Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (372)

Search Parameters:
Keywords = seedlings vigor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3095 KiB  
Article
Investigating Seed Germination, Seedling Growth, and Enzymatic Activity in Onion (Allium cepa) Under the Influence of Plasma-Treated Water
by Sabnaj Khanam, Young June Hong, Eun Ha Choi and Ihn Han
Int. J. Mol. Sci. 2025, 26(15), 7256; https://doi.org/10.3390/ijms26157256 - 27 Jul 2025
Viewed by 272
Abstract
Seed germination and early seedling growth are pivotal stages that define crop establishment and yield potential. Conventional agrochemicals used to improve these processes often raise environmental concerns, highlighting the need for sustainable alternatives. In this study, we demonstrated that water treated with cylindrical [...] Read more.
Seed germination and early seedling growth are pivotal stages that define crop establishment and yield potential. Conventional agrochemicals used to improve these processes often raise environmental concerns, highlighting the need for sustainable alternatives. In this study, we demonstrated that water treated with cylindrical dielectric barrier discharge (c-DBD) plasma, enriched with nitric oxide (NO) and reactive nitrogen species (RNS), markedly enhanced onion (Allium cepa) seed germination and seedling vigor. The plasma-treated water (PTW) promoted rapid imbibition, broke dormancy, and accelerated germination rates beyond 98%. Seedlings irrigated with PTW exhibited significantly increased biomass, root and shoot length, chlorophyll content, and antioxidant enzyme activities, accompanied by reduced lipid peroxidation. Transcriptomic profiling revealed that PTW orchestrated a multifaceted regulatory network by upregulating gibberellin biosynthesis genes (GA3OX1/2), suppressing abscisic acid signaling components (ABI5), and activating phenylpropanoid metabolic pathways (PAL, 4CL) and antioxidant defense genes (RBOH1, SOD). These molecular changes coincided with elevated NO2 and NO3 levels and finely tuned hydrogen peroxide dynamics, underpinning redox signaling crucial for seed activation and stress resilience. Our findings establish plasma-generated NO-enriched water as an innovative, eco-friendly technology that leverages redox and hormone crosstalk to stimulate germination and early growth, offering promising applications in sustainable agriculture. Full article
(This article belongs to the Special Issue Plasma-Based Technologies for Food Safety and Health Enhancement)
Show Figures

Figure 1

22 pages, 5319 KiB  
Article
Exogenous Sucrose Improves the Vigor of Aged Safflower Seeds by Mediating Fatty Acid Metabolism and Glycometabolism
by Tang Lv, Lin Zhong, Juan Li, Cuiping Chen, Bin Xian, Tao Zhou, Chaoxiang Ren, Jiang Chen, Jin Pei and Jie Yan
Plants 2025, 14(15), 2301; https://doi.org/10.3390/plants14152301 - 25 Jul 2025
Viewed by 182
Abstract
Safflower (Carthamus tinctorius L.) seeds, rich in triacylglycerols, have poor fatty acid-to-sugar conversion during storage, affecting longevity and vigor. Previous experiments have shown that the aging of safflower seeds is mainly related to the impairment of energy metabolism pathways such as glycolysis, [...] Read more.
Safflower (Carthamus tinctorius L.) seeds, rich in triacylglycerols, have poor fatty acid-to-sugar conversion during storage, affecting longevity and vigor. Previous experiments have shown that the aging of safflower seeds is mainly related to the impairment of energy metabolism pathways such as glycolysis, fatty acid degradation, and the tricarboxylic acid cycle. The treatment with exogenous sucrose can partially promote the germination of aged seeds. However, the specific pathways through which exogenous sucrose promotes the germination of aged safflower seeds have not yet been elucidated. This study aimed to explore the molecular mechanism by which exogenous sucrose enhances the vitality of aged seeds. Phenotypically, it promoted germination and seedling establishment in CDT-aged seeds but not in unaged ones. Biochemical analyses revealed increased soluble sugars and fatty acids in aged seeds with sucrose treatment. Enzyme activity and transcriptome sequencing showed up-regulation of key enzymes and genes in related metabolic pathways in aged seeds, not in unaged ones. qPCR confirmed up-regulation of genes for triacylglycerol and fatty acid-to-sugar conversion. Transmission electron microscopy showed a stronger connection between the glyoxylate recycler and oil bodies, accelerating oil body degradation. In conclusion, our research shows that exogenous sucrose promotes aged safflower seed germination by facilitating triacylglycerol hydrolysis, fatty acid conversion, and glycometabolism, rather than simply serving as a source of energy to supplement the energy deficiency of aged seeds. These findings offer practical insights for aged seeds, especially offering an effective solution to the aging problem of seeds with high oil content. Full article
(This article belongs to the Special Issue Molecular Regulation of Seed Development and Germination)
Show Figures

