Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = sedimentary ancient DNA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 10241 KiB  
Article
Comparing Protein Stability in Modern and Ancient Sabkha Environments: Implications for Molecular Remnants on Ancient Mars
by Qitao Hu, Ting Huang, Aili Zhu, Angélica Anglés, Osman Abdelghany, Alaa Ahmed and David C. Fernández-Remolar
Int. J. Mol. Sci. 2025, 26(13), 5978; https://doi.org/10.3390/ijms26135978 - 21 Jun 2025
Viewed by 434
Abstract
Understanding the mechanisms of protein preservation in extreme environments is essential for identifying potential molecular biosignatures on Mars. In this study, we investigated five sabkha sedimentary samples from the Abu Dhabi coast, spanning from the present day to ~11,000 years before present (BP), [...] Read more.
Understanding the mechanisms of protein preservation in extreme environments is essential for identifying potential molecular biosignatures on Mars. In this study, we investigated five sabkha sedimentary samples from the Abu Dhabi coast, spanning from the present day to ~11,000 years before present (BP), to assess how mineralogy and environmental conditions influence long-term protein stability. Using LC-MS/MS and direct Data-independent Acquisition (DIA) proteomic analysis, we identified 722 protein groups and 1300 peptides, revealing a strong correlation between preservation and matrix composition. Carbonate- and silica-rich samples favored the retention of DNA-binding and metal-coordinating proteins via mineral–protein interactions, while halite- and gypsum-dominated facies showed lower recovery due to extreme salinity and reduced biomass input. Functional profiling revealed a shift from metabolic dominance in modern samples to genome maintenance strategies in ancient ones, indicating microbial adaptation to prolonged environmental stress. Contrary to expectations, some ancient samples preserved large, multi-domain proteins, suggesting that early mineral encapsulation can stabilize structurally complex biomolecules over millennial timescales. Taxonomic reconstruction based on preserved proteins showed broad archaeal diversity, including Thaumarchaeota and thermophilic lineages, expanding our understanding of microbial ecology in hypersaline systems. These findings highlight sabkhas as valuable analogs for Martian evaporitic environments and suggest that carbonate–silica matrices on Mars may offer optimal conditions for preserving ancient molecular traces of life. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

29 pages, 3813 KiB  
Article
A Quaternary Sedimentary Ancient DNA (sedaDNA) Record of Fungal–Terrestrial Ecosystem Dynamics in a Tropical Biodiversity Hotspot (Lake Towuti, Sulawesi, Indonesia)
by Md Akhtar-E Ekram, Cornelia Wuchter, Satria Bijaksana, Kliti Grice, James Russell, Janelle Stevenson, Hendrik Vogel and Marco J. L. Coolen
Microorganisms 2025, 13(5), 1005; https://doi.org/10.3390/microorganisms13051005 - 27 Apr 2025
Cited by 1 | Viewed by 769
Abstract
Short-term observations suggest that environmental changes affect the diversity and composition of soil fungi, significantly influencing forest resilience, plant diversity, and soil processes. However, time-series experiments should be supplemented with geobiological archives to capture the long-term effects of environmental changes on fungi–soil–plant interactions, [...] Read more.
Short-term observations suggest that environmental changes affect the diversity and composition of soil fungi, significantly influencing forest resilience, plant diversity, and soil processes. However, time-series experiments should be supplemented with geobiological archives to capture the long-term effects of environmental changes on fungi–soil–plant interactions, particularly in undersampled, floristically diverse tropical forests. We recently conducted trnL-P6 amplicon sequencing to generate a sedimentary ancient DNA (sedaDNA) record of the regional catchment vegetation of the tropical waterbody Lake Towuti (Sulawesi, Indonesia), spanning over one million years (Myr) of the lake’s developmental history. In this study, we performed 18SV9 amplicon sequencing to create a parallel paleofungal record to (a) infer the composition, origins, and functional guilds of paleofungal community members and (b) determine the extent to which downcore changes in fungal community composition reflect the late Pleistocene evolution of the Lake Towuti catchment. We identified at least 52 members of Ascomycota (predominantly Dothiodeomycetes, Eurotiomycetes, and Leotiomycetes) and 12 members of Basidiomycota (primarily Agaricales and Polyporales). Spearman correlation analysis of the relative changes in fungal community composition, geochemical parameters, and paleovegetation assemblages revealed that the overwhelming majority consisted of soil organic matter and wood-decaying saprobes, except for a necrotrophic phytopathogenic association between Mycosphaerellaceae (Cadophora) and wetland herbs (Alocasia) in more-than-1-Myr-old silts and peats deposited in a pre-lake landscape, dominated by small rivers, wetlands, and peat swamps. During the lacustrine stage, vegetation that used to grow on ultramafic catchment soils during extended periods of inferred drying showed associations with dark septate endophytes (Ploettnerulaceae and Didymellaceae) that can produce large quantities of siderophores to solubilize mineral-bound ferrous iron, releasing bioavailable ferrous iron needed for several processes in plants, including photosynthesis. Our study showed that sedaDNA metabarcoding paired with the analysis of geochemical parameters yielded plausible insights into fungal-plant-soil interactions, and inferred changes in the paleohydrology and catchment evolution of tropical Lake Towuti, spanning more than one Myr of deposition. Full article
(This article belongs to the Special Issue Ancient Microbiomes in the Environment)
Show Figures

