Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = sandblasting procedure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 4245 KiB  
Article
Improving Zirconia–Resin Cement Bonding Through Laser Surface Texturing: A Comparative Study
by Ji-Young Yoon
Prosthesis 2025, 7(1), 19; https://doi.org/10.3390/prosthesis7010019 - 17 Feb 2025
Viewed by 1108
Abstract
Objectives: This study evaluates the effectiveness of laser surface texturing (LST) using a Surface Transition Machine (STM) on pre-sintered zirconia, comparing its impact on surface characteristics and shear bond strength (SBS) with resin cement to conventional sandblasting techniques. Methods: Zirconia specimens were treated [...] Read more.
Objectives: This study evaluates the effectiveness of laser surface texturing (LST) using a Surface Transition Machine (STM) on pre-sintered zirconia, comparing its impact on surface characteristics and shear bond strength (SBS) with resin cement to conventional sandblasting techniques. Methods: Zirconia specimens were treated with either STM or sandblasting, followed by surface analysis through scanning electron microscopy (SEM) and White Light Interferometry (WLI), wettability assessment via contact angle measurements, and SBS testing with resin cement and a 10-MDP-containing primer. Results: SEM and WLI revealed significant surface alterations in STM-treated zirconia, producing microscale textures. STM-treated surfaces exhibited significantly lower contact angles (28.4 ± 10.0°) compared to untreated (78.2 ± 8.0°) and sandblasted (79.2 ± 5.7°) surfaces, indicating enhanced wettability (p < 0.05). SBS was highest in the STM with primer group (46.3 ± 8.3 MPa) and STM without primer (43.4 ± 4.3 MPa), both of which significantly outperformed sandblasting with primer (30.06 ± 3.09 MPa) and sandblasting alone (9.8 ± 3.7 MPa) (p < 0.05). Conclusions: These findings suggest that STM-based LST is a more effective method for improving zirconia surface characteristics and adhesion in dental restorations, simplifying bonding procedures, and potentially offering better clinical outcomes than conventional sandblasting. Full article
(This article belongs to the Special Issue Advancements in Adhesion Techniques and Materials in Prosthodontics)
Show Figures

Figure 1

16 pages, 1625 KiB  
Article
Long-Term Clinical Study on Sandblasted–Acid-Etched Surface Dental Implants: 12-Year Follow-Up
by Eugenio Velasco-Ortega, Jesús Pato-Mourelo, Borja López-López, Loreto Monsalve-Guil, Jesús Moreno-Muñoz, José López-López, Enrique Núñez-Márquez, Nuno Matos Garrido, José Luis Rondón-Romero, Álvaro Jiménez-Guerra and Iván Ortiz-García
Materials 2025, 18(1), 183; https://doi.org/10.3390/ma18010183 - 4 Jan 2025
Viewed by 1253
Abstract
Sandblasting and acid etching are common procedures used to treat implant surfaces, enhancing osseointegration and improving clinical success rates. This clinical study aimed to evaluate the long-term outcomes of sandblasted and acid-etched implants. A total of 303 implants were placed in 114 partially [...] Read more.
Sandblasting and acid etching are common procedures used to treat implant surfaces, enhancing osseointegration and improving clinical success rates. This clinical study aimed to evaluate the long-term outcomes of sandblasted and acid-etched implants. A total of 303 implants were placed in 114 partially and totally edentulous patients using a two-stage surgical technique and an early loading protocol (6–8 weeks). Clinical findings for implants and prosthetics were evaluated over a 12-year follow-up period. A total of 12 implants (3.9%) failed, with 3 failures occurring during the healing period before loading and 9 due to peri-implantitis. The cumulative survival rate for all implants was 96.1%. A total of 156 prostheses were placed on 300 implants, 87 single crowns, 45 partial fixed bridges, 9 full-arch fixed restorations, and 15 overdentures. The mean marginal bone loss was 1.18 mm. (SD. 0.64 mm.). Thirty-nine implants (13%) in twenty-four patients exhibited peri-implantitis. Technical complications, including prosthetic screw loosening or fracture, ceramic chipping, and acrylic fractures, were observed in 24 subjects (21.1%). Sandblasted and acid-etched surface implants placed in the maxilla and mandible reported favorable outcomes and stable tissue conditions with an early loading protocol. Full article
Show Figures

