens. 2025, 17(13), 2153; https://doi.org/10.3390/rs17132153 - 23 Jun 2025
Viewed by 461
Abstract
High-resolution seismic reflection profiles from the offshore segment of the Littoral Fault Zone (LFZ) near Nan’ao Island were analyzed to investigate fault activity and its potential link to the 1918 M7.3 earthquake. The data reveal a ~19 km-wide graben bounded by seaward- and [...] Read more.
High-resolution seismic reflection profiles from the offshore segment of the Littoral Fault Zone (LFZ) near Nan’ao Island were analyzed to investigate fault activity and its potential link to the 1918 M7.3 earthquake. The data reveal a ~19 km-wide graben bounded by seaward- and landward-dipping normal faults, with fault-propagation folds and growth faults reaching the seafloor. Forward modeling of the fault-propagation fold indicates three discrete episodes of normal dip-slip displacement (~20 m per phase), separated by prolonged quiescent periods, suggesting episodic fault activity and seismic-scale strain accumulation. Despite the regional NW–SE compressional stress regime, active normal faulting is observed, implying vertical stress as the dominant driving force. A gravitational seismic model driven by upper crustal loading is proposed to explain both the fault motion and the down-draw tsunami observed during the 1918 event. These findings offer new insights into intraplate seismogenic mechanisms and associated hazards along the South China coast. Full article
Show Figures

Figure 1

31 pages, 8101 KiB  
Article
Sequential Nonlinear Time History Analysis of Asymmetric Reinforced Concrete Buildings Under the 2011 Great Japan Earthquake and Tsunami
by Pramod Kumar, Seeram Madhuri and Mizan Ahmed
Buildings 2025, 15(13), 2170; https://doi.org/10.3390/buildings15132170 - 21 Jun 2025
Viewed by 401
Abstract
A nonlinear incremental time history analysis is performed on plan and vertical asymmetric reinforced concrete (RC) buildings under sequential events of the 2011 Great Japan earthquake and tsunami. The symmetric and plan asymmetric buildings with a unidirectional eccentricity of 6 m to 18 [...] Read more.
A nonlinear incremental time history analysis is performed on plan and vertical asymmetric reinforced concrete (RC) buildings under sequential events of the 2011 Great Japan earthquake and tsunami. The symmetric and plan asymmetric buildings with a unidirectional eccentricity of 6 m to 18 m with an interval of 6 m are considered. The vertical mass and stiffness asymmetric structures are also analyzed considering material nonlinearity. Maximum inundation depths of 6.0 m and 3.0 m are simulated to account for the near-shore and far-shore conditions. A total time duration of 58.69 min. is taken for the earthquake and tsunami, including a time gap of 30 min. between the earthquake and tsunami. The symmetric structure showed structural adequacy against earthquakes and tsunamis, with a maximum inundation depth of 3.0 m. The plan asymmetric structure with 6.0 m eccentricity has shown displacements below the yield displacement (i.e., the maximum lateral displacement before inelastic behavior) under the earthquake, but yielded under the tsunami a time of structural adequacy (the time duration during which the building remains within elastic limits under sequential loading) of up to 42.56 min. In comparison to the symmetric building, the buildings with higher eccentricities (12.0 m and 18.0 m) failed under seismic loading alone, exhibiting 94.12% and 45.94% greater displacements, respectively, both exceeding the yield threshold. Vertical stiffness asymmetric structures displaced more than yield displacement under the earthquake, whereas mass asymmetric structures with asymmetry at the first or second floors have been found resilient under the sequential earthquake and tsunami up to the inundation depth of 3.0 m. From this, it is concluded that vertical evacuation is limited to the first or second floors of the studied building. It is recommended to construct the RC buildings away from the seashore to ensure the safety of the occupants. The construction of the plan and stiffness of asymmetric structures shall be avoided in the seashore locations. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 1609 KiB  
Article
Wavelet-Based P-Wave Detection in High-Rate GNSS Data: A Novel Approach for Rapid Earthquake Monitoring in Tsunamigenic Settings
by Ajat Sudrajat, Irwan Meilano, Hasanuddin Z. Abidin, Susilo Susilo, Thomas Hardy, Brilian Tatag Samapta, Muhammad Al Kautsar and Retno Agung P. Kambali
Sensors 2025, 25(13), 3860; https://doi.org/10.3390/s25133860 - 21 Jun 2025
Viewed by 1366
Abstract
Rapid and accurate detection of primary waves (P-waves) using high-rate Global Navigation Satellite System (GNSS) data is essential for earthquake monitoring and tsunami early warning systems, where traditional seismic methods are less effective in noisy environments. We applied a wavelet-based method using a [...] Read more.
Rapid and accurate detection of primary waves (P-waves) using high-rate Global Navigation Satellite System (GNSS) data is essential for earthquake monitoring and tsunami early warning systems, where traditional seismic methods are less effective in noisy environments. We applied a wavelet-based method using a Mexican hat wavelet and dynamic threshold to thoroughly analyze the three-component displacement waveforms of the 2009 Padang, 2012 Simeulue, and 2018 Palu Indonesian earthquakes. Data from the Sumatran GPS Array and Indonesian Continuously Operating Reference Stations were analyzed to determine accurate displacements and P-waves. Validation with Indonesian geophysical agency seismic records indicated reliable detection of the horizontal component, with a time delay of less than 90 s, whereas the vertical component detection was inconsistent, owing to noise. Spectrogram analysis revealed P-wave energy in the pseudo-frequency range of 0.02–0.5 Hz and confirmed the method’s sensitivity to low-frequency signals. This approach illustrates the utility of GNSS data as a complement to seismic networks for the rapid characterization of earthquakes in complex tectonic regions. Improving the vertical component noise suppression might further help secure their utility in real-time early warning systems. Full article
(This article belongs to the Special Issue Advances in GNSS Signal Processing and Navigation)
Show Figures

