Multi-Proxy Characterisation of the Storegga Tsunami and Its Impact on the Early Holocene Landscapes of the Southern North Sea
Abstract
:1. Introduction
2. Characterising Tsunami Deposits
3. Materials and Methods
4. Results
4.1. Reconstruction of the South-Eastern Doggerland Archipelago
4.2. Description of the Core ELF001A
4.3. Physical Properties of Core ELF001A
- Sr/Rb—marine signature reflecting the chemical proxy for aragonite as shell content vs. clay content
- Si/Rb—grain size proxy reflecting the chemical proxy for quartz (coarser sand grain) vs. clay content
- Zr/Sr—a terrestrial vs. marine sediment chemical proxy based on the input of detrital zircons
4.4. Palaeoenvironmental Characterization of ELF001A
4.5. Dating of Deposit
5. Discussion
5.1. Interpretation of the Deposit within Core ELF001A
5.2. Geomorphological Influence on the Tsunami Propagation
5.3. Correlation of the Tsunami Event, the Storegga Slide and Final Inundation of Doggerland
5.4. Correlation of the Tsunami Event, the Storegga Slide and Final Inundation of Doggerland
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Coles, B. Doggerland: A speculative survey. Proc. Prehist. Soc. 1998, 64, 45–81. [Google Scholar] [CrossRef]
- Weninger, B.; Schulting, R.; Bradtmöller, M.; Clare, L.; Collard, M.; Edinborough, K.; Hilpert, J.; Jöris, O.; Niekus, M.; Rohling, E.J.; et al. The catastrophic final flooding of Doggerland by the Storegga Slide tsunami. Doc. Praehist. 2008, 35, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Waddington, C.; Wicks, K. Resilience or wipe out? Evaluating the convergent impacts of the 8.2 ka event and Storegga tsunami on the Mesolithic of northeast Britain. J. Archaeol. Sci. Rep. 2017, 14, 692–714. [Google Scholar] [CrossRef]
- Bondevik, S.; Svendsen, J.I.; Johnsen, G.; Mangerud, J.; Kaland, P.E. The Storegga tsunami along the Norwegian coast, its age and runup. Boreas 1997, 26, 29–53. [Google Scholar] [CrossRef]
- Fruergaard, M.; Piasecki, S.; Johannessen, P.; Noe-Nygaard, N.; Andersen, T.J.; Pejrup, M.; Nielsen, L. Tsunami propagation over a wide, shallow continental shelf caused by the Storegga slide, southeastern North Sea, Denmark. Geology 2015, 43, 1047–1050. [Google Scholar] [CrossRef]
- Hill, J.; Avdis, A.; Mouradian, S.; Collins, G.S.; Piggott, M. Was Doggerland catastrophically flooded by the Mesolithic Storegga tsunami? arXiv 2017, arXiv:1707.05593. [Google Scholar]
- Bondevik, S.; Løvholt, F.; Harbitz, C.; Mangerud, J.; Dawson, A.; Svendsen, J.I. The Storegga Slide tsunami—Comparing field observations with numerical simulations. Mar. Pet. Geol. 2005, 22, 195–209. [Google Scholar] [CrossRef]
- Walker, J.; Gaffney, V.; Fitch, S.; Muru, M.; Fraser, A.; Bates, M.; Bates, R. A Great Wave: The Storegga Tsunami and the end of Doggerland? Antiquity 2020, in press. [Google Scholar]
- Dawson, A.G.; Stewart, I. Tsunami deposits in the geological record. Sediment. Geol. 2007, 200, 166–183. [Google Scholar] [CrossRef]
- Fujiwara, O.; Kamataki, T. Identification of tsunami deposits considering the tsunami waveform: An example of subaqueous tsunami deposits in Holocene shallow bay on southern Boso Peninsula, Central Japan. Sediment. Geol. 2007, 200, 295–313. [Google Scholar] [CrossRef]
- Nanayama, F.; Shigeno, K.; Satake, K.; Shimokawa, K.; Koitabashi, S.; Miyasaka, S.; Ishii, M. Sedimentary differences between the 1993 Hokkaido-nansei-oki tsunami and the 1959 Miyakojima typhoon at Taisea, southwestern Hokkaido, northern Japan. Sediment. Geol. 2000, 135, 255–264. [Google Scholar] [CrossRef]
- Kortekaas, S.; Dawson, A.G. Distinguishing tsunami and storm surge: An example from Martinhal, SW Portugal. Sediment. Geol. 2007, 200, 208–221. [Google Scholar] [CrossRef]
