Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = sarcomere length control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1386 KiB  
Article
An Exogenous NO Donor Provokes Mechanical Alternans in Normal Rat Atria and Impairs Sarcomere Contractility in Right Atrial Cardiomyocytes in Atrial Fibrillation
by Xenia Butova, Tatiana Myachina, Polina Mikhryakova, Raisa Simonova, Daniil Shchepkin and Anastasia Khokhlova
Biomolecules 2025, 15(5), 735; https://doi.org/10.3390/biom15050735 - 17 May 2025
Viewed by 399
Abstract
Atrial fibrillation (AF) is the most common arrhythmia worldwide. AF is associated with a deficiency in nitric oxide (NO) production, which contributes to disturbances in the electrical and mechanical function of the atrial myocardium. NO donors are considered promising for the treatment and [...] Read more.
Atrial fibrillation (AF) is the most common arrhythmia worldwide. AF is associated with a deficiency in nitric oxide (NO) production, which contributes to disturbances in the electrical and mechanical function of the atrial myocardium. NO donors are considered promising for the treatment and prevention of AF, but their effects on atrial contractility are unclear. This study examines the direct impact of a low-molecular-weight NO donor, spermine-NONOate (NOC-22), on the contractile function of atrial cardiomyocytes in paroxysmal AF. To study whether an NO donor-induced increase in NO level causes chamber-specific changes in atrial contractility, we measured sarcomere length (SL) dynamics in contracting single cardiomyocytes from the rat left and right atria (LA, RA) using a 7-day acetylcholine-CaCl2-induced AF model. We showed that in control rats NOC-22 provoked alternans of sarcomere shortening in both LA and RA cardiomyocytes. In AF, NOC-22 decreased the sarcomere-shortening amplitudes and velocities of sarcomere shortening–relengthening and increased the magnitude of sarcomere-shortening alternans only in RA cardiomyocytes. The negative effects of NO donors on RA contractility warrant careful consideration of their use in AF treatment. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

21 pages, 1551 KiB  
Article
Beef Carcasses Aged at Mild Temperature to Improve Sustainability of Meat Production
by André Ndereyimana, Michela Contò, Antonella Chiariotti, Gianluca Renzi and Sebastiana Failla
Sustainability 2024, 16(22), 9907; https://doi.org/10.3390/su16229907 - 13 Nov 2024
Viewed by 1087
Abstract
Beef carcass aging, which enhances tenderness and flavor through proteolysis, is traditionally costly and slow, requiring long-term storage at temperatures near 0 °C. To reduce energy consumption, a new technique using moderate cooling room temperatures was tested. Six carcasses of Holstein bulls were [...] Read more.
Beef carcass aging, which enhances tenderness and flavor through proteolysis, is traditionally costly and slow, requiring long-term storage at temperatures near 0 °C. To reduce energy consumption, a new technique using moderate cooling room temperatures was tested. Six carcasses of Holstein bulls were used. From each carcass, two shoulders were processed in different ways: one was refrigerated at 8 °C (W), and after spraying with a solution with calcium chloride and sodium chloride, was coated with sodium alginate. The other shoulder was stored at 2 ± 1 °C as a cold control (C). After five days of aging, the shoulders were dissected, and two muscles (Caput longum triceps brachii and Supraspinatus) were subjected to physico-chemical analysis, microbiological safety assessment, and sensory testing. The remaining samples of both muscles were stored in domestic conditions for an additional 5 days at various temperatures (2, 4, 8 °C), where the same physic-chemical and sensory tests were conducted. The results showed that moderate aging temperature improved meat quality, significantly reducing the shear force (p = 0.001) and increasing sarcomere length, the myofibrillar fragmentation index, and sensory tenderness (p = 0.042, p = 0.039, and p = 0.027, respectively). However, domestic storage post-dissection should not exceed 4 °C to prevent rapid lipid oxidation, as observed at 8 °C for both muscles (p < 0.001). Mild aging temperature maintained legal safety standards, enhanced certain meat qualities, and promoted enzymatic activity similar to traditional dry aging while reducing high energy consumption. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Figure 1