Figure 1

15 pages, 2446 KiB  
Article
Morphological Correlation of Diaspores, Seeds and Vigor of Seedlings of Guilandina bonduc L. (Fabaceae): Does Seed Mass Modulate Tolerance to Salt Stress?
by João Henrique Constantino Sales Silva, Joyce Naiara da Silva, Luís Gustavo Alves de Almeida, Eduardo Luã Fernandes da Silva, Aline das Graças Souza and Edna Ursulino Alves
Seeds 2025, 4(3), 33; https://doi.org/10.3390/seeds4030033 - 15 Jul 2025
Viewed by 182
Abstract
Guilandina bonduc L. is a pantropical coastal shrub with varied fruits and seeds, capable of germinating under saline stress. This study aimed to morphologically characterize the fruits and seeds of the species, correlate these characteristics, and evaluate the tolerance of seedlings to salt [...] Read more.
Guilandina bonduc L. is a pantropical coastal shrub with varied fruits and seeds, capable of germinating under saline stress. This study aimed to morphologically characterize the fruits and seeds of the species, correlate these characteristics, and evaluate the tolerance of seedlings to salt according to seed mass. Physical variables (length, width, thickness, and weight) were analyzed, and Spearman’s correlation was applied. Germination was tested with light seeds (<1.55 g) and heavy seeds (≥1.55 g) under five levels of salt stress, in a 2 × 5 factorial design. G. bonduc can produce seeds with variations in mass and size that are not necessarily related to fruit size. The reduction in osmotic potential resulted in lower seed germination and vigor; even so, the species demonstrated tolerance to salt stress, maintaining germination rates above 50% even under conditions of −1.0 MPa, regardless of seed mass. Lighter seeds germinate more quickly and uniformly, while heavier seeds produce more vigorous seedlings, especially in the absence of salinity, and are therefore more suitable for seedling production. These results indicate that G. bonduc has potential for revegetation of saline areas, being useful in adaptation to climate change due to its tolerance to saline stress and the relationship between seed mass and seedling vigor. Full article
(This article belongs to the Special Issue Seed Germination Techniques in Halophyte Plants)
Show Figures

Figure 1

21 pages, 3177 KiB  
Article
The Physiological and Biochemical Mechanisms Bioprimed by Spermosphere Microorganisms on Ormosia henryi Seeds
by Meng Ge, Xiaoli Wei, Yongming Fan, Yan Wu, Mei Fan and Xueqing Tian
Microorganisms 2025, 13(7), 1598; https://doi.org/10.3390/microorganisms13071598 - 7 Jul 2025
Viewed by 323
Abstract
The hard-seed coat of Ormosia henryi significantly impedes germination efficiency in massive propagation, while conventional physical dormancy-breaking methods often result in compromised seed vigor, asynchronous seedling emergence, and diminished stress tolerance. Seed biopriming, an innovative technique involving the inoculation of beneficial microorganisms onto [...] Read more.
The hard-seed coat of Ormosia henryi significantly impedes germination efficiency in massive propagation, while conventional physical dormancy-breaking methods often result in compromised seed vigor, asynchronous seedling emergence, and diminished stress tolerance. Seed biopriming, an innovative technique involving the inoculation of beneficial microorganisms onto seed surfaces or into germination substrates, enhances germination kinetics and emergence uniformity through microbial metabolic functions and synergistic interactions with seed exudates. Notably, spermosphere-derived functional bacteria isolated from native spermosphere soil demonstrate superior colonization capacity and sustained bioactivity. This investigation employed selective inoculation of these indigenous functional strains to systematically analyze dynamic changes in endogenous phytohormones, enzymatic activities, and storage substances during critical germination phases, thereby elucidating the physiological mechanisms underlying biopriming-enhanced germination. The experimental results demonstrated significant improvements in germination parameters through biopriming. Inoculation with the Bacillus sp. strain achieved a peak germination rate (76.19%), representing a 16.19% increase over the control (p < 0.05). The biopriming treatment effectively improved the seed vigor, broke the impermeability of the seed coat, accelerated the germination speed, and positively regulated physiological indicators, especially amylase activity and the ratio of gibberellic acid to abscisic acid. This study establishes a theoretical framework for microbial chemotaxis and rhizocompetence in seed priming applications while providing an eco-technological solution for overcoming germination constraints in O. henryi cultivation. The optimized biopriming protocol addresses both low germination rates and post-germination growth limitations, providing technical support for the seedling cultivation of O. henryi. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