Figure 1

24 pages, 8763 KiB  
Article
Forecasting the Unseen: Enhancing Tsunami Occurrence Predictions with Machine-Learning-Driven Analytics
by Snehal Satish, Hari Gonaygunta, Akhila Reddy Yadulla, Deepak Kumar, Mohan Harish Maturi, Karthik Meduri, Elyson De La Cruz, Geeta Sandeep Nadella and Guna Sekhar Sajja
Computers 2025, 14(5), 175; https://doi.org/10.3390/computers14050175 - 4 May 2025
Viewed by 1664
Abstract
This research explores the improvement of tsunami occurrence forecasting with machine learning predictive models using earthquake-related data analytics. The primary goal is to develop a predictive framework that integrates a wide range of data sources, including seismic, geospatial, and ecological data, toward improving [...] Read more.
This research explores the improvement of tsunami occurrence forecasting with machine learning predictive models using earthquake-related data analytics. The primary goal is to develop a predictive framework that integrates a wide range of data sources, including seismic, geospatial, and ecological data, toward improving the accuracy and lead times of tsunami occurrence predictions. The study employs machine learning methods, including Random Forest and Logistic Regression, for binary classification of tsunami events. Data collection is performed using a Kaggle dataset spanning 1995–2023, with preprocessing and exploratory analysis to identify critical patterns. The Random Forest model achieved superior performance with an accuracy of 0.90 and precision of 0.88 compared to Logistic Regression (accuracy: 0.89, precision: 0.87). These results underscore Random Forest’s effectiveness in handling imbalanced data. Challenges such as improving data quality and model interpretability are discussed, with recommendations for future improvements in real-time warning systems. Full article
(This article belongs to the Special Issue Machine Learning and Statistical Learning with Applications 2025)
Show Figures