12 pages, 2218 KiB  
Article
Levosimendan’s Effects on Length-Dependent Activation in Murine Fast-Twitch Skeletal Muscle
by Michael Haug, Mena Michael, Paul Ritter, Larisa Kovbasyuk, Maria Eleni Vazakidou and Oliver Friedrich
Int. J. Mol. Sci. 2024, 25(11), 6191; https://doi.org/10.3390/ijms25116191 - 4 Jun 2024
Viewed by 1339
Abstract
Levosimendan’s calcium sensitizing effects in heart muscle cells are well established; yet, its potential impact on skeletal muscle cells has not been evidently determined. Despite controversial results, levosimendan is still expected to interact with skeletal muscle through off-target sites (further than troponin C). [...] Read more.
Levosimendan’s calcium sensitizing effects in heart muscle cells are well established; yet, its potential impact on skeletal muscle cells has not been evidently determined. Despite controversial results, levosimendan is still expected to interact with skeletal muscle through off-target sites (further than troponin C). Adding to this debate, we investigated levosimendan’s acute impact on fast-twitch skeletal muscle biomechanics in a length-dependent activation study by submersing single muscle fibres in a levosimendan-supplemented solution. We employed our MyoRobot technology to investigate the calcium sensitivity of skinned single muscle fibres alongside their stress–strain response in the presence or absence of levosimendan (100 µM). While control data are in agreement with the theory of length-dependent activation, levosimendan appears to shift the onset of the ‘descending limb’ of active force generation to longer sarcomere lengths without notably improving myofibrillar calcium sensitivity. Passive stretches in the presence of levosimendan yielded over twice the amount of enlarged restoration stress and Young’s modulus in comparison to control single fibres. Both effects have not been described before and may point towards potential off-target sites of levosimendan. Full article
(This article belongs to the Special Issue Molecular Research on Skeletal Muscle Diseases)
Show Figures

Graphical abstract

19 pages, 1470 KiB  
Article
Effects of Neuromuscular Electrical Stimulation and Therapeutic Ultrasound on Quadriceps Contracture of Immobilized Rats
by Kanokwan Suwankanit and Miki Shimizu
Vet. Sci. 2024, 11(4), 158; https://doi.org/10.3390/vetsci11040158 - 1 Apr 2024
Viewed by 2685
Abstract
Quadriceps contracture is a condition where the muscle–tendon unit is abnormally shortened. The treatment prognosis is guarded to poor depending on the progress of the disease. To improve the prognosis, we investigated the effectiveness of therapeutic ultrasound and NMES in treating quadriceps contracture [...] Read more.
Quadriceps contracture is a condition where the muscle–tendon unit is abnormally shortened. The treatment prognosis is guarded to poor depending on the progress of the disease. To improve the prognosis, we investigated the effectiveness of therapeutic ultrasound and NMES in treating quadriceps contracture in an immobilized rat model. Thirty-six Wistar rats were randomized into control, immobilization alone, immobilization and spontaneous recovery, immobilization and therapeutic ultrasound, immobilization and NMES, and immobilization and therapeutic ultrasound and NMES combination groups. The continuous therapeutic ultrasound (frequency, 3 MHz, intensity 1 W/cm2) and NMES (TENS mode, frequency 50 Hz; intensity 5.0 ± 0.8 mA) were performed on the quadriceps muscle. On Day 15, immobilization-induced quadriceps contracture resulted in a decreased ROM of the stifle joint, reduction in the sarcomere length, muscle atrophy, and muscle fibrosis. On Day 43, therapeutic ultrasound, NMES, and combining both methods improved muscle atrophy and shortening and decreased collagen type I and III and α-SMA protein. The combination of therapeutic ultrasound and NMES significantly reduced the mRNA expression of IL-1β, TGF-β1, and HIF-1α and increased TGF-β3. Therefore, the combination of therapeutic ultrasound and NMES is the most potent rehabilitation program for treating quadriceps contracture. Full article
Show Figures