19 pages, 5267 KiB  
Article
Microbial Biocontrol Agents Engineer Plant Biometrics and Host Response Against Xanthomonas oryzae pv. oryzae in Rice
by Popy Bora, Sanjay Kumar Chetia, Anwesha Sharma, Shenaz Sultana Ahmed, Pranamika Sharma, Ashok Bhattacharyya, Rupam Borgohain, Mrinal Saikia, Parinda Barua, Milon Jyoti Konwar, Shabrin Sultana Ahmed, Abhisek Rath, Mehjebin Rahman, Bishal Saikia, Trishna Taye, Naseema Rahman, Parveen Khan, Mayuri Baruah, Rituraj Sakia and Arunima Bharali
Microbiol. Res. 2025, 16(7), 151; https://doi.org/10.3390/microbiolres16070151 - 4 Jul 2025
Viewed by 303
Abstract
Plant-beneficial microbes are a perennial ally in an agroecosystems, providing multiple benefits to crop plants. The present study explored the potential of two microbial biocontrol agents (MBCAs), viz., Trichoderma asperellum and Pseudomonas fluorescens, against the bacterial blight pathogen of rice, Xanthomonas oryzae [...] Read more.
Plant-beneficial microbes are a perennial ally in an agroecosystems, providing multiple benefits to crop plants. The present study explored the potential of two microbial biocontrol agents (MBCAs), viz., Trichoderma asperellum and Pseudomonas fluorescens, against the bacterial blight pathogen of rice, Xanthomonas oryzae pv. oryzae. In vitro, MBCAs resulted in significant inhibition of X. oryzae pv. oryzae, as evidenced through the distortion of pathogen cell morphology and formation of a pathogen biofilm. Pot studies on the effect of MBCAs in rice showed increased germination, increased vigor index of seedlings, increased tiller numbers, a 10.29% reduction in percentage disease incidence (PDI), and low disease severity following individual inoculation. Activity of plant defense enzymes also increased with MBCA treatment (phenylalanine ammonia-lyase, 2.7-fold increase; peroxidase and polyphenol oxidase, 5-fold increase), establishing the priming effect of MBCAs on host defense. The quantitative polymerase chain reaction data revealed that pathogenesis-related genes (OsPR1a, OsPR1b, and OsPR10a) and X. oryzae pv. oryzae resistance genes (Xa1 and Xa26) were upregulated 4- to 14-fold in MBCA-treated rice plants over control plants. These results provide insights into the phenological, physiological, and molecular responses of rice crops treated with MBCAs in the presence of X. oryzae pv. oryzae and could be used to develop an effective field management strategy. Full article
Show Figures

Figure 1

13 pages, 4028 KiB  
Article
Influence of Dynamic Magnetic Field Exposure Duration on the Germination and Growth of Khao Dawk Mali 105 Rice Seed
by Tiwanat Gaewsondee, Cherdpong Chiawchanwattana, Phirayot Khaengkan, Juckamas Laohavanich, Chanat Vipattanaporn and Suphan Yangyuen
Agronomy 2025, 15(7), 1630; https://doi.org/10.3390/agronomy15071630 - 4 Jul 2025
Viewed by 489
Abstract
Magnetic field (MF) priming provides a chemical-free alternative to conventional methods; however, static exposure approaches are often limited by spatial heterogeneity in field–seed interaction caused by fixed seed positioning, undermining both treatment uniformity and reproducibility. To address this, the present study investigated the [...] Read more.
Magnetic field (MF) priming provides a chemical-free alternative to conventional methods; however, static exposure approaches are often limited by spatial heterogeneity in field–seed interaction caused by fixed seed positioning, undermining both treatment uniformity and reproducibility. To address this, the present study investigated the effects of dynamic MF exposure on the germination and early growth of Khao Dawk Mali 105 (KDML 105) rice seeds. A novel MF testing apparatus was developed using a 150 mT permanent magnet and a vortex-based air injection system designed to continuously rotate and redistribute seeds, ensuring uniform exposure. Seeds were treated for 0, 5, 10, 15, and 20 min to evaluate effects on vigor, germination, and seedling growth. The results showed that 5 and 10 min exposures significantly enhanced seed vigor (93.00% and 94.67%, respectively) compared to the control (83.33%), with 10 min yielding the highest improvement (p < 0.05, DMRT). Shoot and root growth also increased by 14.21% and 99.59%, respectively. These findings suggest that moderate-duration dynamic MF exposure is an efficient, eco-friendly priming technique for improving seed vigor and early growth. Future research should explore long-term agronomic impacts, economic feasibility, and varietal responses. The apparatus’s scalable design supports integration into industrial seed processing lines, advancing sustainable rice production. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