Figure 1

15 pages, 2805 KiB  
Article
Sedimentary Ancient DNA Reveals Local Vegetation Changes Driven by Glacial Activity and Climate
by Lucas D. Elliott, Dilli P. Rijal, Antony G. Brown, Jostein Bakke, Lasse Topstad, Peter D. Heintzman and Inger G. Alsos
Quaternary 2023, 6(1), 7; https://doi.org/10.3390/quat6010007 - 7 Jan 2023
Cited by 8 | Viewed by 4923
Abstract
Disentangling the effects of glaciers and climate on vegetation is complicated by the confounding role that climate plays in both systems. We reconstructed changes in vegetation occurring over the Holocene at Jøkelvatnet, a lake located directly downstream from the Langfjordjøkel glacier in northern [...] Read more.
Disentangling the effects of glaciers and climate on vegetation is complicated by the confounding role that climate plays in both systems. We reconstructed changes in vegetation occurring over the Holocene at Jøkelvatnet, a lake located directly downstream from the Langfjordjøkel glacier in northern Norway. We used a sedimentary ancient DNA (sedaDNA) metabarcoding dataset of 38 samples from a lake sediment core spanning 10,400 years using primers targeting the P6 loop of the trnL (UAA) intron. A total of 193 plant taxa were identified revealing a pattern of continually increasing richness over the time period. Vegetation surveys conducted around Jøkelvatnet show a high concordance with the taxa identified through sedaDNA metabarcoding. We identified four distinct vegetation assemblage zones with transitions at ca. 9.7, 8.4 and 4.3 ka with the first and last mirroring climatic shifts recorded by the Langfjordjøkel glacier. Soil disturbance trait values of the vegetation increased with glacial activity, suggesting that the glacier had a direct impact on plants growing in the catchment. Temperature optimum and moisture trait values correlated with both glacial activity and reconstructed climatic variables showing direct and indirect effects of climate change on the vegetation. In contrast to other catchments without an active glacier, the vegetation at Jøkelvatnet has displayed an increased sensitivity to climate change throughout the Middle and Late Holocene. Beyond the direct impact of climate change on arctic and alpine vegetation, our results suggest the ongoing disappearance of glaciers will have an additional effect on plant communities. Full article
(This article belongs to the Special Issue Climate Change and Vegetation Evolution during the Holocene)
Show Figures

