Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = seepage front

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5954 KB  
Article
Early Warning Technology for Heavy Metal Contaminant Leakage Based on Self-Potential Method
by Feng Wang, Hongli Li, Wei Zhang, Yansheng Liu, Guofu Wang and Xiaobo Jia
Water 2025, 17(19), 2839; https://doi.org/10.3390/w17192839 - 28 Sep 2025
Viewed by 275
Abstract
Heavy metal contamination poses significant environmental risks to groundwater and soil, necessitating efficient early-warning technologies for leakage detection. This study proposes a novel early-warning approach for heavy metal leakage using the self-potential (SP) method. A coupled numerical model integrating seepage, ion diffusion, and [...] Read more.
Heavy metal contamination poses significant environmental risks to groundwater and soil, necessitating efficient early-warning technologies for leakage detection. This study proposes a novel early-warning approach for heavy metal leakage using the self-potential (SP) method. A coupled numerical model integrating seepage, ion diffusion, and electric potential fields was developed within the COMSOL Multiphysics platform in order to elucidate the dynamic response mechanism of SP signals to advancing seepage fronts. Key findings reveal that the SP signal responds 1.5 h earlier than the contaminant diffusion front (Case 1), providing a critical early-warning window. The leakage process exhibits a distinct bipolar SP anomaly pattern (negative upstream/positive downstream), with the most significant response observed at the downstream toe area. Consequently, an optimized monitoring strategy prioritizing downstream deployment is proposed and validated using a representative landfill model. This SP-based technology offers a promising solution for real-time environmental risk monitoring, particularly in ecologically sensitive zones. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

31 pages, 10288 KB  
Article
Nonlinear Analysis of a Single Vertical Drain Under Vacuum Preloading Based on Axisymmetric Biot’s Consolidation Theory
by Xiaodong Pan, Deshi Liu, Jingfan Feng and Xueyu Geng
Symmetry 2025, 17(9), 1420; https://doi.org/10.3390/sym17091420 - 1 Sep 2025
Viewed by 488
Abstract
This study incorporates a nonlinear seepage relationship into Biot’s consolidation theory and simulates the consolidation of a single vertical drain under vacuum preloading using the finite element method. The model, simplified via the equal-strain assumption, is validated against theoretical predictions. Under the axisymmetric [...] Read more.
This study incorporates a nonlinear seepage relationship into Biot’s consolidation theory and simulates the consolidation of a single vertical drain under vacuum preloading using the finite element method. The model, simplified via the equal-strain assumption, is validated against theoretical predictions. Under the axisymmetric Biot’s framework, consolidation behavior is analyzed in detail. The results show that in the early stages of consolidation, excess pore water pressure in the vicinity of the prefabricated vertical drain (PVD) does not fully dissipate and may even increase, indicating the occurrence of the Mandel–Cryer effect. As the consolidation process advances, the consolidation front gradually extends outward, and the void ratio near the PVD decreases rapidly, leading to the formation of a clogging zone. In contrast, the reduction in the void ratio in the non-clogging region is relatively slow. The progressive development of the clogging zone significantly impedes the overall consolidation rate. Furthermore, this study explores the influence of key parameters—including the compression index, permeability coefficient, well diameter ratio, smear effect, and well resistance—on the formation of the clogging zone and the Mandel–Cryer effect. Full article
(This article belongs to the Special Issue Symmetry, Asymmetry and Nonlinearity in Geomechanics)
Show Figures