22 pages, 1702 KiB  
Article
Enhancing Grape Seed Germination and Seedling Development Through Varietal Responses to Sodium Nitroprusside and Gibberellic Acid Applications
by Özcan Kesen, Adem Yagci, Harlene Hatterman-Valenti and Ozkan Kaya
Horticulturae 2025, 11(7), 754; https://doi.org/10.3390/horticulturae11070754 - 1 Jul 2025
Viewed by 393
Abstract
Germination ability and seedling development of grape (Vitis vinifera L.) seeds show significant differences depending on cultivar characteristics and germination conditions, and this situation is known to create significant difficulties in grape breeding programs and vegetative propagation. In this study, we explored [...] Read more.
Germination ability and seedling development of grape (Vitis vinifera L.) seeds show significant differences depending on cultivar characteristics and germination conditions, and this situation is known to create significant difficulties in grape breeding programs and vegetative propagation. In this study, we explored the effects of different concentrations of sodium nitroprusside (SNP; 500–3000 ppm) and gibberellic acid (GA3) on seed germination and seedling growth in several grape cultivars. Our findings show that cultivar, treatment type, and their interaction had significant effects on both germination and growth. The 5 BB rootstock stood out with consistently high germination rates, reaching up to 95% with 1500 ppm SNP. Overall, SNP treatments outperformed both the control and GA3 applications, although the most effective concentration differed by cultivar. The most beneficial SNP doses ranged between 1000 and 3000 ppm, with 1500 ppm yielding the highest improvement, up to a 21.6% increase compared to the control. Notably, the ‘Çeliksu’ cultivar responded strongly to SNP, while ‘Rizpem’ showed weak germination, regardless of treatment. Seedling growth, as measured by plant height and node number, was also influenced by both treatment and cultivar, with 5 BB again showing the most robust development. Multivariate analyses revealed strong correlations across germination dates and growth traits. Higher SNP concentrations (1500–3000 ppm) consistently promoted better germination and seedling vigor than GA3 and untreated controls. These results highlight the importance of considering cultivar-specific responses and suggest that well-calibrated SNP applications could be a valuable tool for improving seed-based propagation in grape breeding programs. Full article
Show Figures