Figure 1

20 pages, 4468 KiB  
Article
From Water into Sediment—Tracing Freshwater Cyanobacteria via DNA Analyses
by Ebuka Canisius Nwosu, Patricia Roeser, Sizhong Yang, Lars Ganzert, Olaf Dellwig, Sylvia Pinkerneil, Achim Brauer, Elke Dittmann, Dirk Wagner and Susanne Liebner
Microorganisms 2021, 9(8), 1778; https://doi.org/10.3390/microorganisms9081778 - 21 Aug 2021
Cited by 16 | Viewed by 5129
Abstract
Sedimentary ancient DNA-based studies have been used to probe centuries of climate and environmental changes and how they affected cyanobacterial assemblages in temperate lakes. Due to cyanobacteria containing potential bloom-forming and toxin-producing taxa, their approximate reconstruction from sediments is crucial, especially in lakes [...] Read more.
Sedimentary ancient DNA-based studies have been used to probe centuries of climate and environmental changes and how they affected cyanobacterial assemblages in temperate lakes. Due to cyanobacteria containing potential bloom-forming and toxin-producing taxa, their approximate reconstruction from sediments is crucial, especially in lakes lacking long-term monitoring data. To extend the resolution of sediment record interpretation, we used high-throughput sequencing, amplicon sequence variant (ASV) analysis, and quantitative PCR to compare pelagic cyanobacterial composition to that in sediment traps (collected monthly) and surface sediments in Lake Tiefer See. Cyanobacterial composition, species richness, and evenness was not significantly different among the pelagic depths, sediment traps and surface sediments (p > 0.05), indicating that the cyanobacteria in the sediments reflected the cyanobacterial assemblage in the water column. However, total cyanobacterial abundances (qPCR) decreased from the metalimnion down the water column. The aggregate-forming (Aphanizomenon) and colony-forming taxa (Snowella) showed pronounced sedimentation. In contrast, Planktothrix was only very poorly represented in sediment traps (meta- and hypolimnion) and surface sediments, despite its highest relative abundance at the thermocline (10 m water depth) during periods of lake stratification (May–October). We conclude that this skewed representation in taxonomic abundances reflects taphonomic processes, which should be considered in future DNA-based paleolimnological investigations. Full article
(This article belongs to the Special Issue Understanding Ancient Microbiomes)
Show Figures

Figure 1

21 pages, 2521 KiB  
Article
Sedimentary Ancient DNA (sedaDNA) Reveals Fungal Diversity and Environmental Drivers of Community Changes throughout the Holocene in the Present Boreal Lake Lielais Svētiņu (Eastern Latvia)
by Liisi Talas, Normunds Stivrins, Siim Veski, Leho Tedersoo and Veljo Kisand
Microorganisms 2021, 9(4), 719; https://doi.org/10.3390/microorganisms9040719 - 31 Mar 2021
Cited by 21 | Viewed by 4349
Abstract
Fungi are ecologically important in several ecosystem processes, yet their community composition, ecophysiological roles, and responses to changing environmental factors in historical sediments are rarely studied. Here we explored ancient fungal DNA from lake Lielais Svētiņu sediment throughout the Holocene (10.5 kyr) using [...] Read more.
Fungi are ecologically important in several ecosystem processes, yet their community composition, ecophysiological roles, and responses to changing environmental factors in historical sediments are rarely studied. Here we explored ancient fungal DNA from lake Lielais Svētiņu sediment throughout the Holocene (10.5 kyr) using the ITS metabarcoding approach. Our data revealed diverse fungal taxa and smooth community changes during most of the Holocene with rapid changes occurring in the last few millennia. More precisely, plankton parasitic fungi became more diverse from the Late Holocene (2–4 kyr) which could be related to a shift towards a cooler climate. The Latest Holocene (~2 kyr) showed a distinct increase in the richness of plankton parasites, mycorrhizal, and plant pathogenic fungi which can be associated with an increased transfer rate of plant material into the lake and blooms of planktonic organisms influenced by increased, yet moderate, human impact. Thus, major community shifts in plankton parasites and mycorrhizal fungi could be utilized as potential paleo-variables that accompany host-substrate dynamics. Our work demonstrates that fungal aDNA with predicted ecophysiology and host specificity can be employed to reconstruct both aquatic and surrounding terrestrial ecosystems and to estimate the influence of environmental change. Full article
(This article belongs to the Special Issue Understanding Ancient Microbiomes)
Show Figures