Figure 1

13 pages, 12855 KiB  
Case Report
Minimally Invasive Resin-Bonded Zirconia Veneers for the Treatment of Discolored Teeth: A Multidisciplinary Case Report by the First Committee of Junior Members of the Italian Dental Prosthesis and Oral Rehabilitation Society (SIPRO)
by Stefano Bertoni, Massimo Carossa, Riccardo Favero, Fabio Carboncini and Luigi Federico D’arienzo
Prosthesis 2025, 7(1), 1; https://doi.org/10.3390/prosthesis7010001 - 24 Dec 2024
Viewed by 1792
Abstract
Objectives: Among modern metal-free materials, zirconia, a high-performance ceramic material that can only be manufactured through CAM procedures, has certainly exponentially gained popularity thanks to its mechanical strength, biocompatibility, esthetic, and versatility. However, one of the main debates that has been raised in [...] Read more.
Objectives: Among modern metal-free materials, zirconia, a high-performance ceramic material that can only be manufactured through CAM procedures, has certainly exponentially gained popularity thanks to its mechanical strength, biocompatibility, esthetic, and versatility. However, one of the main debates that has been raised in relation to zirconia is its usage as an adhesive material. The present case report describes the clinical outcome of a multidisciplinary case finalized with adhesive minimally invasive zirconia veneers for the treatment of discolored teeth after a 24-month follow-up. Methods: A 19-year-old female patient with discolored upper frontal teeth (first premolar to first premolar) negatively affecting her self-esteem and social life was visited by a prosthodontic specialist. The treatment plan included orthodontic treatment, soft and hard tissue management through surgical procedures, and, lastly, minimally invasive adhesive zirconia veneers. The zirconia veneers bonding was performed under a rubber dam by conditioning the dental substrate by sandblasting the enamel with 40-micron aluminum oxide, etching with orthophosphoric acid 37%, and using a proper adhesive system. Monolithic zirconia restorations were sandblasted with 70-micron aluminum oxide at 0.2 MPa, then cleaned with a specific cleaner, and treated with a primer. Results: At the last follow-up (24 months), neither biological nor mechanical complications were observed. The patient anecdotally reported being very satisfied with the functional and esthetic results obtained. Therefore, the case was considered successful. Conclusions: Within the limitations of the present case report, the reported case on the use of minimally invasive resin-bonded zirconia veneers for the treatment of discolored teeth showed excellent outcomes after a 24-month follow-up. The use of zirconia as an adhesive material seems to be emerging. However, more clinical studies are required to validate the procedure. Full article
(This article belongs to the Special Issue Advancements in Zirconia Dental Restorations)
Show Figures

Figure 1

12 pages, 5874 KiB  
Article
Effects of Surface-Etching Systems on the Shear Bond Strength of Dual-Polymerized Resin Cement and Zirconia
by Sang-Hyun Kim, Kyung Chul Oh and Hong-Seok Moon
Materials 2024, 17(13), 3096; https://doi.org/10.3390/ma17133096 - 24 Jun 2024
Cited by 4 | Viewed by 1499
Abstract
Adhesion of zirconia is difficult; thus, etching agents using several different methods are being developed. We investigated the effects of surface treatment with commercially available etching agents on the bond strength between zirconia and resin cement and compared them with those achieved using [...] Read more.
Adhesion of zirconia is difficult; thus, etching agents using several different methods are being developed. We investigated the effects of surface treatment with commercially available etching agents on the bond strength between zirconia and resin cement and compared them with those achieved using air abrasion alone. We used 100 zirconia blocks, of which 20 blocks remained untreated, 20 blocks were sandblasted, and 60 blocks were acid-etched using three different zirconia-etching systems: Zircos-E etching (strong-acid etching), smart etching (acid etching after air abrasion), and cloud etching (acid etching under a hot stream). Each group was subjected to a bonding procedure with dual-polymerized resin cement, and then 50 specimens were thermocycled. The shear bond strengths between the resin cement and zirconia before and after the thermocycling were evaluated. We observed that in the groups that did not undergo thermocycling, specimens surface-treated with solution did not show a significant increase in shear bond strength compared to the sandblasted specimens (p > 0.05). Among the thermocycled groups, the smart-etched specimens showed the highest shear bond strength. In the short term, various etching agents did not show a significant increase in bond strength compared to sandblasting alone, but in the long term, smart etching showed stability in bond strength (p < 0.05). Full article
(This article belongs to the Special Issue Ceramic Dental Restorations: From Materials Sciences to Applications)
Show Figures