Figure 1

17 pages, 2905 KiB  
Article
Water Stress Is Differently Tolerated by Fusarium-Resistant and -Susceptible Chickpea Genotypes During Germination
by Ümmühan Kaşıkcı Şimşek, Murat Dikilitas, Talap Talapov and Canan Can
Life 2025, 15(7), 1050; https://doi.org/10.3390/life15071050 - 30 Jun 2025
Viewed by 265
Abstract
Chickpea is a legume that grows in most parts of the world. It is negatively affected by abiotic and biotic factors like drought and fungal diseases, respectively. One of the most important soil-borne pathogens affecting chickpeas is Fusarium oxysporum f.sp. ciceris (Foc [...] Read more.
Chickpea is a legume that grows in most parts of the world. It is negatively affected by abiotic and biotic factors like drought and fungal diseases, respectively. One of the most important soil-borne pathogens affecting chickpeas is Fusarium oxysporum f.sp. ciceris (Foc). Its population dynamics in the soil are affected by fluctuations in soil water content and host characteristics. For the last three decades, drought has been common in most areas of the world due to global warming. Drought stress decreases the quality and quantity of the chickpeas, particularly where soil-borne pathogens are the main stress factor for plants. The use of both drought-tolerant and disease-resistant cultivars may be the only option for cost-effective yield production. In this study, we screened the seeds of twelve chickpea genotypes WR-315, JG-62, C-104, JG-74, CPS-1, BG-212, ANNIGERI, CHAFFA, BG-215, UC-27, ILC-82, and K-850 for drought tolerance at increasing polyethylene glycol (PEG) concentrations (0-, 5-, 7.5-, 10-, 15-, 20-, 25-, 30- and 50%) to create drought stress conditions at different severities. The performances of genotypes that were previously tested in Foc resistance/susceptibility studies were assessed in terms of percentage of germination, radicle and hypocotyl length, germination energy, germination rate index, mean germination time, and vigor index in drought conditions. We determined the genotypes of C-104, CPS-1, and WR-315 as drought-susceptible, moderately drought-tolerant, and drought-tolerant, respectively. We then elucidated the stress levels of selected genotypes (20-day-old seedlings) at 0–15% PEG conditions via measuring proline and malondialdehyde (MDA) contents. Our findings showed that genotypes that were resistant to Foc also exhibited drought tolerance. The responses of chickpea genotypes infected with Foc under drought conditions are the next step to assess the combined stress on chickpea genotypes. Full article
(This article belongs to the Special Issue Physiological Responses of Plants Under Abiotic Stresses)
Show Figures

Figure 1

15 pages, 1530 KiB  
Article
Melatonin Priming Increases the Tolerance of Tartary Buckwheat Seeds to Abiotic Stress
by Liwei Zhu, Guohong Tang, Xiaoyu An, Hongyou Li and Qingfu Chen
Agronomy 2025, 15(7), 1606; https://doi.org/10.3390/agronomy15071606 - 30 Jun 2025
Viewed by 335
Abstract
Increasing abiotic stress, particularly salinity, poses a significant threat to the germination and seedling development of Tartary buckwheat, thereby limiting its yield potential and broader cultivation. Given Tartary buckwheat’s rich nutritional profile and inherent stress adaptability, enhancing seed tolerance to abiotic stress is [...] Read more.
Increasing abiotic stress, particularly salinity, poses a significant threat to the germination and seedling development of Tartary buckwheat, thereby limiting its yield potential and broader cultivation. Given Tartary buckwheat’s rich nutritional profile and inherent stress adaptability, enhancing seed tolerance to abiotic stress is essential for ensuring food security and the development of functional food resources. To investigate the role of melatonin in mitigating abiotic stress, seeds of the cultivar ‘Jinqiaomai 2’ were primed with varying melatonin concentrations (with water as the control) at multiple time points. The effects of salt stress on germination and seedling quality were evaluated to determine optimal priming conditions. Subsequent analyses examined seed vigor and physiological and biochemical responses during storage under high temperature and humidity, room temperature, and low-temperature conditions. The results showed that a 3 h melatonin priming consistently resulted in high germination rates (98.7–100.0%). Notably, melatonin at 50 μmol·L−1 was identified as the optimal concentration, significantly improving seedling growth under salinity stress, with increases of 61.1% in seedling length, 59.3% in root length, and 38.9% in root fresh weight compared with the control. Across all storage environments, melatonin-primed seeds exhibited superior vigor and enhanced antioxidant enzyme activity relative to water-primed controls. In conclusion, melatonin priming at an appropriate concentration and duration effectively enhanced the vigor of Tartary buckwheat seeds and alleviated the adverse effects of salinity on germination and storage resilience. However, improved seeds may possess a limited safe storage window and should be sown promptly rather than stored long-term. Full article
Show Figures