Figure 1

18 pages, 5104 KB  
Article
Analysis of the Effectiveness Mechanism and Research on Key Influencing Factors of High-Pressure Water Injection in Low-Permeability Reservoirs
by Yang Li, Hualei Xu, Shanshan Fu, Hongtao Zhao, Ziqi Chen, Xuejing Bai, Jianyu Li, Chunhong Xiu, Lianshe Zhang and Jie Wang
Processes 2025, 13(8), 2664; https://doi.org/10.3390/pr13082664 - 21 Aug 2025
Viewed by 631
Abstract
Low-permeability oil reservoirs, due to their weak seepage capacity and high start-up pressure, have limited yield-increasing effects through conventional water injection development methods. High-pressure water injection can significantly change the seepage environment around the well and within the reservoir, expand the effective swept [...] Read more.
Low-permeability oil reservoirs, due to their weak seepage capacity and high start-up pressure, have limited yield-increasing effects through conventional water injection development methods. High-pressure water injection can significantly change the seepage environment around the well and within the reservoir, expand the effective swept volume of injected water, and thereby greatly enhance the oil recovery rate of water flooding. However, there is still a relative lack of research on the mechanism of high-pressure water injection stimulation and its influencing factors. This paper systematically analyzes the effectiveness mechanism of high-pressure water injection technology in the exploitation of low-permeability reservoirs. The internal mechanism of high-pressure water injection for effective fluid drive and production increase is explained from the aspects of low-permeability reservoir seepage characteristics, capacity expansion and permeability enhancement by high-pressure water injection, and the dynamic induction of micro-fractures. Based on geological and engineering factors, the main factors affecting the efficiency enhancement of high-pressure water injection are studied, including formation deficit, reservoir heterogeneity, dominant channel development and fracturing stimulation measures, injection displacement and micro-fractures, etc. The results of numerical simulation showed the following: (1) formation depletion, reservoir heterogeneity, and the formation of dominant channels significantly affected the effect of water flooding development and (2) engineering factors such as the fracture direction of hydraulic fracturing, water injection rate, and the development of micro-fractures under high-pressure water injection directly determined the propagation path of reservoir pressure, the breakthrough speed of the water drive front, and the ultimate recovery factor. Therefore, during the actual development process, the construction design parameters of high-pressure water injection should be reasonably determined based on the geological reservoir conditions to maximize the oil production increase effect of high-pressure water injection. This study can successfully provide theoretical guidance and practical support for the development of low-permeability oil reservoirs. Full article
(This article belongs to the Special Issue Recent Advances in Hydrocarbon Production Processes from Geoenergy)
Show Figures

Figure 1

19 pages, 2082 KB  
Article
Numerical Modeling of Levee Failure Mechanisms by Integrating Seepage and Stability Processes
by Liaqat Ali, Shiro Konno, Yoshiya Igarashi and Norio Tanaka
GeoHazards 2025, 6(3), 44; https://doi.org/10.3390/geohazards6030044 - 8 Aug 2025
Viewed by 867
Abstract
Levee failures caused by prolonged flooding and elevated upstream water levels pose a significant risk to floodplain communities, especially as the number of extreme hydrological events increases under climate change. Understanding seepage-induced weakening and failure mechanisms is essential for improving levee design and [...] Read more.
Levee failures caused by prolonged flooding and elevated upstream water levels pose a significant risk to floodplain communities, especially as the number of extreme hydrological events increases under climate change. Understanding seepage-induced weakening and failure mechanisms is essential for improving levee design and resilience. This study develops a numerical framework that integrates unsaturated and saturated seepage analysis with slope stability evaluation to simulate seepage front progression and predict failure initiation. The model employs van Genuchten-based soil water retention properties and experimentally derived hydraulic conductivities, with results validated against five experimental cases with varying hydraulic conductivity contrasts between the levee body and foundation soils. The simulations reproduced seepage front evolution and slope deformation patterns with good agreement with experimental observations. In cases with high permeability contrasts, the model captured foundation-dominant seepage behavior, while moderate- and low-contrast scenarios showed close alignment with observed phreatic line development. Slight deviations were noted in failure timing, but the framework demonstrated potential for reproducing seepage-induced instability in levees. The findings contribute to understanding how the internal soil composition governs levee performance under flooding and provide a basis for developing seepage countermeasures and early warning tools. This approach offers practical value for risk-informed levee design and flood management. Full article
Show Figures