Figure 1

12 pages, 1486 KiB  
Article
Biocompatibility of Subperiosteal Dental Implants: Changes in the Expression of Osteogenesis-Related Genes in Osteoblasts Exposed to Differently Treated Titanium Surfaces
by Marco Roy, Elisa Chelucci, Alessandro Corti, Lorenzo Ceccarelli, Mauro Cerea, Barbara Dorocka-Bobkowska, Alfonso Pompella and Simona Daniele
J. Funct. Biomater. 2024, 15(6), 146; https://doi.org/10.3390/jfb15060146 - 27 May 2024
Cited by 1 | Viewed by 1824
Abstract
The use of endosseous dental implants may become unfeasible in the presence of significant maxillary bone atrophy; thus, surgical techniques have been proposed to promote bone regeneration in such cases. However, such techniques are complex and may expose the patient to complications. Subperiosteal [...] Read more.
The use of endosseous dental implants may become unfeasible in the presence of significant maxillary bone atrophy; thus, surgical techniques have been proposed to promote bone regeneration in such cases. However, such techniques are complex and may expose the patient to complications. Subperiosteal implants, being placed between the periosteum and the residual alveolar bone, are largely independent of bone thickness. Such devices had been abandoned due to the complexity of positioning and adaptation to the recipient bone site, but are nowadays witnessing an era of revival following the introduction of new acquisition procedures, new materials, and innovative manufacturing methods. We have analyzed the changes induced in gene and protein expression in C-12720 human osteoblasts by differently surface-modified TiO2 materials to verify their ability to promote bone formation. The TiO2 materials tested were (i) raw machined, (ii) electropolished with acid mixture, (iii) sand-blasted + acid-etched, (iv) AlTiColorTM surface, and (v) anodized. All five surfaces efficiently stimulated the expression of markers of osteoblastic differentiation, adhesion, and osteogenesis, such as RUNX2, osteocalcin, osterix, N-cadherin, β-catenin, and osteoprotegerin, while cell viability/proliferation was unaffected. Collectively, our observations document that presently available TiO2 materials are well suited for the manufacturing of modern subperiosteal implants. Full article
(This article belongs to the Special Issue Orthodontic Biomaterials: From the Past to the Present)
Show Figures