Figure 1

15 pages, 14363 KiB  
Article
Sedimentary Diversity of Tsunami Deposits in a River Channel Associated with the 2024 Noto Peninsula Earthquake, Central Japan
by Rina Okada, Koji Umeda, Keigo Motegi, Takanobu Kamataki and Tadashi Amano
Geosciences 2025, 15(4), 153; https://doi.org/10.3390/geosciences15040153 - 17 Apr 2025
Viewed by 743
Abstract
A comprehensive analysis of modern tsunami deposits offers a valuable opportunity to elucidate the characteristics of paleo-tsunami deposits. On 1 January 2024, a tsunami was generated by a magnitude 7.6 seismic event and subsequently struck the Noto Peninsula in central Japan. In order [...] Read more.
A comprehensive analysis of modern tsunami deposits offers a valuable opportunity to elucidate the characteristics of paleo-tsunami deposits. On 1 January 2024, a tsunami was generated by a magnitude 7.6 seismic event and subsequently struck the Noto Peninsula in central Japan. In order to create a facies model of the tsunami deposits in terrestrial and riverine environments, field surveys were conducted on both the onshore and sandbars within the river channel in the Nunoura area on the northeastern Noto Peninsula. Terrestrial tsunami deposits were observed up to several hundred meters inland, with a slight decrease in thickness of several centimeters with distance from the shoreline. In terrestrial settings, the presence of a substantial silty layer overlying a graded sandy layer is indicative of ponded stagnant water from the tsunami wave. In contrast, riverine tsunami deposits are thicker and more extensive than terrestrial sediments, containing both gravels and shell fragments. An erosional surface develops between deposits of run-up and backwash flows, but a mud drape is not observed. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Natural Hazards)
Show Figures

Figure 1

19 pages, 13081 KiB  
Article
Tsunami Risk Mapping and Sustainable Mitigation Strategies for Megathrust Earthquake Scenario in Pacitan Coastal Areas, Indonesia
by Jumadi Jumadi, Kuswaji Dwi Priyono, Choirul Amin, Aditya Saputra, Christopher Gomez, Kuok-Choy Lam, Arif Rohman, Nilanchal Patel, Farha Sattar, Muhammad Nawaz and Khusnul Setia Wardani
Sustainability 2025, 17(6), 2564; https://doi.org/10.3390/su17062564 - 14 Mar 2025
Viewed by 2501
Abstract
The Pacitan Regency is at risk of megathrust earthquakes and tsunamis due to the seismic gap along the southern region of Java Island, making risk-reduction efforts crucial. This research aims to analyse the tsunami risk associated with a potential megathrust earthquake scenario in [...] Read more.
The Pacitan Regency is at risk of megathrust earthquakes and tsunamis due to the seismic gap along the southern region of Java Island, making risk-reduction efforts crucial. This research aims to analyse the tsunami risk associated with a potential megathrust earthquake scenario in Pacitan’s coastal areas and develop sustainable mitigation strategies. The research employs spatial analysis to evaluate the risk and subsequently formulate strategies for long-term mitigation. A weighted overlay method was utilised to integrate hazard (H) and vulnerability (V) datasets to produce a tsunami risk map (R). The hazard component was modelled using a tsunami propagation simulation based on the Shallow Water Equations in the Delft3D-Flow software, incorporating an earthquake scenario of Mw 8.8 and H-loss calculations in ArcGIS Pro 10.3. The vulnerability assessment was conducted by overlaying population density, land use, and building footprint from the Global Human Settlement Layer (GHSL) datasets. Finally, sustainable strategies were proposed to mitigate the tsunami risk effectively. The results show that Pacitan faces significant tsunami disaster risk, with tsunami waves at the coast reaching 16.6 m. Because the coast of Pacitan is densely populated, mitigation strategies are necessary, and in the present contribution, the authors developed holistic spatial planning, which prioritise the preservation and restoration of natural barriers, such as mangroves and coastal forests. Full article
Show Figures