Figure 1

23 pages, 4661 KB  
Article
Evaluation of Moraine Sediment Dam Stability Under Permafrost Thawing in Glacial Environments: A Case Study of Gurudongmar Lake, Sikkim Himalayas
by Anil Kumar Misra, Amit Srivastava, Kuldeep Dutta, Soumya Shukla, Rakesh Kumar Ranjan and Nishchal Wanjari
Appl. Sci. 2025, 15(11), 5892; https://doi.org/10.3390/app15115892 - 23 May 2025
Viewed by 1044
Abstract
This study assesses the risks of glacial lake outburst floods (GLOFs) from moraine sediment dams around Gurudongmar Lake in the Northern Sikkim Himalayas at an elevation of 17,800 feet. It focuses on three moraine sediment dams, analysing the implications of slope failure on [...] Read more.
This study assesses the risks of glacial lake outburst floods (GLOFs) from moraine sediment dams around Gurudongmar Lake in the Northern Sikkim Himalayas at an elevation of 17,800 feet. It focuses on three moraine sediment dams, analysing the implications of slope failure on the upstream side and the downstream stability under steady seepage conditions, as well as the risks posed by permafrost thawing. Using a comprehensive methodology that includes geotechnical evaluations, remote sensing, and digital elevation models (DEMs), the research employs finite element analysis via PLAXIS2D for the stability assessment. The main findings indicate a stratification of sediment types: the upper layers are loose silty sand, while the lower layers are dense silty sand, with significant variations in shear strength, permeability, and other geotechnical properties. Observations of solifluctions suggest that current permafrost conditions enhance the dams’ stability and reduce seepage. However, temperature trends show a warming climate, with the average days below 0 °C decreasing from 314 (2004–2013) to 305 (2014–2023), indicating potential permafrost thawing. This thawing could increase seepage and destabilise the dams, raising the risk of GLOFs. Numerical simulations reveal that scenarios involving water level rises of 5 and 10 m could lead to significant deformation and reduced safety factors on both the upstream lateral dams and downstream front dams. The study emphasises the urgent need for ongoing monitoring and risk assessment to address the potential hazards associated with GLOFs. Full article
(This article belongs to the Special Issue Soil-Structure Interaction in Structural and Geotechnical Engineering)
Show Figures

Figure 1

17 pages, 12216 KB  
Article
Experimental Study on Infiltration Characteristics of Shallow Rainwater in Expansive Soil Slopes at Different Gradients
by Quan Shen, Yidan Zhang, Yuan Yan, Hongyuan Dong and Wenkai Lei
Water 2025, 17(5), 642; https://doi.org/10.3390/w17050642 - 22 Feb 2025
Cited by 3 | Viewed by 1454
Abstract
Expansive soils are widely distributed in tropical and subtropical regions and are highly sensitive to moisture variations, posing significant challenges to slope stability. Rainfall infiltration alters the hydro-mechanical behavior of expansive soils, increasing the risk of landslides and slope failures. Understanding the infiltration [...] Read more.
Expansive soils are widely distributed in tropical and subtropical regions and are highly sensitive to moisture variations, posing significant challenges to slope stability. Rainfall infiltration alters the hydro-mechanical behavior of expansive soils, increasing the risk of landslides and slope failures. Understanding the infiltration dynamics under different slope conditions is therefore essential for improving slope stability management and disaster mitigation. To investigate the mechanisms governing the long-term stability of steep expansive soil slopes, this study designed and constructed a multi-slope combination model test box. Model experiments were conducted on rainfall-induced expansive soil slopes with varying gradients to analyze the interaction between surface runoff and seepage under different rainfall conditions. The results demonstrate that slope gradient plays a crucial role in the rainfall infiltration process. As the slope gradient decreases, the time required for runoff initiation increases, and rainfall infiltration becomes the dominant process, while runoff plays a secondary role. This effect is more pronounced at lower slope gradients. Furthermore, as the slope gradient increases, the variation in soil moisture content decreases, and the influence of rainfall on deeper soil layers is reduced. Beyond a certain threshold, further increases in slope angle result in a diminished effect on enhancing surface runoff and limiting infiltration. Additionally, steeper slopes exhibit a slower rise in soil moisture content during rainfall events. The results also indicate that as the slope gradient increases, the depth of soil affected by rainfall becomes shallower, and the migration speed of the wetting front decreases. The findings of this study provide valuable insights into slope hydrodynamics and serve as a scientific basis for sustainable slope management and soil conservation in expansive soil regions. Full article
Show Figures