Graphical abstract

10 pages, 1211 KiB  
Article
Maxillary Sinus Floor Elevation and Simultaneous Implant Installation via Osseodensification Drills: A Retrospective Analysis of Bone Gain in 72 Patients Followed for 6 Months
by Alper Saglanmak, Ihsan Caglar Cinar, Mohammed Zboun, Volkan Arisan and Eitan Mijiritsky
J. Clin. Med. 2024, 13(8), 2225; https://doi.org/10.3390/jcm13082225 - 11 Apr 2024
Cited by 8 | Viewed by 2908
Abstract
Background/Objectives: The aim of this retrospective study was to radiographically evaluate the endo-sinus bone gain (ESBG) following osseodensification procedures using CBCT and compare the results to more conventional sinus lifting techniques. Methods: A total of 72 patients underwent crestal sinus floor [...] Read more.
Background/Objectives: The aim of this retrospective study was to radiographically evaluate the endo-sinus bone gain (ESBG) following osseodensification procedures using CBCT and compare the results to more conventional sinus lifting techniques. Methods: A total of 72 patients underwent crestal sinus floor elevation procedures and were provided with 102 implants with a sand-blasted and acid-etched surface with microthreads (Medentika® Microcone Implants, Hugelsheim, Germany). Patients were divided into two groups; the osseodensification group (OD; n = 36) and the osseodensified augmentation group (ODA; n = 36). Results: The mean residual bone height (RBH) was 5.71 (1.77) and 4.30 (0.94) mm in the OD and ODA groups, respectively. An ESBG of 3.45 (1.18) and 5.74 (1.31) mm was observed in the OD and ODA groups, respectively, and as compared to the baseline RBH, the ESBG was statistically significant in both groups after 6 months (p < 0.001). Conclusions: Within the limits of this retrospective study, crestal sinus lifting with the osseodensification technique seems to be a fast, effective, and safe method. Longer follow-up studies with full intrasinus bone topography and structure analyses are needed to prove the success rate of endo-sinus bone gain. Full article
(This article belongs to the Special Issue Clinical Advances in Dental Implant Surgery)
Show Figures

Figure 1

13 pages, 4833 KiB  
Article
Adhesive Performance of Resin Cement to Glass-Ceramic and Polymer-Based Ceramic CAD/CAM Materials after Applying Self-Etching Ceramic Primer or Different Surface Treatments
by Rana Turunç Oğuzman and Soner Şişmanoğlu
Materials 2024, 17(1), 2; https://doi.org/10.3390/ma17010002 - 19 Dec 2023
Cited by 4 | Viewed by 1758
Abstract
Ensuring optimum bond strength during cementation is vital for restoration success, with the practicality of the process being crucial in clinical practice. This study analyzed the effect of a single-step self-etching ceramic primer (MEP) and various surface treatments on the microshear bond strength [...] Read more.
Ensuring optimum bond strength during cementation is vital for restoration success, with the practicality of the process being crucial in clinical practice. This study analyzed the effect of a single-step self-etching ceramic primer (MEP) and various surface treatments on the microshear bond strength (µSBS) between resin cement and glass-ceramic or polymer-based ceramic CAD/CAM materials. Specimens were fabricated from leucite-based glass-ceramic (LEU), lithium disilicate glass-ceramic (LDC), resin nanoceramic (RNC), and polymer infiltrated ceramic network (PICN) (n = 160). They were then classified based on the surface treatments (n = 10): control (no treatment); sandblasting with Al2O3 (AL); etching with hydrofluoric acid (HF); and MEP application. Scanning electron microscopy was used to evaluate the surface topography. µSBS was measured after cementation and thermocycling procedures. Failure modes were examined with a stereomicroscope. Statistical analysis involved two-way analysis of variance and Tukey HSD tests with a significance level of 0.05. µSBS was significantly influenced by both surface treatment and CAD/CAM material type. The most enhanced µSBS values for each material, regarding the surface treatment, were: LEU and LDC, HF; RNC, AL; PICN, AL or HF. MEP significantly increased the µSBS values of CAD/CAM materials except RNC, yet it did not yield the highest µSBS values for any of them. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