Figure 1

35 pages, 8057 KiB  
Article
Statins Induce Locomotion and Muscular Phenotypes in Drosophila melanogaster That Are Reminiscent of Human Myopathy: Evidence for the Role of the Chloride Channel Inhibition in the Muscular Phenotypes
by Mohamed H. Al-Sabri, Neha Behare, Ahmed M. Alsehli, Samuel Berkins, Aadeya Arora, Eirini Antoniou, Eleni I. Moysiadou, Sowmya Anantha-Krishnan, Patricia D. Cosmen, Johanna Vikner, Thiago C. Moulin, Nourhene Ammar, Hadi Boukhatmi, Laura E. Clemensson, Mathias Rask-Andersen, Jessica Mwinyi, Michael J. Williams, Robert Fredriksson and Helgi B. Schiöth
Cells 2022, 11(22), 3528; https://doi.org/10.3390/cells11223528 - 8 Nov 2022
Cited by 4 | Viewed by 4472
Abstract
The underlying mechanisms for statin-induced myopathy (SIM) are still equivocal. In this study, we employ Drosophila melanogaster to dissect possible underlying mechanisms for SIM. We observe that chronic fluvastatin treatment causes reduced general locomotion activity and climbing ability. In addition, transmission microscopy of [...] Read more.
The underlying mechanisms for statin-induced myopathy (SIM) are still equivocal. In this study, we employ Drosophila melanogaster to dissect possible underlying mechanisms for SIM. We observe that chronic fluvastatin treatment causes reduced general locomotion activity and climbing ability. In addition, transmission microscopy of dissected skeletal muscles of fluvastatin-treated flies reveals strong myofibrillar damage, including increased sarcomere lengths and Z-line streaming, which are reminiscent of myopathy, along with fragmented mitochondria of larger sizes, most of which are round-like shapes. Furthermore, chronic fluvastatin treatment is associated with impaired lipid metabolism and insulin signalling. Mechanistically, knockdown of the statin-target Hmgcr in the skeletal muscles recapitulates fluvastatin-induced mitochondrial phenotypes and lowered general locomotion activity; however, it was not sufficient to alter sarcomere length or elicit myofibrillar damage compared to controls or fluvastatin treatment. Moreover, we found that fluvastatin treatment was associated with reduced expression of the skeletal muscle chloride channel, ClC-a (Drosophila homolog of CLCN1), while selective knockdown of skeletal muscle ClC-a also recapitulated fluvastatin-induced myofibril damage and increased sarcomere lengths. Surprisingly, exercising fluvastatin-treated flies restored ClC-a expression and normalized sarcomere lengths, suggesting that fluvastatin-induced myofibrillar phenotypes could be linked to lowered ClC-a expression. Taken together, these results may indicate the potential role of ClC-a inhibition in statin-associated muscular phenotypes. This study underlines the importance of Drosophila melanogaster as a powerful model system for elucidating the locomotion and muscular phenotypes, promoting a better understanding of the molecular mechanisms underlying SIM. Full article
Show Figures

Graphical abstract

15 pages, 2684 KiB  
Article
Effects of Obesity and Diabesity on Ventricular Muscle Structure and Function in the Zucker Rat
by Ahmed Sultan, Ernest Adeghate, Bright Starling Emerald, Muhammad A. Qureshi, Saeed Tariq Minhas and Frank Christopher Howarth
Life 2022, 12(8), 1221; https://doi.org/10.3390/life12081221 - 11 Aug 2022
Cited by 1 | Viewed by 2357
Abstract
(1) Background: Cardiovascular complications are a leading cause of morbidity and mortality in diabetic patients. The effects of obesity and diabesity on the function and structure of ventricular myocytes in the Zucker fatty (ZF) rat and the Zucker diabetic fatty (ZDF) rat compared [...] Read more.
(1) Background: Cardiovascular complications are a leading cause of morbidity and mortality in diabetic patients. The effects of obesity and diabesity on the function and structure of ventricular myocytes in the Zucker fatty (ZF) rat and the Zucker diabetic fatty (ZDF) rat compared to Zucker lean (ZL) control rats have been investigated. (2) Methods: Shortening and intracellular Ca2+ were simultaneously measured with cell imaging and fluorescence photometry, respectively. Ventricular muscle protein expression and structure were investigated with Western blot and electron microscopy, respectively. (3) Results: The amplitude of shortening was increased in ZF compared to ZL but not compared to ZDF myocytes. Resting Ca2+ was increased in ZDF compared to ZL myocytes. Time to half decay of the Ca2+ transient was prolonged in ZDF compared to ZL and was reduced in ZF compared to ZL myocytes. Changes in expression of proteins associated with cardiac muscle contraction are presented. Structurally, there were reductions in sarcomere length in ZDF and ZF compared to ZL and reductions in mitochondria count in ZF compared to ZDF and ZL myocytes. (4) Conclusions: Alterations in ventricular muscle proteins and structure may partly underlie the defects observed in Ca2+ signaling in ZDF and ZF compared to ZL rat hearts. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