Figure 1

26 pages, 8065 KiB  
Article
Structural Failure Modes of Single-Story Timber Houses Under Tsunami Loads Using ASCE 7’S Energy Grade Line Analysis
by Darko Otey, Juan Carlos Vielma and Patricio Winckler
J. Mar. Sci. Eng. 2025, 13(3), 484; https://doi.org/10.3390/jmse13030484 - 28 Feb 2025
Viewed by 965
Abstract
The structural response of single-story timber houses subjected to the 27 February 2010 Chile tsunami is studied in San Juan Bautista, an island town located nearly 600 km westward from the earthquake’s rupture source, in the Pacific Ocean. The ASCE 7-22 energy grade [...] Read more.
The structural response of single-story timber houses subjected to the 27 February 2010 Chile tsunami is studied in San Juan Bautista, an island town located nearly 600 km westward from the earthquake’s rupture source, in the Pacific Ocean. The ASCE 7-22 energy grade line analysis (EGLA) is used to calculate flow depths and velocities as functions of the topography and recorded runup. To understand the structural response along the topography, reactions and displacements are computed at six positions every 50 m from the coastline. Houses are modeled using the Robot software, considering dead and live loads cases under the Load and Resistance Factor Design (LRFD) philosophy. The results show that houses located near the coastline experience severe displacements and collapse due to a combination of hydrodynamic forces, drag and buoyancy, which significantly reduces the efficiency of the foundations’ anchorage. Structures far from the coastline are less exposed to reduced velocities, resulting in decreased displacements, structural demand and a tendency to float. Finally, the methodology is validated by applying a nonlinear analysis of the structures subjected to tsunami loads at the different positions considered in this study. Despite their seismic resistance, lightweight timber houses are shown to not be suitable for areas prone to tsunamis. Tsunami-resilient design should therefore consider heavier and more rigid materials in flooding areas and the relocation of lightweight structures in safe zones. Full article
(This article belongs to the Special Issue Coastal Disaster Assessment and Response)
Show Figures

Figure 1

11 pages, 1519 KiB  
Article
Extraction of Tsunami Signals from Coupled Seismic and Tsunami Waves
by Linjian Song and Chao An
J. Mar. Sci. Eng. 2025, 13(3), 419; https://doi.org/10.3390/jmse13030419 - 24 Feb 2025
Viewed by 733
Abstract
The generation of an earthquake and a tsunami is a coupled process of radiating seismic waves and exciting tsunamis, and the two types of waves are simultaneously recorded by ocean-bottom pressure sensors. In order to constrain the earthquake source and evaluate the tsunami [...] Read more.
The generation of an earthquake and a tsunami is a coupled process of radiating seismic waves and exciting tsunamis, and the two types of waves are simultaneously recorded by ocean-bottom pressure sensors. In order to constrain the earthquake source and evaluate the tsunami hazards, it is necessary to separate the tsunami waves. It is traditional to apply a low-pass filter such that the seismic waves are filtered and the tsunami waves remain. However, filtering may also cause distortion of the tsunami waves. In this study, we first use the finite-element method to simulate the generation of seismic and tsunami waves and show that the coupling is a linear superposition of the two waves. We then propose a new method to extract the tsunami waves. First, a low-pass filter with relatively high cutoff frequency that does not affect the tsunami waves is adopted, so that only tsunami waves and low-frequency seismic waves remain. The low-frequency seismic waves satisfy a theoretical equation p=ρha (p pressure, ρ water density, h water depth, and a seafloor vertical acceleration), and they can be predicted and removed by utilizing the records of ocean-bottom acceleration. We demonstrate the procedure by numerical simulations and show that the method successfully extracts clean tsunami signals, which is important for earthquake source characterization and tsunami hazard assessment. Full article
(This article belongs to the Section Marine Hazards)
Show Figures