- Goff, J.; McFadgen, B.G.; Chagué-Goff, C. Sedimentary differences between the 2002 Easter storm and the 15th century Okoropunga tsunami, southeastern North Island, New Zealand. Mar. Geol. 2002, 204, 235–250. [Google Scholar] [CrossRef]
- Morton, R.A.; Gelfenbaum, G.; Jaffe, B.E. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sediment. Geol. 2007, 200, 184–207. [Google Scholar] [CrossRef]
- Riou, B.; Chaumillon, E.; Chagué, C.; Sabatier, P.; Schneider, J.; Walsh, J.; Zawadzki, A.; Fierro, D. Backwash sediment record of the 2009 South Pacific Tsunami and 1960 Great Chilean Earthquake Tsunami. Nat. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Peters, R.; Jaffe, B. Identification of Tsunami Deposits in the Geologic Record; Developing Criteria Using Recent Tsunami Deposits; U.S. Geological Survey Open-File Report 2010-1239; Pacific Coastal and Marine Science Center: Santa Cruz, CA, USA, 2010; p. 39. [Google Scholar]
- Dawson, A.G.; Shi, S. Tsunami deposits. Pure Appl. Geophys. 2000, 157, 875–897. [Google Scholar] [CrossRef]
- European Marine Observation and Data Network (EMODnet) Digital Bathymetry (DTM2018). Available online: https://sextant.ifremer.fr/record/18ff0d48-b203-4a65-94a9-5fd8b0ec35f6/ (accessed on 20 August 2018).
- Bradley, S.L.; Milne, G.A.; Shennan, I.; Edwards, R.J. An improved glacial isostatic adjustment model for the British Isles. J. Quat. Sci. 2011, 26, 541–552. [Google Scholar] [CrossRef]
- Dove, D.; Evans, D.; Lee, J.; Roberts, D.; Tappin, D.; Mellett, C.; Long, D.; Callard, L. Phased occupation and retreat of the last British-Irish Ice Sheet in the southern North Sea; geomorphic and seismostratigraphic evidence of a dynamic ice lobe. Quat. Sci. Rev. 2017, 163, 114–134. [Google Scholar] [CrossRef] [Green Version]
- Fortin, D.; Francus, P.; Gebhardt, A.C.; Hahn, A.; Kliem, P.; Lisé-Pronovost, A.; Roychowdhury, R.; Labrieg, J.; St-Ongebe, G.; The PASADO Science Team. Destructive and non-destructive density determination: Method comparison and evaluationfrom the Laguna Potrok Aike sedimentary record. Quat. Sci. Rev. 2012, 71, 147–153. [Google Scholar] [CrossRef]
- Chagué-Goff, C.; Szczuciński, W.; Shinozaki, T. Applications of geochemistry in tsunami research: A review. Earth-Sci. Rev. 2017, 165, 203–244. [Google Scholar] [CrossRef]
- Kistler, L.; Ware, R.; Smith, O.; Collins, M.; Allaby, R. A new model for ancient DNA decay based on paleogenomic meta-analysis. Nucleic Acids Res. 2017, 45, 6310–6320. [Google Scholar] [CrossRef] [PubMed]
- Jónsson, H.; Ginolhac, A.; Schubert, M.; Johnson, P.L.F.; Orlando, L. mapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 2013, 29, 1682–1684. [Google Scholar] [CrossRef] [PubMed]
- Willerslev, E.; Cappellini, E.; Boomsma, W.; Nielsen, R.; Hebsgaard, M.B.; Brand, T.B.; Hofreiter, M.; Bunce, M.; Poinar, H.N.; Dahl-Jensen, D.; et al. Ancient Biomolecules from Deep Ice Cores Reveal a Forested Southern Greenland. Science 2007, 317, 111–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, B.; Bennike, O.; Klug, M.; Cremer, H. First indication of Storegga tsunami deposits from East Greenland. J. Quat. Sci. 2006, 22, 321–325. [Google Scholar] [CrossRef]
- Didenkulova, I.; Pelinovsky, E. Runup of tsunami waves in U-shaped bays. Pure Appl. Geophys. 2010, 168, 1239–1249. [Google Scholar] [CrossRef] [Green Version]
- Bondevik, S.; Svendsen, J.I.; Mangerud, J. Tsunami sedimentary facies deposited by the Storegga tsunami in shallow marine basins and coastal lakes, western Norway. Sedimentology 1997, 44, 1115–1131. [Google Scholar] [CrossRef] [Green Version]
Tsunami | Storm Surge | |
---|---|---|
Physical | ||
Near shore wave height | 10–20 m, | <10 m |
Wave period | 100–2000 s | 10–25 s |
Deepwater wave height | <0.5 m | >5 m |
Wave run-up height | 10 s m | <5 m |
Inundation depth | 0–20 m | <5 m |
Active flow duration | min to h | h-days |
Overland flood velocity | up to 20 ms−1 | up to 5 ms−1 |