Figure 1

13 pages, 5465 KB  
Article
Monitoring-Based Study of Migration Characteristics of Highly Saline Mine Water During Deep Well Injection and Storage in the Ordos Basin
by Qiaohui Che, Song Du, Degao Zhang, Donglin Dong, Yinglin Fan, Xiang Li, Zhan Yang and Xiao Zhang
Processes 2025, 13(2), 494; https://doi.org/10.3390/pr13020494 - 10 Feb 2025
Cited by 2 | Viewed by 694
Abstract
Deep well injection and storage (DWIS) has recently been proposed and implemented to achieve zero mine water emissions. In 2023, DWIS for highly saline mine water was successfully applied to a local mine in the Ordos Basin for the first time with excellent [...] Read more.
Deep well injection and storage (DWIS) has recently been proposed and implemented to achieve zero mine water emissions. In 2023, DWIS for highly saline mine water was successfully applied to a local mine in the Ordos Basin for the first time with excellent performance. However, the storage characteristics of highly saline mine water in the storage layer during DWIS remain unclear. This study was conducted in situ with real-time, online monitoring of instantaneous flow and injection pressure, along with synchronous micro-seismic monitoring during the early stages of DWIS, based on the geological conditions and spatial structure of the storage layer. The results indicated that the early seepage characteristics of the fluid geological storage did not conform to Darcy’s law. Within a certain pressure range, as the water pressure increased, the flow also increased. However, beyond this range, further increases in pressure caused a gradual decline in the flow. During the initial phase of storage, the migration of high-salinity mine water within the storage layer occurred in two stages: breakthrough and stabilization. During the breakthrough stage, the water injection pressure propagated to the flooding front, overcoming the formation stress and expanding the storage space. At this stage, mine water primarily filled the pore microcracks within the flooding front. In the initial 10 days of storage, high-salinity mine water in the study area affected approximately 42,104 m2 of the storage layer plane. The injection well affected an area nearly 200 m in depth, extending approximately 190 m northward and approximately 40 m upward. The predominant diffusion directions were northeast and east–southeast from the injection well. These findings could provide valuable insights into the treatment of highly saline mine water in the Ordos Basin, demonstrate the feasibility and safety of DWIS, and offer significant scientific contributions to the prevention and control of mine water pollution. Full article
Show Figures

Figure 1

19 pages, 3743 KB  
Article
Influence of Spacing on the Retention Process of Cascade Permeable Dams for Upstream Sediment-Laden Flow
by Jian Liu, Hongwei Zhou, Longyang Pan, Niannian Li, Mingyang Wang, Xing Gao and Haoxiang Yang
Water 2025, 17(1), 95; https://doi.org/10.3390/w17010095 - 1 Jan 2025
Viewed by 973
Abstract
Permeable dams are an important means for river management and ecology protection. Reasonable dam spacing will help regulate sediment transport and reduce sediment load in lakes. Flume experiments were carried out to investigate the effects of hydrological sediment conditions and dam spacing on [...] Read more.
Permeable dams are an important means for river management and ecology protection. Reasonable dam spacing will help regulate sediment transport and reduce sediment load in lakes. Flume experiments were carried out to investigate the effects of hydrological sediment conditions and dam spacing on sediment retention performance and permeability of the cascade permeable dams. The experimental results show that the permeability coefficient of the 1# dam decreased by about 30–40% with a large rate during the initial experiment stage. The decrease amplitude in the permeability coefficient and rising rate of the water level in front of the 1# dam for a large dam spacing (D/L) are positively correlated with the flow rate. At D/L = 5, the water level difference of 1# dam at the end of the experiment was significantly higher than that of other spacing. The sediment mass retained by 1# dam accounts for about 41–65% of the total sediment mass retained, which is about twice that of 2# dam, and plays a major role in cascade permeable dams. A mathematical model for predicting the spatial-temporal sediment concentration inside 1# dam is proposed based on the seepage theory of porous media. The research results are of great guiding significance for the design of the dam parameters. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

19 pages, 14633 KB  
Article
Numerical Simulation on Pore Size Multiphase Flow Law Based on Phase Field Method
by Tianjiang Wu, Changhao Yan, Ruiqi Gong, Yanhong Zhao, Xiaoyu Jiang and Liu Yang
Energies 2025, 18(1), 82; https://doi.org/10.3390/en18010082 - 28 Dec 2024
Viewed by 1008
Abstract
The characteristics of CO2 seepage in reservoirs have important research significance in the field of CCS technology application. However, the characteristics of macro-scale seepage are affected by the geometrical characteristics of micro-scale media, such as pore size and particle shape. Therefore, in [...] Read more.
The characteristics of CO2 seepage in reservoirs have important research significance in the field of CCS technology application. However, the characteristics of macro-scale seepage are affected by the geometrical characteristics of micro-scale media, such as pore size and particle shape. Therefore, in this work, a series of numerical simulations were carried out using the phase field method to study the effect of pore structure simplification on micro-scale displacement process. The influences of capillary number, wettability, viscosity ratio, interfacial tension, and fracture development are discussed. The results show that the overall displacement patterns of the real pore model and the simplified particle model are almost similar, but the oil trapping mechanisms were totally different. There are differences in flow pattern, number of dominant flow channels, sensitivity to influencing factors and final recovery efficiency. The real pore model shows higher displacement efficiency. The decrease in oil wet strength of rock will change the CO2 displacement mode from pointing to piston displacement. At the same time, the frequency of breakage will be reduced, thus improving the continuity of CO2. When both pores and fractures are developed in the porous media, CO2 preferentially diffuses along the fractures and has an obvious front and finger phenomenon. When CO2 diffuses, it converges from the pore medium to the fracture and diverges from the fracture to the pore medium. The shape of fracture development in the dual medium will largely determine the CO2 diffusion pattern. Full article
Show Figures