Figure 1

30 pages, 3503 KiB  
Article
A Revision of Historical Earthquakes in the Ionian Sea, Greece: Island of Lefkada
by Gerassimos A. Papadopoulos and Ioanna Triantafyllou
GeoHazards 2025, 6(1), 7; https://doi.org/10.3390/geohazards6010007 - 7 Feb 2025
Viewed by 3063
Abstract
The central Ionian Sea is one of the most seismogenic areas in the Mediterranean Sea region. In particular, the island of Lefkada, Greece, has experienced many catastrophic earthquakes. The historical seismicity of Lefkada has been revised by utilizing published and little-known macroseismic information [...] Read more.
The central Ionian Sea is one of the most seismogenic areas in the Mediterranean Sea region. In particular, the island of Lefkada, Greece, has experienced many catastrophic earthquakes. The historical seismicity of Lefkada has been revised by utilizing published and little-known macroseismic information sources, e.g., administrative documents, letters, marginal notes, and eyewitness accounts. We organized a new descriptive and parametric catalogue of 44 earthquakes that had their maximum macroseismic intensity in Lefkada and covered the time interval from the 15th century A.D. up to 1911. Earthquake dates, origin times, intensities, magnitudes, and epicentral coordinates were estimated or revised. Magnitudes estimated in previous catalogues in general are larger with respect to our magnitude determinations, possibly due to different calculation methods. The descriptive part of the catalogue includes descriptions of the earthquakes’ impact on buildings and of environmental effects, e.g., landslides and local tsunamis. The catalogue completeness gradually increases with time but is likely complete for the entire period examined lower magnitude threshold Mw = 6.0. One important yet puzzling earthquake is the large one that reportedly ruptured the Strait of Otranto and damaged an unprecedentedly extensive region in Italy, Albania, and Greece, including Lefkada, on 9/20 February 1743. Little-known documents revealed that the heavy destruction supposedly caused in Lefkada was very likely due to amalgamated information regarding local earthquakes and the large one. Full article
Show Figures

Figure 1

15 pages, 6613 KiB  
Article
Observations and Numerical Modelling of the Sumatra Tsunami of 28 March 2005
by Alisa Medvedeva and Alexander Rabinovich
J. Mar. Sci. Eng. 2025, 13(2), 290; https://doi.org/10.3390/jmse13020290 - 4 Feb 2025
Viewed by 1054
Abstract
On 28 March 2005, a major Mw 8.6 earthquake occurred near Nias and Simeulueislands, in the vicinity of northwestern Sumatra (Indonesia). The earthquake generated a significant tsunami. Although it was not as destructive as the 2004 Sumatra tsunami, the 2005 event was [...] Read more.
On 28 March 2005, a major Mw 8.6 earthquake occurred near Nias and Simeulueislands, in the vicinity of northwestern Sumatra (Indonesia). The earthquake generated a significant tsunami. Although it was not as destructive as the 2004 Sumatra tsunami, the 2005 event was of sufficient strength to be recorded by tide gauges throughout the entire Indian Ocean. We selected 12 records for analysis, most from open-ocean islands but also some from continental stations. The maximum wave heights were measured at Salalah (Oman) (87 cm), Colombo (Sri Lanka), Pointe La Rue (Seychelles) and Rodrigues Island (53–54 cm). The dominant wave periods, estimated from frequency–time (f-t) diagrams, were 60–66 min, 40–48 min, and 20 min, which we assume are associated with the 2005 tsunami source. From the same stations, we calculated the mean ratio of the 2004 to 2005 tsunami heights as 5.11 ± 0.60, with the maximum and minimum heights to the west and south of the source region as 9.0 and 2.49, respectively. We also used these data to estimate the mean energy index, E0 = 65 cm2, for the 2005 tsunami, which was 16 times smaller than for the 2004 event. The USGS seismic solution was used to construct a numerical model of the 2005 tsunami and to simulate the tsunami waveforms for all 12 tide gauge stations. The results of the numerical computations were in general agreement with the observations and enabled us to map the spatial wave field of the event. To estimate the influence of location and orientation of the source area on the propagating tsunami waves, we undertook a set of additional numerical experiments and found that this influence is substantial and that these factors explain some of the differences between the physical properties of the 2004 and 2005 events. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