Figure 1

58 pages, 6049 KiB  
Review
Lake Sedimentary DNA Research on Past Terrestrial and Aquatic Biodiversity: Overview and Recommendations
by Eric Capo, Charline Giguet-Covex, Alexandra Rouillard, Kevin Nota, Peter D. Heintzman, Aurèle Vuillemin, Daniel Ariztegui, Fabien Arnaud, Simon Belle, Stefan Bertilsson, Christian Bigler, Richard Bindler, Antony G. Brown, Charlotte L. Clarke, Sarah E. Crump, Didier Debroas, Göran Englund, Gentile Francesco Ficetola, Rebecca E. Garner, Joanna Gauthier, Irene Gregory-Eaves, Liv Heinecke, Ulrike Herzschuh, Anan Ibrahim, Veljo Kisand, Kurt H. Kjær, Youri Lammers, Joanne Littlefair, Erwan Messager, Marie-Eve Monchamp, Fredrik Olajos, William Orsi, Mikkel W. Pedersen, Dilli P. Rijal, Johan Rydberg, Trisha Spanbauer, Kathleen R. Stoof-Leichsenring, Pierre Taberlet, Liisi Talas, Camille Thomas, David A. Walsh, Yucheng Wang, Eske Willerslev, Anne van Woerkom, Heike H. Zimmermann, Marco J. L. Coolen, Laura S. Epp, Isabelle Domaizon, Inger G. Alsos and Laura Parducciadd Show full author list remove Hide full author list
Quaternary 2021, 4(1), 6; https://doi.org/10.3390/quat4010006 - 13 Feb 2021
Cited by 158 | Viewed by 22648
Abstract
The use of lake sedimentary DNA to track the long-term changes in both terrestrial and aquatic biota is a rapidly advancing field in paleoecological research. Although largely applied nowadays, knowledge gaps remain in this field and there is therefore still research to be [...] Read more.
The use of lake sedimentary DNA to track the long-term changes in both terrestrial and aquatic biota is a rapidly advancing field in paleoecological research. Although largely applied nowadays, knowledge gaps remain in this field and there is therefore still research to be conducted to ensure the reliability of the sedimentary DNA signal. Building on the most recent literature and seven original case studies, we synthesize the state-of-the-art analytical procedures for effective sampling, extraction, amplification, quantification and/or generation of DNA inventories from sedimentary ancient DNA (sedaDNA) via high-throughput sequencing technologies. We provide recommendations based on current knowledge and best practises. Full article
Show Figures