18 pages, 4351 KiB  
Article
Myosin Transducer Inter-Strand Communication Is Critical for Normal ATPase Activity and Myofibril Structure
by William A. Kronert, Karen H. Hsu, Aditi Madan, Floyd Sarsoza, Anthony Cammarato and Sanford I. Bernstein
Biology 2022, 11(8), 1137; https://doi.org/10.3390/biology11081137 - 29 Jul 2022
Cited by 2 | Viewed by 2046
Abstract
The R249Q mutation in human β-cardiac myosin results in hypertrophic cardiomyopathy. We previously showed that inserting this mutation into Drosophila melanogaster indirect flight muscle myosin yields mechanical and locomotory defects. Here, we use transgenic Drosophila mutants to demonstrate that residue R249 serves as [...] Read more.
The R249Q mutation in human β-cardiac myosin results in hypertrophic cardiomyopathy. We previously showed that inserting this mutation into Drosophila melanogaster indirect flight muscle myosin yields mechanical and locomotory defects. Here, we use transgenic Drosophila mutants to demonstrate that residue R249 serves as a critical communication link within myosin that controls both ATPase activity and myofibril integrity. R249 is located on a β-strand of the central transducer of myosin, and our molecular modeling shows that it interacts via a salt bridge with D262 on the adjacent β-strand. We find that disrupting this interaction via R249Q, R249D or D262R mutations reduces basal and actin-activated ATPase activity, actin in vitro motility and flight muscle function. Further, the R249D mutation dramatically affects myofibril assembly, yielding abnormalities in sarcomere lengths, increased Z-line thickness and split myofibrils. These defects are exacerbated during aging. Re-establishing the β-strand interaction via a R249D/D262R double mutation restores both basal ATPase activity and myofibril assembly, indicating that these properties are dependent upon transducer inter-strand communication. Thus, the transducer plays an important role in myosin function and myofibril architecture. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

21 pages, 2887 KiB  
Article
Interventricular Differences of Signaling Pathways-Mediated Regulation of Cardiomyocyte Function in Response to High Oxidative Stress in the Post-Ischemic Failing Rat Heart
by Árpád Kovács, Melissa Herwig, Heidi Budde, Simin Delalat, Detmar Kolijn, Beáta Bódi, Roua Hassoun, Melina Tangos, Saltanat Zhazykbayeva, Ágnes Balogh, Dániel Czuriga, Sophie Van Linthout, Carsten Tschöpe, Naranjan S. Dhalla, Andreas Mügge, Attila Tóth, Zoltán Papp, Judit Barta and Nazha Hamdani
Antioxidants 2021, 10(6), 964; https://doi.org/10.3390/antiox10060964 - 16 Jun 2021
Cited by 10 | Viewed by 3953
Abstract
Standard heart failure (HF) therapies have failed to improve cardiac function or survival in HF patients with right ventricular (RV) dysfunction suggesting a divergence in the molecular mechanisms of RV vs. left ventricular (LV) failure. Here we aimed to investigate interventricular differences in [...] Read more.
Standard heart failure (HF) therapies have failed to improve cardiac function or survival in HF patients with right ventricular (RV) dysfunction suggesting a divergence in the molecular mechanisms of RV vs. left ventricular (LV) failure. Here we aimed to investigate interventricular differences in sarcomeric regulation and function in experimental myocardial infarction (MI)-induced HF with reduced LV ejection fraction (HFrEF). MI was induced by LAD ligation in Sprague–Dawley male rats. Sham-operated animals served as controls. Eight weeks after intervention, post-ischemic HFrEF and Sham animals were euthanized. Heart tissue samples were deep-frozen stored (n = 3–5 heart/group) for ELISA, kinase activity assays, passive stiffness and Ca2+-sensitivity measurements on isolated cardiomyocytes, phospho-specific Western blot, and PAGE of contractile proteins, as well as for collagen gene expressions. Markers of oxidative stress and inflammation showed interventricular differences in post-ischemic rats: TGF-β1, lipid peroxidation, and 3-nitrotyrosine levels were higher in the LV than RV, while hydrogen peroxide, VCAM-1, TNFα, and TGF-β1 were increased in both ventricles. In addition, nitric oxide (NO) level was significantly decreased, while FN-1 level was significantly increased only in the LV, but both were unchanged in RV. CaMKII activity showed an 81.6% increase in the LV, in contrast to a 38.6% decrease in the RV of HFrEF rats. Cardiomyocyte passive stiffness was higher in the HFrEF compared to the Sham group as evident from significantly steeper Fpassive vs. sarcomere length relationships. In vitro treatment with CaMKIIδ, however, restored cardiomyocyte passive stiffness only in the HFrEF RV, but had no effect in the HFrEF LV. PKG activity was lower in both ventricles in the HFrEF compared to the Sham group. In vitro PKG administration decreased HFrEF cardiomyocyte passive stiffness; however, the effect was more pronounced in the HFrEF LV than HFrEF RV. In line with this, we observed distinct changes of titin site-specific phosphorylation in the RV vs. LV of post-ischemic rats, which may explain divergent cardiomyocyte stiffness modulation observed. Finally, Ca2+-sensitivity of RV cardiomyocytes was unchanged, while LV cardiomyocytes showed increased Ca2+-sensitivity in the HFrEF group. This could be explained by decreased Ser-282 phosphorylation of cMyBP-C by 44.5% in the RV, but without any alteration in the LV, while Ser-23/24 phosphorylation of cTnI was decreased in both ventricles in the HFrEF vs. the Sham group. Our data pointed to distinct signaling pathways-mediated phosphorylations of sarcomeric proteins for the RV and LV of the post-ischemic failing rat heart. These results implicate divergent responses for oxidative stress and open a new avenue in targeting the RV independently of the LV. Full article
(This article belongs to the Special Issue Oxidative Stress in Cardiovascular Diseases)
Show Figures