28 pages, 23173 KiB  
Article
Joint Multi-Scenario-Based Earthquake and Tsunami Hazard Assessment for Alexandria, Egypt
by Hazem Badreldin, Hany M. Hassan, Fabio Romanelli, Mahmoud El-Hadidy and Mohamed N. ElGabry
Appl. Sci. 2024, 14(24), 11896; https://doi.org/10.3390/app142411896 - 19 Dec 2024
Cited by 1 | Viewed by 3876
Abstract
The available historical documents for the city of Alexandria indicate that it was damaged to varying degrees by several (historical and instrumentally recorded) earthquakes and by highly destructive tsunamis reported at some places along the Mediterranean coast. In this work, we applied the [...] Read more.
The available historical documents for the city of Alexandria indicate that it was damaged to varying degrees by several (historical and instrumentally recorded) earthquakes and by highly destructive tsunamis reported at some places along the Mediterranean coast. In this work, we applied the neo-deterministic seismic hazard analysis (NDSHA) approach to the Alexandria metropolitan area, estimating ground motion intensity parameters, e.g., peak ground displacement (PGD), peak ground velocity (PGV), peak ground acceleration (PGA), and spectral response, at selected rock sites. The results of this NDSHA zonation at a subregional/urban scale, which can be directly used as seismic input for engineering analysis, indicate a relatively high seismic hazard in the Alexandria region (e.g., 0.15 g), and they can provide an essential knowledge base for detailed and comprehensive seismic microzonation studies at an urban scale. Additionally, we established detailed tsunami hazard inundation maps for Alexandria Governorate based on empirical relations and considering various Manning’s Roughness Coefficients. Across all the considered scenarios, the average estimated time of arrival (ETA) of tsunami waves for Alexandria was 75–80 min. According to this study, the most affected sites in Alexandria are those belonging to the districts of Al Gomrok and Al Montazah. The west of the city, called Al Sahel Al Shamally, is less affected than the east, as it is protected by a carbonate ridge parallel to the coastline. Finally, we emphasize the direct applicability of our study to urban planning and risk management in Alexandria. Our study can contribute to identifying vulnerable areas, prioritizing mitigation measures, informing land-use planning and building codes, and enhancing multi-hazard risk analysis and early warning systems. Full article
(This article belongs to the Special Issue Earthquake Engineering and Seismic Risk)
Show Figures

Figure 1

9 pages, 1766 KiB  
Communication
Estimating Secondary Earthquake Aftershocks from Tsunamis
by Sergey A. Arsen’yev and Lev V. Eppelbaum
Geosciences 2024, 14(12), 344; https://doi.org/10.3390/geosciences14120344 - 13 Dec 2024
Viewed by 1057
Abstract
Nonlinear solitary waves influence the Earth’s crust because wave pressure on the ocean bottom contains non-hydrostatic components. Our physical-mathematical model allows us to calculate the surplus super-hydrostatic pressure on the Earth’s crust. It depends on the amplitudes of solitary waves and the depth [...] Read more.
Nonlinear solitary waves influence the Earth’s crust because wave pressure on the ocean bottom contains non-hydrostatic components. Our physical-mathematical model allows us to calculate the surplus super-hydrostatic pressure on the Earth’s crust. It depends on the amplitudes of solitary waves and the depth of an ocean. The surplus wave pressure averages 50% from hydrostatic pressure on the shallow ocean shelves. Thus, the solitary wave’s tsunami class can provoke novel (repeated) earthquakes (or landslides) because surplus stresses affect the seismic focus. Theoretical results and experimental physical modeling of soliton waves have shown good agreement. A calculated example of the mega-tsunami in Lituya Bay and a described example of Dickson Fjord (AK, USA) indicate changes in the dynamic pressure after the onset of the tsunami. The presented studies demonstrate a first attempt at creating a numerical model of this phenomenon. Full article
Show Figures