Figure 1

20 pages, 10217 KiB  
Article
Weak Influence of Paleoenvironmental Conditions on the Subsurface Biosphere of Lake Ohrid over the Last 515 ka
by Camille Thomas, Alexander Francke, Hendrik Vogel, Bernd Wagner and Daniel Ariztegui
Microorganisms 2020, 8(11), 1736; https://doi.org/10.3390/microorganisms8111736 - 5 Nov 2020
Cited by 13 | Viewed by 3428
Abstract
Lacustrine sediments are widely used to investigate the impact of climatic change on biogeochemical cycling. In these sediments, subsurface microbial communities are major actors of this cycling but can also affect the sedimentary record and overprint the original paleoenvironmental signal. We therefore investigated [...] Read more.
Lacustrine sediments are widely used to investigate the impact of climatic change on biogeochemical cycling. In these sediments, subsurface microbial communities are major actors of this cycling but can also affect the sedimentary record and overprint the original paleoenvironmental signal. We therefore investigated the subsurface microbial communities of the oldest lake in Europe, Lake Ohrid (North Macedonia, Albania), to assess the potential connection between microbial diversity and past environmental change using 16S rRNA gene sequences. Along the upper ca. 200 m of the DEEP site sediment record spanning ca. 515 thousand years (ka), our results show that Atribacteria, Bathyarchaeia and Gammaproteobacteria structured the community independently from each other. Except for the latter, these taxa are common in deep lacustrine and marine sediments due to their metabolic versatility adapted to low energy environments. Gammaproteobacteria were often co-occurring with cyanobacterial sequences or soil-related OTUs suggesting preservation of ancient DNA from the water column or catchment back to at least 340 ka, particularly in dry glacial intervals. We found significant environmental parameters influencing the overall microbial community distribution, but no strong relationship with given phylotypes and paleoclimatic signals or sediment age. Our results support a weak recording of early diagenetic processes and their actors by bulk prokaryotic sedimentary DNA in Lake Ohrid, replaced by specialized low-energy clades of the deep biosphere and a marked imprint of erosional processes on the subsurface DNA pool of Lake Ohrid. Full article
(This article belongs to the Special Issue Microbial Diversity in Extreme Environments)
Show Figures

Figure 1

19 pages, 6467 KiB  
Article
Multi-Proxy Characterisation of the Storegga Tsunami and Its Impact on the Early Holocene Landscapes of the Southern North Sea
by Vincent Gaffney, Simon Fitch, Martin Bates, Roselyn L. Ware, Tim Kinnaird, Benjamin Gearey, Tom Hill, Richard Telford, Cathy Batt, Ben Stern, John Whittaker, Sarah Davies, Mohammed Ben Sharada, Rosie Everett, Rebecca Cribdon, Logan Kistler, Sam Harris, Kevin Kearney, James Walker, Merle Muru, Derek Hamilton, Matthew Law, Alex Finlay, Richard Bates and Robin G. Allabyadd Show full author list remove Hide full author list
Geosciences 2020, 10(7), 270; https://doi.org/10.3390/geosciences10070270 - 15 Jul 2020
Cited by 26 | Viewed by 21808
Abstract
Doggerland was a landmass occupying an area currently covered by the North Sea until marine inundation took place during the mid-Holocene, ultimately separating the British landmass from the rest of Europe. The Storegga Event, which triggered a tsunami reflected in sediment deposits in [...] Read more.
Doggerland was a landmass occupying an area currently covered by the North Sea until marine inundation took place during the mid-Holocene, ultimately separating the British landmass from the rest of Europe. The Storegga Event, which triggered a tsunami reflected in sediment deposits in the northern North Sea, northeast coastlines of the British Isles and across the North Atlantic, was a major event during this transgressive phase. The spatial extent of the Storegga tsunami however remains unconfirmed as, to date, no direct evidence for the event has been recovered from the southern North Sea. We present evidence of a tsunami deposit in the southern North Sea at the head of a palaeo-river system that has been identified using seismic survey. The evidence, based on lithostratigraphy, geochemical signatures, macro and microfossils and sedimentary ancient DNA (sedaDNA), supported by optical stimulated luminescence (OSL) and radiocarbon dating, suggests that these deposits were a result of the tsunami. Seismic identification of this stratum and analysis of adjacent cores showed diminished traces of the tsunami which was largely removed by subsequent erosional processes. Our results confirm previous modelling of the impact of the tsunami within this area of the southern North Sea, and also indicate that these effects were temporary, localized, and mitigated by the dense woodland and topography of the area. We conclude that clear physical remnants of the wave in these areas are likely to be restricted to now buried, palaeo-inland basins and incised river valley systems. Full article
Show Figures