Graphical abstract

14 pages, 927 KiB  
Review
A Meta-Analysis of the Effectiveness of High, Medium, and Low Voltage Electrical Stimulation on the Meat Quality of Small Ruminants
by Archana Ravindranathan, Frank R. Dunshea, Robyn D. Warner, Brian J. Leury, Minh Ha and Surinder S. Chauhan
Foods 2020, 9(11), 1587; https://doi.org/10.3390/foods9111587 - 2 Nov 2020
Cited by 16 | Viewed by 3544
Abstract
The current study is a meta-analysis of the effects of electrical stimulation (ES, n = 28 papers) with different voltages combined with different ageing periods (0–3, 4–7, and 8–14 days) on the meat quality of small ruminants. A comprehensive search for published studies [...] Read more.
The current study is a meta-analysis of the effects of electrical stimulation (ES, n = 28 papers) with different voltages combined with different ageing periods (0–3, 4–7, and 8–14 days) on the meat quality of small ruminants. A comprehensive search for published studies on meat quality of small ruminants investigating the application of low, medium, and high voltage electrical stimulation, was performed using Google Scholar, ScienceDirect, PubMed, and Scopus databases. Forest plots, funnel plots, and other statistical tools and tests were used in the study to analyze the results. Electrical stimulation significantly reduced ultimate pH (p < 0.001), Warner–Bratzler shear force (WBSF) (p < 0.001), cooking loss (p < 0.05), and purge loss (p < 0.001). In addition, sarcomere length (p < 0.01), myofibrillar-fragmentation index (MFI) (p < 0.001), and color (L*, a*, b*) (p < 0.001) showed higher values in meat subjected to ES as compared with the control group. In conclusion, the meta-analysis revealed statistical proof of beneficial effects of ES on meat quality of small ruminants in terms of ultimate pH, tenderness, enhanced proteolysis, and higher colorimetric values. Full article
(This article belongs to the Special Issue Sheep and Goat Meat Processing and Quality)
Show Figures