Figure 1

21 pages, 2950 KiB  
Review
The Main Geohazards in the Russian Sector of the Arctic Ocean
by Artem A. Krylov, Daria D. Rukavishnikova, Mikhail A. Novikov, Boris V. Baranov, Igor P. Medvedev, Sergey A. Kovachev, Leopold I. Lobkovsky and Igor P. Semiletov
J. Mar. Sci. Eng. 2024, 12(12), 2209; https://doi.org/10.3390/jmse12122209 - 2 Dec 2024
Viewed by 1338
Abstract
The Arctic region, including vast shelf zones, has enormous resource and transport potential and is currently key to Russia’s strategic development. This region is promising and attractive for the intensification of global economic activity. When developing this region, it is very important to [...] Read more.
The Arctic region, including vast shelf zones, has enormous resource and transport potential and is currently key to Russia’s strategic development. This region is promising and attractive for the intensification of global economic activity. When developing this region, it is very important to avoid emergency situations that could result in numerous negative environmental and socio-economic consequences. Therefore, when designing and constructing critical infrastructure facilities in the Arctic, it is necessary to conduct high-quality studies of potential geohazards. This paper reviews and summarizes the scattered information on the main geohazards in the Russian sector of the Arctic Ocean, such as earthquakes, underwater landslides, tsunamis, and focused fluid discharges (gas seeps), and discusses patterns of their spatial distribution and possible relationships with the geodynamic setting of the Arctic region. The study revealed that the main patterns of the mutual distribution of the main geohazards of the Russian sector of the Arctic seas are determined by both the modern geodynamic situation in the region and the history of the geodynamic evolution of the Arctic, namely the formation of the spreading axis and deep-sea basins of the Arctic Ocean. The high probability of the influence of seismotectonic activity on the state of subsea permafrost and massive methane release is emphasized. This review contributes toward better understanding and progress in the zoning of seismic and other geological hazards in the vast Arctic seas of Russia. Full article
(This article belongs to the Special Issue Marine Geohazards: Characterization to Prediction)
Show Figures

Figure 1

18 pages, 3781 KiB  
Article
A Multiscale Model to Assess Bridge Vulnerability Under Extreme Wave Loading
by Umberto De Maio, Fabrizio Greco, Paolo Lonetti and Paolo Nevone Blasi
J. Mar. Sci. Eng. 2024, 12(12), 2145; https://doi.org/10.3390/jmse12122145 - 25 Nov 2024
Cited by 1 | Viewed by 1023
Abstract
A multiscale model is proposed to assess the impact of wave loading on coastal or inland bridges. The formulation integrates various scales to examine the effects of flooding actions on fluid and structural systems, transitioning from global to local representation scales. The fluid [...] Read more.
A multiscale model is proposed to assess the impact of wave loading on coastal or inland bridges. The formulation integrates various scales to examine the effects of flooding actions on fluid and structural systems, transitioning from global to local representation scales. The fluid flow was modeled using a turbulent two-phase level set formulation, while the structural system employed the 3D solid mechanics theory. Coupling between subsystems was addressed through an FSI formulation using the ALE moving mesh methodology. The proposed model’s validity was confirmed through comparisons with numerical and experimental data from the literature. A parametric study was conducted on wave load characteristics associated with typical flood or tsunami scenarios. This included verifying the wave load formulas from existing codes or refined formulations found in the literature, along with assessing the dynamic amplification’s effects on key bridge design variables and the worst loading cases involving bridge uplift and horizontal forces comparable to those typically used in seismic actions. Furthermore, a parametric study was undertaken to examine fluid flow and bridge characteristics, such as bridge elevation, speed, inundation ratio, and bearing system typology. The proposed study aims to identify the worst-case scenarios for bridge deck vulnerability. Full article
(This article belongs to the Special Issue Analysis and Design of Marine Structures)
Show Figures

Figure 1

Back to TopTop