Figure 1

15 pages, 662 KiB  
Review
A Review on the Study of Cyanotoxins in Paleolimnological Research: Current Knowledge and Future Needs
by Eliana Henao, Piotr Rzymski and Matthew N. Waters
Toxins 2020, 12(1), 6; https://doi.org/10.3390/toxins12010006 - 20 Dec 2019
Cited by 26 | Viewed by 5356
Abstract
Cyanobacterial metabolites are increasingly studied, in regards to their biosynthesis, ecological role, toxicity, and potential biomedical applications. However, the history of cyanotoxins prior to the last few decades is virtually unknown. Only a few paleolimnological studies have been undertaken to date, and these [...] Read more.
Cyanobacterial metabolites are increasingly studied, in regards to their biosynthesis, ecological role, toxicity, and potential biomedical applications. However, the history of cyanotoxins prior to the last few decades is virtually unknown. Only a few paleolimnological studies have been undertaken to date, and these have focused exclusively on microcystins and cylindrospermopsins, both successfully identified in lake sediments up to 200 and 4700 years old, respectively. In this paper, we review direct extraction, quantification, and application of cyanotoxins in sediment cores, and put forward future research prospects in this field. Cyanobacterial toxin research is also compared to other paleo-cyanobacteria tools, such as sedimentary pigments, akinetes, and ancient DNA isolation, to identify the role of each tool in reproducing the history of cyanobacteria. Such investigations may also be beneficial for further elucidation of the biological role of cyanotoxins, particularly if coupled with analyses of other abiotic and biotic sedimentary features. In addition, we identify current limitations as well as future directions for applications in the field of paleolimnological studies on cyanotoxins. Full article
(This article belongs to the Special Issue Biological Role of Cyanotoxins: Experimental and In-Field Evidence)
Show Figures

Figure 1

28 pages, 5173 KiB  
Article
The History of Tree and Shrub Taxa on Bol'shoy Lyakhovsky Island (New Siberian Archipelago) since the Last Interglacial Uncovered by Sedimentary Ancient DNA and Pollen Data
by Heike H. Zimmermann, Elena Raschke, Laura S. Epp, Kathleen R. Stoof-Leichsenring, Lutz Schirrmeister, Georg Schwamborn and Ulrike Herzschuh
Genes 2017, 8(10), 273; https://doi.org/10.3390/genes8100273 - 13 Oct 2017
Cited by 43 | Viewed by 7817
Abstract
Ecosystem boundaries, such as the Arctic-Boreal treeline, are strongly coupled with climate and were spatially highly dynamic during past glacial-interglacial cycles. Only a few studies cover vegetation changes since the last interglacial, as most of the former landscapes are inundated and difficult to [...] Read more.
Ecosystem boundaries, such as the Arctic-Boreal treeline, are strongly coupled with climate and were spatially highly dynamic during past glacial-interglacial cycles. Only a few studies cover vegetation changes since the last interglacial, as most of the former landscapes are inundated and difficult to access. Using pollen analysis and sedimentary ancient DNA (sedaDNA) metabarcoding, we reveal vegetation changes on Bol’shoy Lyakhovsky Island since the last interglacial from permafrost sediments. Last interglacial samples depict high levels of floral diversity with the presence of trees (Larix, Picea, Populus) and shrubs (Alnus, Betula, Ribes, Cornus, Saliceae) on the currently treeless island. After the Last Glacial Maximum, Larix re-colonised the island but disappeared along with most shrub taxa. This was probably caused by Holocene sea-level rise, which led to increased oceanic conditions on the island. Additionally, we applied two newly developed larch-specific chloroplast markers to evaluate their potential for tracking past population dynamics from environmental samples. The novel markers were successfully re-sequenced and exhibited two variants of each marker in last interglacial samples. SedaDNA can track vegetation changes as well as genetic changes across geographic space through time and can improve our understanding of past processes that shape modern patterns. Full article
(This article belongs to the Special Issue Novel and Neglected Areas of Ancient DNA Research)
Show Figures

Figure 1

Back to TopTop