Figure 1

20 pages, 3240 KB  
Article
Modeling and Application of the Hydrus-2D Model for Simulating Preferential Flow in Loess Soil Under Various Scenarios
by Shengnan Li, Ting Lu, Kexin Zhou, Yidong Gu, Bihui Wang and Yudong Lu
Water 2024, 16(24), 3653; https://doi.org/10.3390/w16243653 - 18 Dec 2024
Cited by 2 | Viewed by 1976
Abstract
Soil hydraulic properties are mainly governed by the soil’s heterogeneity, anisotropy, and discontinuous structural characteristics, primarily when connected soil macropores characterize the structures. Therefore, researchers must document reliable hydrological models to elucidate how the soil medium affects the movement of soil water. This [...] Read more.
Soil hydraulic properties are mainly governed by the soil’s heterogeneity, anisotropy, and discontinuous structural characteristics, primarily when connected soil macropores characterize the structures. Therefore, researchers must document reliable hydrological models to elucidate how the soil medium affects the movement of soil water. This study, utilizing a field-scale staining tracer test, distinguishes between matrix flow and preferential flow areas in the seepage field of Xi’an loess. The Xi’an loess’s soil water characteristic curve (SWCC) was explored through field investigations and laboratory analyses. A dual-permeability model that couples matrix and macropore flow was developed using the Hydrus-2D model, enabling simulations of water migration under varying initial soil water content, rainfall intensity, and crack width. The results showed that (1) The SWCC of macropores in the preferential flow area exhibits a bimodal distribution, and the Fredlund & Xing model is applied for sectional fitting to obtain the corresponding soil water characteristic parameters. (2) Initial soil water content and rainfall intensity significantly influence water distribution, while crack width has a relatively minor effect. (3) The cumulative flux under the preferential flow is significantly higher than in the matrix area, and the wetting front depth increases with higher initial water content and rainfall intensity. This study reveals the key characteristics of preferential flow and moisture migration in the matrix zone and their influencing factors in loess. It constructs a two-domain infiltration model by integrating loess’s diverse structural characteristics and pore morphology. This model provides a theoretical basis and technical support for simulating preferential flow and studying the moisture dynamics of loess profiles. Full article
(This article belongs to the Special Issue Advance in Groundwater in Arid Areas)
Show Figures

Figure 1

18 pages, 4027 KB  
Article
A Leakage Safety Discrimination Model and Method for Saline Aquifer CCS Based on Pressure Dynamics
by Jun Ni, Chengjun Wang, Hailong Dang, Hongwei Jing and Xiaoliang Zhao
Processes 2024, 12(10), 2206; https://doi.org/10.3390/pr12102206 - 10 Oct 2024
Viewed by 1100
Abstract
The saline aquifer CCS is a crucial site for carbon storage. Safety monitoring is a key technology for saline aquifer CCS. Current CO2 leakage detection methods include microseismic, electromagnetic, and well-logging techniques. However, these methods face challenges, such as difficulties in determining [...] Read more.
The saline aquifer CCS is a crucial site for carbon storage. Safety monitoring is a key technology for saline aquifer CCS. Current CO2 leakage detection methods include microseismic, electromagnetic, and well-logging techniques. However, these methods face challenges, such as difficulties in determining CO2 migration fronts and predicting potential leakage events; as a result, the formulation of test timing and methods for these safety monitoring techniques are somewhat arbitrary. This study establishes a gas–water two-phase seepage model and solves it using a semi-analytical method to obtain the injection pressure and the derivative curve characteristics of the injection well. The pressure derivative curve can reflect the physical properties of the reservoir through which CO2 flows underground, and it can also be used to determine whether CO2 leakage has occurred, as well as the timing and amount of leakage, based on boundary responses. This study conducted sensitivity analyses on eight parameters to determine the impact of each parameter on the bottom-hole pressure and its derivatives, thereby obtaining the influence of its parameters on different flow stages. The research indicates that, when a steady-state flow characteristic appears at the outer boundary, CO2 leakage will occur. Additionally, the leakage location can be determined by calculating the distance from the injection well. This can guide the placement and measurement of safety monitoring methods for saline aquifer CCS. The method proposed in this paper can effectively monitor the timing, location, and amount of leakage, providing a technical safeguard for promoting CCS technology. Full article
Show Figures