18 pages, 999 KiB  
Review
Zirconia-Reinforced Lithium Silicate Ceramic in Digital Dentistry: A Comprehensive Literature Review of Our Current Understanding
by Manuela Manziuc, Andreea Kui, Andrea Chisnoiu, Anca Labuneț, Marius Negucioiu, Ana Ispas and Smaranda Buduru
Medicina 2023, 59(12), 2135; https://doi.org/10.3390/medicina59122135 - 8 Dec 2023
Cited by 12 | Viewed by 6486
Abstract
Zirconia-reinforced lithium silicate (ZLS) ceramic is a new innovative dental material with unique a chemical composition that is designed to combine harmoniously with the appropriate optical properties of lithium disilicate and the enhanced mechanical strength of zirconia. A thorough understanding of ZLS materials [...] Read more.
Zirconia-reinforced lithium silicate (ZLS) ceramic is a new innovative dental material with unique a chemical composition that is designed to combine harmoniously with the appropriate optical properties of lithium disilicate and the enhanced mechanical strength of zirconia. A thorough understanding of ZLS materials is essential for both clinicians and dental technicians. At present, the mechanical behavior and optical properties of the ZLS ceramic system have not been extensively researched, and there is still a lack of consensus regarding the fabrication process and clinical behavior of ZLS all-ceramic restorations. The aim of the present study was to present a selection of comprehensive information concerning zirconia-reinforced lithium silicate ceramics and their optical and mechanical properties, as well as to assess data regarding cementation procedures and clinical outcomes for ZLS all-ceramic restorations. Three electronic databases (PubMed, Web of Science, and the Cochrane Library) were used for the research by two independent reviewers. The search was limited to articles published in the English language, as well as clinical and in vitro studies of color and studies on mechanical behavior and the cementation procedures of ZLS restorations. The exclusion criteria comprised abstracts, questionnaire-based studies, case reports, literature reviews, and studies that were not available in English. Zirconia-reinforced lithium-silicate-based ceramic presents a unique and complex microstructure that increases mechanical resistance but decreases aesthetic appearance, especially its translucency, due to tetragonal zirconia content. A material’s thickness, the color of the underlying tooth structure, and the resin cement shade are important factors that influence the final shade and aesthetic appearance of ZLS restorations. Mechanical properties, which are defined by the fracture toughness, flexural strength, elastic modulus, and hardness of ZLS ceramic are higher compared to feldspathic, lithium disilicate, and hybrid ceramics, as well as resin nanoceramics; however, they are lower than translucent or high-translucency zirconia. Acid etching, sandblasting, and laser etching represent the most used methods to prepare the ZLS restoration surfaces for proper bonding procedures. Full article
(This article belongs to the Special Issue Management of Prosthetic Dentistry and Oral Biology)
Show Figures

Figure 1

21 pages, 11684 KiB  
Article
A Laboratory and Field Assessment of the Performance of Rebar Coatings
by Salah U. Al-Dulaijan
Materials 2023, 16(12), 4270; https://doi.org/10.3390/ma16124270 - 8 Jun 2023
Cited by 3 | Viewed by 1884
Abstract
Deteriorating concrete structures are repaired to restore their load-carrying capacity and enhance their appearance. As part of the repair procedure, the corroded reinforcing steel bars are cleaned by sandblasting, and a protective coating is applied to protect them from further corrosion. Generally, a [...] Read more.
Deteriorating concrete structures are repaired to restore their load-carrying capacity and enhance their appearance. As part of the repair procedure, the corroded reinforcing steel bars are cleaned by sandblasting, and a protective coating is applied to protect them from further corrosion. Generally, a zin-rich epoxy coating is used for this purpose. However, there have been concerns about the performance of this type of coating in protecting the steel due to the formation of galvanic corrosion, thus necessitating the need for developing a durable steel coating. In this study, the performance of two types of steel coatings, namely a zinc-rich epoxy and cement-based epoxy resin coating, was investigated. The performance of the selected coatings was evaluated by conducting both laboratory and field experiments. In the field studies, the concrete specimens were exposed to a marine exposure site for more than five years. The salt spray and accelerated reinforcement corrosion studies indicated that the performance of the cement-based epoxy coating was better than the zinc-rich epoxy coating. However, there was no visible difference between the performance of the investigated coatings in the reinforced concrete slab specimens placed in the field. It is suggested to use cement-based epoxy coatings as steel primers based on the field and laboratory data developed in this study. Full article
(This article belongs to the Topic Materials for Corrosion Protection)
Show Figures