Figure 1

15 pages, 888 KiB  
Review
Seed Priming Before the Sprout: Revisiting an Established Technique for Stress-Resilient Germination
by Mohammad Saidur Rhaman
Seeds 2025, 4(3), 29; https://doi.org/10.3390/seeds4030029 - 28 Jun 2025
Viewed by 488
Abstract
Seed germination, a pivotal stage in the plant life cycle, profoundly impacts crop growth and establishment. However, fluctuating environmental conditions like drought, salinity, severe temperatures, and heavy metal toxicity impede seed germination rates and seedling vigor. Seed priming is a pre-sowing seed treatment [...] Read more.
Seed germination, a pivotal stage in the plant life cycle, profoundly impacts crop growth and establishment. However, fluctuating environmental conditions like drought, salinity, severe temperatures, and heavy metal toxicity impede seed germination rates and seedling vigor. Seed priming is a pre-sowing seed treatment that involves the controlled hydration of seeds, proven to improve germination rate and stress resilience. It initiates pre-germinative metabolism, including enzyme activity, antioxidant accumulation, hormone modulation, and cellular repair, without radicle emergence. Recent advancements in seed priming, encompassing the application of nanoparticles, phytohormones, and beneficial microbes, have significantly broadened its potential. Despite its proven benefits, challenges such as reduced seed longevity post-priming and variability in species-specific responses remain. This paper revisits the principles and methodologies of seed priming, highlighting its physiological, biochemical, and molecular mechanisms that enhance germination under stress conditions. Additionally, it addresses current challenges and future research directions for optimizing seed priming as a low-cost, eco-friendly approach to improve crop establishment under adverse environments, thereby supporting resilient and sustainable agriculture. Full article
Show Figures

Figure 1

17 pages, 3826 KiB  
Article
Influence of Seed Coat Integrity on the Response of Pepper Seeds to Dielectric Barrier Discharge Plasma Treatment
by Chanyanuch Sriruksa, Choncharoen Sawangrat, Sakon Sansongsiri, Dheerawan Boonyawan and Sa-nguansak Thanapornpoonpong
Plants 2025, 14(13), 1938; https://doi.org/10.3390/plants14131938 - 24 Jun 2025
Viewed by 553
Abstract
This study investigated the response of pepper seeds with varying seed coat conditions (SCs) to dielectric barrier discharge plasma treatment (PT). The experimental design was a split plot with three replications. The primary plot factor was the SC (normal seeds [NMS], nicking at [...] Read more.
This study investigated the response of pepper seeds with varying seed coat conditions (SCs) to dielectric barrier discharge plasma treatment (PT). The experimental design was a split plot with three replications. The primary plot factor was the SC (normal seeds [NMS], nicking at the hilum part [NHP], and removed seed coat [RSC]), while the subplot factor was the plasma exposure time (0.4–2.0 s/cm), including a control, to determine the effects on seed viability, germination, and vigor. The results indicate that NMS seeds exhibit the highest performance in terms of seed viability. The NMS and NHP had statistically significantly higher seed germination, electrical conductivity, radical emergence, and germination index at 14 days after sowing, and the shoot length measured longer than RSC. Plasma exposure at 1.2 s/cm improved germination and vigor, whereas 2.0 s/cm exposure significantly decreased seed viability and increased the number of abnormal seedlings. The interaction between SC and PT significantly affected seedling abnormalities, with RSC seeds being more vulnerable to damage under prolonged exposure. These findings highlight the crucial role of seed coat integrity in maintaining seed quality and suggest that carefully controlled PT can be a promising and sustainable method to enhance pepper seed performance. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

16 pages, 15746 KiB  
Article
Impact of Treated Swine Wastewater on Elemental Distribution in the Growth of Habanero Pepper Seedlings
by Carlos David Hernández-Pinto, Marisela Ix-chel Vega-De-Lille, Germán Giácoman-Vallejos, Carmen Ponce-Caballero, Calos Alberto Quintal-Franco, Roger Iván Méndez-Novelo, Carlos Juan Alvarado-López and Emanuel Hernández-Núñez
Agronomy 2025, 15(6), 1473; https://doi.org/10.3390/agronomy15061473 - 17 Jun 2025
Viewed by 529
Abstract
The growing global demand for food has driven an increase in both swine and agricultural production, although swine wastewater poses a significant environmental risk. This study employed elemental mapping techniques to evaluate the effects of swine wastewater irrigation on the spatial distribution and [...] Read more.
The growing global demand for food has driven an increase in both swine and agricultural production, although swine wastewater poses a significant environmental risk. This study employed elemental mapping techniques to evaluate the effects of swine wastewater irrigation on the spatial distribution and concentration of essential and non-essential elements, as well as on the morphological responses of habanero pepper (Capsicum chinense Jacq.) seedlings. Six treatments were tested, ranging from 0% to 100% swine wastewater (T1 = 20%, T2 = 40%, T3 = 60%, T4 = 80%, T5 = 100%, and T6 = control with conventional fertilization), using a completely randomized design with five replications. Emergence, elemental distribution, morphology, and seedling quality were evaluated. The highest emergence percentages and rates were observed in the 20% wastewater treatment and the control groups. Diluted wastewater treatments promoted potassium and calcium uptake, which correlated with improved seedling growth and vigor, while irrigation with 100% wastewater led to excessive chlorine and sulfur accumulation, negatively affecting morphology. These results indicate that the controlled dilution of swine wastewater optimizes nutrient availability and seedling development, offering an environmentally sustainable alternative for producing high-quality habanero pepper seedlings. This study provides novel insights into the environmental implications of swine wastewater reuse through elemental mapping, underscoring its potential to support sustainable and regenerative agriculture. Full article
Show Figures