Figure 1

13 pages, 3490 KiB  
Article
Insight into the Effects of Sous Vide on Cathepsin B and L Activities, Protein Degradation and the Ultrastructure of Beef
by Yantao Yin, Jailson Pereira, Lei Zhou, Jose M. Lorenzo, Xiaona Tian and Wangang Zhang
Foods 2020, 9(10), 1441; https://doi.org/10.3390/foods9101441 - 12 Oct 2020
Cited by 33 | Viewed by 3980
Abstract
This study aimed to evaluate the effects of sous vide cooking (SV) on beef tenderness and its underlying potential mechanism. Beef semimembranosus (SM) were subjected to SV treatments at 45 °C, 55 °C and 65 °C for 4 h. Compared with control samples [...] Read more.
This study aimed to evaluate the effects of sous vide cooking (SV) on beef tenderness and its underlying potential mechanism. Beef semimembranosus (SM) were subjected to SV treatments at 45 °C, 55 °C and 65 °C for 4 h. Compared with control samples (CK, cooked at 75 °C until a core temperature of 72 °C was attained), SV treatment significantly promoted the release of cathepsin B and cathepsin L from lysosomes and decreased the shear force of beef SM (p < 0.05). In comparison with CK, samples treated with SV had more hydrolysis of myosin heavy chain and obtained higher myofibrillar fragmentation index, collagen solubility as well as longer sarcomere length (p < 0.05). The current study showed that the proteolysis of myofibrillar protein and collagen induced by cathepsin B and cathepsin L, and the limited longitudinal shrinkage together contributed to the improvement of beef tenderness upon SV. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

23 pages, 7852 KiB  
Article
Combined Therapy with SS31 and Mitochondria Mitigates Myocardial Ischemia-Reperfusion Injury in Rats
by Fan-Yen Lee, Pei-Lin Shao, Christopher Glenn Wallace, Sarah Chua, Pei-Hsun Sung, Sheung-Fat Ko, Han-Tan Chai, Sheng-Ying Chung, Kuan-Hung Chen, Hung-I Lu, Yi-Ling Chen, Tien-Hung Huang, Jiunn-Jye Sheu and Hon-Kan Yip
Int. J. Mol. Sci. 2018, 19(9), 2782; https://doi.org/10.3390/ijms19092782 - 15 Sep 2018
Cited by 55 | Viewed by 6662
Abstract
Myocardial ischemia-reperfusion (IR) injury contributes to adverse cardiac outcomes after myocardial ischemia, cardiac surgery, or circulatory arrest. In this study, we evaluated the ability of combined SS31-mitochondria (Mito) therapy to protect heart cells from myocardial IR injury. Adult male SD rats (n [...] Read more.
Myocardial ischemia-reperfusion (IR) injury contributes to adverse cardiac outcomes after myocardial ischemia, cardiac surgery, or circulatory arrest. In this study, we evaluated the ability of combined SS31-mitochondria (Mito) therapy to protect heart cells from myocardial IR injury. Adult male SD rats (n = 8/each group) were randomized: group 1 (sham-operated control), group 2 (IR, 30-min ischemia/72 h reperfusion), group 3 (IR-SS31 (2 mg intra-peritoneal injection at 30 min/24 h/48 h after IR)), group 4 (IR-mitochondria (2 mg/derived from donor liver/intra-venous administration/30 min after IR procedure)), and group 5 (IR-SS31-mitochondria). In H9C2 cells, SS31 suppressed menadione-induced oxidative-stress markers (NOX-1, NOX-2, oxidized protein) while it increased SIRT1/SIRT3 expression and ATP levels. In adult male rats 72 h after IR, left ventricular ejection fraction (LVEF) was highest in sham-operated control animals and lowest in the IR group. LVEF was also higher in IR rats treated with SS31-Mito than untreated IR rats or those treated with Mito or SS31 alone. Areas of fibrosis/collagen-deposition showed the opposite pattern. Likewise, levels of oxidative-stress markers (NOX-1, NOX-2, oxidized protein), inflammatory markers (MMP-9, CD11, IL-1β, TNF-α), apoptotic markers (mitochondrial-Bax, cleaved-caspase-3, PARP), fibrosis markers (p-Smad3, TGF-β), DNA-damage (γ-H2AX), sarcomere-length, and pressure/volume overload markers (BNP, β-MHC) all showed a pattern opposite that of LVEF. Conversely, anti-apoptotic (BMP-2, Smad1/5) and energy integrity (PGC-1α/mitochondrial cytochrome-C) markers exhibited a pattern identical to that of LVEF. This study demonstrates that the combined SS31-Mito therapy is superior to either therapy alone for protecting myocardium from IR injury and indicates that the responsible mechanisms involved increased SIRT1/SIRT3 expression, which suppresses inflammation and oxidative stress and protects mitochondrial integrity. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