Figure 1

18 pages, 24214 KB  
Article
A Modified Method for Evaluating the Stability of the Finite Slope during Intense Rainfall
by Xiaoyang Wei, Weizhong Ren, Wenhui Xu, Simin Cai and Longwei Li
Water 2024, 16(20), 2877; https://doi.org/10.3390/w16202877 - 10 Oct 2024
Cited by 3 | Viewed by 1053
Abstract
The Green–Ampt (GA) model is a widely used analytical method to calculate the depth of the wetting front during intense rainfall. However, it neglects the existence of the transition layer and the seepage parallel to the slope surface. Therefore, a modified stratified Green–Ampt [...] Read more.
The Green–Ampt (GA) model is a widely used analytical method to calculate the depth of the wetting front during intense rainfall. However, it neglects the existence of the transition layer and the seepage parallel to the slope surface. Therefore, a modified stratified Green–Ampt (MSGA) model is proposed. A process to assess the stability of the finite slope during a rainfall event is demonstrated by combining the MSGA model and the limit equilibrium method. In the case of the Liangshuijing landslide, the factor of safety presents a negative correlation with the depth of the wetting front. The factor of safety obtained by the stratified Green–Ampt (SGA) model is smaller than that calculated by the MSGA model, and the gap between the factor of safety based on the two methods widens with time. The moving speed of the wetting front accelerates with the increase in the length of the slope surface, and the size effect becomes apparent when the length is short. In the initial stage of infiltration, the effect of the seepage parallel to the slope surface is small. The effect of the seepage cannot be neglected at the latter stage. The result calculated by the MSGA model agrees well with the measured result in the test. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

27 pages, 46094 KB  
Article
Study on Hydraulic Fracture Propagation in Mixed Fine-Grained Sedimentary Rocks and Practice of Volumetric Fracturing Stimulation Techniques
by Hong Mao, Yinghao Shen, Yao Yuan, Kunyu Wu, Lin Xie, Jianhong Huang, Haoting Xing and Youyu Wan
Processes 2024, 12(9), 2030; https://doi.org/10.3390/pr12092030 - 20 Sep 2024
Viewed by 1016
Abstract
Yingxiongling shale oil is considered a critical area for future crude oil production in the Qaidam Basin. However, the unique features of the Yingxiongling area, such as extraordinary thickness, hybrid sedimentary, and extensive reformation, are faced with several challenges, including an unclear understanding [...] Read more.
Yingxiongling shale oil is considered a critical area for future crude oil production in the Qaidam Basin. However, the unique features of the Yingxiongling area, such as extraordinary thickness, hybrid sedimentary, and extensive reformation, are faced with several challenges, including an unclear understanding of the main controlling factors for hydraulic fracturing propagation, difficulties in selecting engineering sweet layers, and difficulties in optimizing the corresponding fracturing schemes, which restrict the effective development of production. This study focuses on mixed fine-grained sedimentary rocks, employing a high-resolution integrated three-dimensional geological-geomechanical model to simulate fracture propagation. By combining laboratory core experiments, a holistic investigation of the controlling factors was conducted, revealing that hydraulic fracture propagation in mixed fine-grained sedimentary rocks is mainly influenced by rock brittleness, natural fractures, stress, varying lithologies, and fracturing parameters. A comprehensive compressibility evaluation standard was established, considering brittleness, stress contrast, and natural fracture density, with weights of 0.3, 0.23, and 0.47. In light of the high brittleness, substantial interlayer stress differences, and localized developing natural microfractures in the Yingxiongling mixed fine-grained sedimentary rock reservoir, this study examined the influence of various construction parameters on the propagation of hydraulic fractures and optimized these parameters accordingly. Based on the practical application in the field, a “three-stage” stimulation strategy was proposed, which involves using high-viscosity fluid in the front to create the main fracture, low-viscosity fluid with sand-laden slugs to create volume fractures, and continuous high-viscosity fluid carried sand to maintain the conductivity of the fracture network. The resulting oil and gas seepage area corresponding to the stimulated reservoir volume (SRV) matched the actual well spacing of 500 m, achieving the effect of full utilization. The understanding of the controlling factors for fracture expansion, the compressibility evaluation standard, and the main process technology developed in this study effectively guide the optimization of transformation programs for mixed fine-grained sedimentary rocks. Full article
Show Figures