Figure 1

18 pages, 2243 KiB  
Article
Optimizing LED Light Intensity and Photoperiod to Promote Growth and Rooting of Medicinal Cannabis in Photoautotrophic Micropropagation
by Juwen Liang, Fang Ji, Qing Zhou and Dongxian He
Biology 2025, 14(6), 706; https://doi.org/10.3390/biology14060706 - 16 Jun 2025
Viewed by 531
Abstract
Conventional micropropagation of cannabis struggles with excessive callus hyperhydration, slow growth, low rooting efficiency, and high contamination risk, all of which greatly restrict its feasibility for large-scale propagation. In contrast, photoautotrophic micropropagation (PAM) has emerged as an efficient and cost-effective propagation strategy that [...] Read more.
Conventional micropropagation of cannabis struggles with excessive callus hyperhydration, slow growth, low rooting efficiency, and high contamination risk, all of which greatly restrict its feasibility for large-scale propagation. In contrast, photoautotrophic micropropagation (PAM) has emerged as an efficient and cost-effective propagation strategy that can significantly enhance plantlet growth and improve seedling quality by optimizing the LED lighting environment. This study investigated the effects of four light intensities (50, 100, 150, and 200 µmol m−2 s−1) and three photoperiods (16, 20, and 24 h d−1) on the growth and rooting of two medicinal cannabis cultivars (the short-day cultivar ‘Charlotte’ and the day-neutral cultivar ‘Auto Charlotte’). Cluster analysis revealed that plantlets grown under the photoperiod of 20 h d−1 and light intensity of 100–150 µmol m−2 s−1 exhibited optimal growth performance in terms of plant height, root length, leaf number, leaf area, biomass, and root activity. Moreover, increasing the light intensity from 50 to 100–150 µmol m−2 s−1 significantly enhanced net CO2 exchange rates by 41.5% and 204.9% for Charlotte and Auto Charlotte, respectively, along with corresponding increases in dry matter accumulation of 44.3% and 27.9%. However, the plantlets exhibited photooxidative damage under continuous lighting and light intensity of 200 µmol m−2 s−1, as evidenced by reduced photosynthetic pigment content and suppressed antioxidant enzyme activity. Therefore, PAM of medicinal cannabis is recommended under the LED lighting environment with light intensity of 100–150 µmol m−2 s−1 and photoperiod of 20 h d−1 to achieve optimal growth and rooting. These findings provide essential technical support for the large-scale propagation of vigorous, disease-free female plantlets with well-developed root systems and high genetic uniformity, thereby meeting the stringent quality standards for planting materials in the commercial cultivation of cannabis for medical and pharmaceutical use. Full article
Show Figures