Length of coast impacted | 10–10,000 km | 100–1000 km |
Morphology | ||
Features | Wash-over fans behind breached barriers | Wash-over fans behind breached barriers |
Stratigraphy | ||
Lateral continuity | Thins inland and becomes discontinuous | Thins inland |
Lateral continuity | Fines inland | Fines inland |
Extent | Large inland extent | Relative smaller inland extent |
Event thickness | <50 cm | 50–150 cm |
Geometry | Drapes antecedent topography | Wedges out inland |
Sedimentology | ||
Grain size | mud to boulders | sand common but some boulder deposition reported |
Grading | Typically two or more fining upward sequences, sometimes homogeneous | Typically a single fining upward or homogeneous sequence |
Mud cap | Mud cap at surface | No mud cap |
Imbrication | Bi-directional | Unidirectional |
Sorting | Intraclasts from underlying material | Not found |
Sorting | Poorly sorted (particle size ranging from mud to boulders); rip up clasts common | Relatively better sorted |
Transport | Sediment transport mostly suspension, with initial phased dominated by traction and bedload movement | Sediment transport mostly traction throughout, some suspension |
Structures | Rip-up clasts common | Rip—up clasts absent |
Base structures | Multi-layer asymmetric flame structures | Single layer flame structures |
Base structures | Loading structures at base | Not found |
Base contact | Abrupt basal contact | Abrupt basal contact |
Structures | Internal sedimentary structures very seldom found | Internal sedimentary structures more common |
Geochemistry | ||
Signatures | Increase in geochemical elements indicating marine origin | Increase in geochemical elements indicating marine origin |
Signature | Si high at base, clay high on final drape | Mixed Si to clay throughout |
Heavy-mineral deposits | Site specific | Site specific |
Palaeontology | ||
Fossils | Marine shell rich units | Marine shell fragments |
Flora | Terrestrial plant fragments, particularly at base | Plant fragments throughout |
Flora | Rafting light material | Not found |
Diversity | Increased diversity (mixture marine and brackish fossils) | Mixture of marine and fresh-water fossils |
Preservation | Relative well/poorly preserved fossils | Poorly preserved fossils |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaffney, V.; Fitch, S.; Bates, M.; Ware, R.L.; Kinnaird, T.; Gearey, B.; Hill, T.; Telford, R.; Batt, C.; Stern, B.; et al. Multi-Proxy Characterisation of the Storegga Tsunami and Its Impact on the Early Holocene Landscapes of the Southern North Sea. Geosciences 2020, 10, 270. https://doi.org/10.3390/geosciences10070270
Gaffney V, Fitch S, Bates M, Ware RL, Kinnaird T, Gearey B, Hill T, Telford R, Batt C, Stern B, et al. Multi-Proxy Characterisation of the Storegga Tsunami and Its Impact on the Early Holocene Landscapes of the Southern North Sea. Geosciences. 2020; 10(7):270. https://doi.org/10.3390/geosciences10070270
Chicago/Turabian StyleGaffney, Vincent, Simon Fitch, Martin Bates, Roselyn L. Ware, Tim Kinnaird, Benjamin Gearey, Tom Hill, Richard Telford, Cathy Batt, Ben Stern, and et al. 2020. "Multi-Proxy Characterisation of the Storegga Tsunami and Its Impact on the Early Holocene Landscapes of the Southern North Sea" Geosciences 10, no. 7: 270. https://doi.org/10.3390/geosciences10070270
APA StyleGaffney, V., Fitch, S., Bates, M., Ware, R. L., Kinnaird, T., Gearey, B., Hill, T., Telford, R., Batt, C., Stern, B., Whittaker, J., Davies, S., Sharada, M. B., Everett, R., Cribdon, R., Kistler, L., Harris, S., Kearney, K., Walker, J., ... Allaby, R. G. (2020). Multi-Proxy Characterisation of the Storegga Tsunami and Its Impact on the Early Holocene Landscapes of the Southern North Sea. Geosciences, 10(7), 270. https://doi.org/10.3390/geosciences10070270