Figure 1

17 pages, 8083 KB  
Article
Prediction of Ground Subsidence Induced by Groundwater Mining Using Three-Dimensional Variable-Parameter Fully Coupled Simulation
by Jingjing Du, Yan Zhang, Zujiang Luo and Chenghang Zhang
Water 2024, 16(17), 2487; https://doi.org/10.3390/w16172487 - 1 Sep 2024
Cited by 3 | Viewed by 1891
Abstract
In order to predict the ground settlement in a scientific, intuitive, and simple way, based on the theory of Bio-consolidation, a three-dimensional fluid-solid coupled numerical calculation programme FGS-3D for ground settlement was compiled by using the Fortran 95 language, and a front-end operation [...] Read more.
In order to predict the ground settlement in a scientific, intuitive, and simple way, based on the theory of Bio-consolidation, a three-dimensional fluid-solid coupled numerical calculation programme FGS-3D for ground settlement was compiled by using the Fortran 95 language, and a front-end operation platform was developed by using Microsoft VisualBasic, so that a three-dimensional variable-parameter fully coupled viscoelastic-plastic model of ground settlement was constructed using the city of Yancheng as an example, and the development of ground settlement and horizontal displacement changes from 2021 to 2030 were predicted. The results show that the three-dimensional fully coupled finite-element numerical model of building load, groundwater seepage, and soil deformation established by the above computer development program can directly create a hydrogeological conceptual model of groundwater mining and predict ground settlement, so as to achieve the visualisation of the three-dimensional seepage of groundwater and the fully coupled simulation of ground subsidence in the whole process of groundwater mining. Under the joint action of construction load and groundwater mining, the water level of the aquifer in Yancheng City rises by 1.26 m on average in the main groundwater mining area of the group III pressurised aquifer, forming two smaller landing funnels, and the lowest water level of the two landing funnels is −15 m. Full article
(This article belongs to the Special Issue Studies on Water Resource and Environmental Policies)
Show Figures

Figure 1

16 pages, 6857 KB  
Article
Numerical Modeling of Hydrological Mechanisms and Instability for Multi-Layered Slopes
by Junfeng Tang, Zhuxiang Ma, Dezhou Zhou, Shiyu Zhang, Fengmin Zhang, Xingyu Zhou and Jinping Mi
Water 2024, 16(17), 2422; https://doi.org/10.3390/w16172422 - 27 Aug 2024
Viewed by 1263
Abstract
The process of rainwater infiltration into unsaturated multi-layered slopes is complex, making it extremely difficult to accurately predict slope behaviors. The hydrological mechanisms in multi-layered slopes could be significantly influenced by the varying hydraulic characteristics of different soils, thus influencing slope stability. A [...] Read more.
The process of rainwater infiltration into unsaturated multi-layered slopes is complex, making it extremely difficult to accurately predict slope behaviors. The hydrological mechanisms in multi-layered slopes could be significantly influenced by the varying hydraulic characteristics of different soils, thus influencing slope stability. A numerical model based on Hydrus 2D was constructed to investigate the hydrological mechanisms of multi-layered slopes under different slope inclinations and rainfall intensities. The results revealed hydraulic processes in response to rainfall in unsaturated multi-layered slopes, in which layered soils retard the advance of wetting fronts and affect seepage paths in the slope. The results also showed the characteristics of hydraulic parameters, including pore water pressure and moisture content, under different conditions, and explained the crucial factors at play in maintaining slope stability. Full article
Show Figures

Figure 1

Back to TopTop