Figure 1

10 pages, 2757 KiB  
Article
Effect of Different Surface Treatments on the Shear Bond Strength of Metal Orthodontic Brackets Bonded to CAD/CAM Provisional Crowns
by Dany Haber, Elie Khoury, Joseph Ghoubril and Nunzio Cirulli
Dent. J. 2023, 11(2), 38; https://doi.org/10.3390/dj11020038 - 2 Feb 2023
Cited by 9 | Viewed by 2422
Abstract
Background: The aim of this study was to find the best surface treatment for CAD/CAM provisional crowns allowing the optimal bond strength of metal brackets. Methods: The sample consists of 30 lower bicuspids and 180 provisional crowns. The provisional crowns were randomly divided [...] Read more.
Background: The aim of this study was to find the best surface treatment for CAD/CAM provisional crowns allowing the optimal bond strength of metal brackets. Methods: The sample consists of 30 lower bicuspids and 180 provisional crowns. The provisional crowns were randomly divided into six different groups. Orthophosphoric acid etching (37%) was applied to 30 lower bicuspids. The provisional crowns had undergone different surface treatments. Group 1: No treatment (Control Group). Group 2: Diamond bur. Group 3: Sandblasting. Group 4: Plastic Conditioner. Group 5: Diamond bur and Plastic Conditioner. Group 6: Sandblasting and Plastic Conditioner. The brackets in all groups were identically placed using Transbond XT® Primer and Transbond XT® Paste. Then, the entire sample underwent an artificial aging procedure, and a measurement of the bond strength was conducted. After debonding, the surface of the crowns was examined to determine the quantity of the adhesive remnant. Results: Bonding to natural crowns recorded the highest average, followed by the averages of groups 5 and 6. However, group 1 recorded the lowest average. Groups 2 and 4 had very close averages, as well as groups 5 and 6. A statistically significant difference between the averages of all groups was recorded (p < 0.001) except for groups 2 and 4 (p = 0.965) on the one hand, and groups 5 and 6 (p = 0.941) on the other hand. Discussion: The bonding of brackets on provisional crowns is considered a delicate clinical procedure. In fact, unlike natural crowns, the orthophosphoric acid usually used does not have any effect on the surface of provisional crowns. Conclusions: Using a diamond bur combined with the plastic conditioner and sandblasting combined with that same product resulted in a bond strength close to natural crown. Full article
(This article belongs to the Special Issue Orthodontics and New Technologies)
Show Figures