30 pages, 5334 KiB  
Article
X-ray Diffraction Evidence for Low Force Actin-Attached and Rigor-Like Cross-Bridges in the Contractile Cycle
by Felicity Eakins, Christian Pinali, Anthony Gleeson, Carlo Knupp and John M. Squire
Biology 2016, 5(4), 41; https://doi.org/10.3390/biology5040041 - 26 Oct 2016
Cited by 13 | Viewed by 5786
Abstract
Defining the structural changes involved in the myosin cross-bridge cycle on actin in active muscle by X-ray diffraction will involve recording of the whole two dimensional (2D) X-ray diffraction pattern from active muscle in a time-resolved manner. Bony fish muscle is the most [...] Read more.
Defining the structural changes involved in the myosin cross-bridge cycle on actin in active muscle by X-ray diffraction will involve recording of the whole two dimensional (2D) X-ray diffraction pattern from active muscle in a time-resolved manner. Bony fish muscle is the most highly ordered vertebrate striated muscle to study. With partial sarcomere length (SL) control we show that changes in the fish muscle equatorial A-band (10) and (11) reflections, along with (10)/(11) intensity ratio and the tension, are much more rapid than without such control. Times to 50% change with SL control were 19.5 (±2.0) ms, 17.0 (±1.1) ms, 13.9 (±0.4) ms and 22.5 (±0.8) ms, respectively, compared to 25.0 (±3.4) ms, 20.5 (±2.6) ms, 15.4 (±0.6) ms and 33.8 (±0.6) ms without control. The (11) intensity and the (10)/(11) intensity ratio both still change ahead of tension, supporting the likelihood of the presence of a head population close to or on actin, but producing little or no force, in the early stages of the contractile cycle. Higher order equatorials (e.g., (30), (31), and (32)), more sensitive to crossbridge conformation and distribution, also change very rapidly and overshoot their tension plateau values by a factor of around two, well before the tension plateau has been reached, once again indicating an early low-force cross-bridge state in the contractile cycle. Modelling of these intensity changes suggests the presence of probably two different actin-attached myosin head structural states (mainly low-force attached and rigor-like). No more than two main attached structural states are necessary and sufficient to explain the observations. We find that 48% of the heads are off actin giving a resting diffraction pattern, 20% of heads are in the weak binding conformation and 32% of the heads are in the strong (rigor-like) state. The strong states account for 96% of the tension at the tetanus plateau. Full article
Show Figures

Figure 1

12 pages, 122 KiB  
Article
The Contribution of the Elastic Reaction is Severely Underestimated in Studies on Myofibril Contraction
by Enrico Grazi and Sara Pozzati
Int. J. Mol. Sci. 2009, 10(3), 942-953; https://doi.org/10.3390/ijms10030942 - 2 Mar 2009
Cited by 2 | Viewed by 10622
Abstract
We have considered the Huxley-Simmons manoeuvre. On the assumption that the quick release is an elastic process and on the basis of the isometric tension and of the stiffness of the muscle fibre we calculated that the spontaneous release of the fibre requires [...] Read more.
We have considered the Huxley-Simmons manoeuvre. On the assumption that the quick release is an elastic process and on the basis of the isometric tension and of the stiffness of the muscle fibre we calculated that the spontaneous release of the fibre requires ~43 μs, which is much faster than the observed release, ~180 μs. We concluded that the observed quick release is a guided process. After proper selection of the mass and of the stiffness of the system we mimicked the early recovery and noticed that most of the energy required to accomplish the early recovery is supplied by the kinetic energy accumulated during the course of the quick release. We computed that the frequency of the working strokes in the half sarcomere was between 4×106 and 40×106 s-1. This is not to say that the ATPase rate constants are accumulative but only that the overall frequency of the working strokes in the half saromere is many orders of magnitude faster than the average ATPase rate constant. With this frequency no part of the Huxley-Simmons manoeuvre, quick release included, escapes the control of the working stroke. This means also that there is no reason to take the early recovery as an indication of the length of the working stroke. Full article
Show Figures

Back to TopTop