Figure 1

25 pages, 36638 KiB  
Article
Integrating Machine Learning and In Vitro Screening to Evaluate Drought and Temperature Stress Responses for Vicia Species
by Onur Okumuş, Özhan Şimşek, Musab A. Isak, Nilüfer Koçak Şahin, Adnan Aydin, Barış Eren, Fatih Demirel, Cansu Telci Kahramanoğulları, Satı Uzun and Mehmet Yaman
Processes 2025, 13(6), 1845; https://doi.org/10.3390/pr13061845 - 11 Jun 2025
Viewed by 729
Abstract
Drought and temperature extremes are major abiotic stressors limiting legume productivity worldwide. This study investigates the germination and early seedling responses of six cultivars belonging to three Vicia species (V. sativa, V. pannonica, and V. narbonensis) under varying levels [...] Read more.
Drought and temperature extremes are major abiotic stressors limiting legume productivity worldwide. This study investigates the germination and early seedling responses of six cultivars belonging to three Vicia species (V. sativa, V. pannonica, and V. narbonensis) under varying levels of polyethylene glycol (PEG)-induced drought and temperature conditions (12 °C, 18 °C, and 24 °C) in vitro. Significant cultivar-dependent differences were observed in the germination rate (GR), shoot and root length (SL and RL), fresh and dry weight (FW and DW), and vigor index (VI). The Ayaz cultivar exhibited superior performance, particularly under severe drought (10% PEG) and optimal temperature (24 °C), while Özgen and Balkan were most sensitive to stress. Principal component and correlation analyses revealed strong associations between the vigor index, shoot height, and fresh and dry weight, particularly in high-performing genotypes. To further model and predict stress responses, four machine learning (ML) algorithms—Random Forest (RF), k-Nearest Neighbors (k-NNs), Multilayer Perceptron (MLP), and Support Vector Machines (SVMs)—were employed. Based on model performance metrics, and considering high R2 values along with low RMSE and MAE values, the MLP model demonstrated the most accurate predictions for the GR (R2 = 0.95, RMSE = 0.06, MAE = 0.05) and VI (R2 = 0.99, RMSE = 0.02, MAE = 0.01) parameters. In contrast, the RF model yielded the best results for the SL (R2 = 0.98, RMSE = 0.02, MAE = 0.02) and DW (R2 = 0.93, RMSE = 0.06, MAE = 0.04) parameters, while the highest prediction accuracy for the RL (R2 = 0.83, RMSE = 0.09, MAE = 0.07) and FW (R2 = 0.97, RMSE = 0.05, MAE = 0.03) parameters was achieved using the SVM model. Comparative analysis with recent studies confirmed the applicability of ML in stress physiology and genotype screening. This integrative approach offers a robust framework for genotype selection and stress tolerance modeling in legumes, contributing to developing climate-resilient crops. Full article
(This article belongs to the Special Issue Processes in Agri-Food Technology)
Show Figures

Figure 1

21 pages, 4255 KiB  
Article
Pulsed Electric Fields-Driven Enhancement of Tomato Seed Quality and Resilience: Improving Germination, Stress Tolerance, and Microbial Disinfection
by Gulsun Akdemir Evrendilek and Bahar Yalçın
Appl. Sci. 2025, 15(12), 6447; https://doi.org/10.3390/app15126447 - 8 Jun 2025
Viewed by 601
Abstract
Seed quality is vital for agricultural productivity, as it directly influences the crop yield and resilience to environmental stressors. This study evaluated the effectiveness of a pulsed electric field (PEF) treatment in enhancing the tomato (Solanum lycopersicum) seed quality, seedling growth, [...] Read more.
Seed quality is vital for agricultural productivity, as it directly influences the crop yield and resilience to environmental stressors. This study evaluated the effectiveness of a pulsed electric field (PEF) treatment in enhancing the tomato (Solanum lycopersicum) seed quality, seedling growth, and microbial safety. Tomato seeds were treated with PEFs at energy levels ranging from 1.07 to 17.28 J, and several parameters were assessed, including the germination rate, normal seedling development, tolerance to cold and salinity stress, electrical conductivity, and microbial inactivation. The highest germination rate (72.81%) was observed at 15.36 J on the seventh day of germination, whereas the highest normal seedling rate (94.62%) was recorded at 17.28 J (p ≤ 0.05). The germination under cold stress (5 days at 24 °C) was highest, with a 46.67% germination observed at both 1.92 and 10.88 J. PEF-treated seeds exposed to 100 and 200 mM of NaCl exhibited significantly improved germination compared to the controls (p ≤ 0.05). The electrical conductivity (EC) was more influenced by the incubation time than by the PEF intensity, as the EC of all samples showed a significant increase from 4 to 8 h. The samples treated with 17.28 J exhibited the highest germination rates under salt stress, reaching 62.00 ± 0.90% and 50.00 ± 0.60% under 100 mM and 200 mM of NaCl, respectively (p ≤ 0.05). The initial mean counts of the total mesophilic aerobic bacteria and the total mold and yeast—4.00 ± 0.03 and 3.06 ± 0.03 log cfu/g, respectively—were reduced to undetectable levels by the application of 17.28 J, with higher energy levels yielding greater inactivation. These findings demonstrate that the PEF is a promising technique for enhancing seed quality, promoting seedling vigor, and reducing microbial contamination, supporting its application in sustainable agriculture. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

Back to TopTop