Graphical abstract

14 pages, 4537 KiB  
Article
Biocompatibility of Subperiosteal Dental Implants: Effects of Differently Treated Titanium Surfaces on the Expression of ECM-Related Genes in Gingival Fibroblasts
by Marco Roy, Alessandro Corti, Silvia Dominici, Alfonso Pompella, Mauro Cerea, Elisa Chelucci, Barbara Dorocka-Bobkowska and Simona Daniele
J. Funct. Biomater. 2023, 14(2), 59; https://doi.org/10.3390/jfb14020059 - 20 Jan 2023
Cited by 12 | Viewed by 3071
Abstract
Introduction: Titanium alloys currently are the most used material for the manufacture of dental endosseous implants. However, in partially or totally edentulous patients, varying degrees of maxillary bone resorption usually occur, making the application of these devices difficult or even impossible. In these [...] Read more.
Introduction: Titanium alloys currently are the most used material for the manufacture of dental endosseous implants. However, in partially or totally edentulous patients, varying degrees of maxillary bone resorption usually occur, making the application of these devices difficult or even impossible. In these cases, a suitable alternative is offered by subperiosteal implants, whose use is undergoing a revival of interest following the introduction of novel, computer-assisted manufacturing techniques. Several procedures have been developed for the modification of titanium surfaces so to improve their biocompatibility and integration with bone. Information is, however, still incomplete as far as the most convenient surface modifications to apply with subperiosteal implants, in which an integration with soft mucosal tissues is just as important. Objectives: The present study aimed at evaluating whether different treatments of titanium surfaces can produce different effects on the viability, attachment, and differentiation of gingival fibroblasts, i.e., the cell type mainly involved in osteointegration as well as the healing of soft tissues injured by surgical procedures, in order to verify whether any of the treatments are preferable under these respects. Methodology: The human immortalized gingival fibroblast (CRL-4061 line) were cultured in the presence of titanium specimens previously treated with five different procedures for surface modification: (i) raw machined (Ti-1); (ii) electropolished (Ti-2); (iii) sand-blasted acid-etched (Ti-3); (iv) Al Ti Color™ proprietary procedure (Ti-4); and (v) anodized (Ti-5). At different times of incubation, viability and proliferation of cells, was determined along with the changes in the expression patterns of ECM-related genes involved in fibroblast attachment and differentiation: vinculin, fibronectin, collagen type I-alpha 1 chain, focal adhesion kinase, integrin β-1, and N-cadherin. Three different experiments were carried out for each experimental point. The release from fibroblasts of endothelin-1 was also analyzed as a marker of inflammatory response. The proliferation and migration of fibroblasts were evaluated by scratch tests. Results: None of the five types of titanium surface tested significantly affected the fibroblasts’ viability and proliferation. The release of endothelin-1 was also not significantly affected by any of the specimens. On the other hand, all titanium specimens significantly stimulated the expression of ECM-related genes at varying degrees. The proliferation and migration abilities of fibroblasts were also significantly stimulated by all types of titanium surface, with a higher-to-lower efficiency in the order: Ti-3 > Ti-4 > Ti-5 > Ti-2 > Ti-1, thus identifying sandblasting acid-etching as the most convenient treatment. Conclusions: Our observations suggest that the titanium alloys used for manufacturing subperiosteal dental implants do not produce cytotoxic or proinflammatory effects on gingival fibroblasts, and that sandblasting acid-etching may be the surface treatment of choice as to stimulate the differentiation of gingival fibroblasts in the direction of attachment and migration, i.e., the features allegedly associated with a more efficient implant osteointegration, wound healing, and connective tissue seal formation. Full article
(This article belongs to the Special Issue State of the Art in Dental Materials)
Show Figures

Figure 1

13 pages, 2471 KiB  
Article
Positive Effects of UV-Photofunctionalization of Titanium Oxide Surfaces on the Survival and Differentiation of Osteogenic Precursor Cells—An In Vitro Study
by Marco Roy, Alessandro Corti, Barbara Dorocka-Bobkowska and Alfonso Pompella
J. Funct. Biomater. 2022, 13(4), 265; https://doi.org/10.3390/jfb13040265 - 25 Nov 2022
Cited by 8 | Viewed by 2341
Abstract
Introduction: The UVC-irradiation (“UV-photofunctionalization”) of titanium dental implants has proved to be capable of removing carbon contamination and restoring the ability of titanium surfaces to attract cells involved in the process of osteointegration, thus significantly enhancing the biocompatibility of implants and favoring the [...] Read more.
Introduction: The UVC-irradiation (“UV-photofunctionalization”) of titanium dental implants has proved to be capable of removing carbon contamination and restoring the ability of titanium surfaces to attract cells involved in the process of osteointegration, thus significantly enhancing the biocompatibility of implants and favoring the post-operative healing process. To what extent the effect of UVC irradiation is dependent on the type or the topography of titanium used, is still not sufficiently established. Objective: The present study was aimed at analyzing the effects of UV-photofunctionalization on the TiO2 topography, as well as on the gene expression patterns and the biological activity of osteogenic cells, i.e., osteogenic precursors cultured in vitro in the presence of different titanium specimens. Methodology: The analysis of the surface roughness was performed by atomic force microscopy (AFM) on machined surface grade 2, and sand-blasted/acid-etched surface grades 2 and 4 titanium specimens. The expression of the genes related with the process of healing and osteogenesis was studied in the MC3T3-E1 pre-osteoblastic murine cells, as well as in MSC murine stem cells, before and after exposure to differently treated TiO2 surfaces. Results: The AFM determinations showed that the surface topographies of titanium after the sand-blasting and acid-etching procedures, look very similar, independently of the grade of titanium. The UVC-irradiation of the TiO2 surface was found to induce an increase in the cell survival, attachment and proliferation, which was positively correlated with an increased expression of the osteogenesis-related genes Runx2 and alkaline phosphatase (ALP). Conclusion: Overall, our findings expand and further support the current view that UV-photofunctionalization can indeed restore biocompatibility and osteointegration of TiO2 implants, and suggest that this at least in part occurs through a stimulation of the osteogenic differentiation of the precursor cells. Full article
Show Figures

Figure 1

10 pages, 1924 KiB  
Article
Bacterial and Cellular Response to Yellow-Shaded Surface Modifications for Dental Implant Abutments
by Tullio Genova, Giorgia Chinigò, Luca Munaron, Paola Rivolo, Anna Luganini, Giorgio Gribaudo, Davide Cavagnetto, Pietro Mandracci and Federico Mussano
Biomolecules 2022, 12(11), 1718; https://doi.org/10.3390/biom12111718 - 20 Nov 2022
Cited by 3 | Viewed by 2210
Abstract
Dental implants have dramatically changed the rehabilitation procedures in dental prostheses but are hindered by the possible onset of peri-implantitis. This paper aims to assess whether an anodization process applied to clinically used surfaces could enhance the adhesion of fibroblasts and reduce bacterial [...] Read more.
Dental implants have dramatically changed the rehabilitation procedures in dental prostheses but are hindered by the possible onset of peri-implantitis. This paper aims to assess whether an anodization process applied to clinically used surfaces could enhance the adhesion of fibroblasts and reduce bacterial adhesion using as a reference the untreated machined surface. To this purpose, four different surfaces were prepared: (i) machined (MAC), (ii) machined and anodized (Y-MAC), (iii) anodized after sand-blasting and acid etching treatment (Y-SL), and (iv) anodized after double acid etching (Y-DM). All specimens were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Moreover, the mean contact angle in both water and diiodomethane as well as surface free energy calculation was assessed. To evaluate changes in terms of biological responses, we investigated the adhesion of Streptococcus sanguinis (S. sanguinis) and Enterococcus faecalis (E. faecalis), fetal bovine serum (FBS) adsorption, and the early response of fibroblasts in terms of cell adhesion and viability. We found that the anodization reduced bacterial adhesion, while roughened surfaces outperformed the machined ones for protein adsorption, fibroblast adhesion, and viability independently of the treatment. It can be concluded that surface modification techniques such as anodization are valuable options to enhance the performance of dental implants. Full article
(This article belongs to the Special Issue Biomarkers in Oral Diseases 2.0)
Show Figures

Figure 1

10 pages, 3676 KiB  
Article
Effect of Surface-Etching Treatment, Glaze, and the Antagonist on Roughness of a Hybrid Ceramic after Two-Body Wear
by Manassés Tercio Vieira Grangeiro, Camila da Silva Rodrigues, Natália Rivoli Rossi, Jadson Mathyas Domingos da Silva, Nathalia de Carvalho Ramos, João Paulo Mendes Tribst, Lilian Costa Anami and Marco Antonio Bottino
Materials 2022, 15(19), 6870; https://doi.org/10.3390/ma15196870 - 3 Oct 2022
Cited by 2 | Viewed by 1928
Abstract
Stains and glaze are effective procedures for achieving an aesthetic smoothness on indirect restorations. Thus, the effect of surface-etching treatments previous to the stain layer and the glaze application on the occlusal and antagonist wear of a hybrid ceramic were evaluated against different [...] Read more.
Stains and glaze are effective procedures for achieving an aesthetic smoothness on indirect restorations. Thus, the effect of surface-etching treatments previous to the stain layer and the glaze application on the occlusal and antagonist wear of a hybrid ceramic were evaluated against different antagonists. Disc-shaped samples were prepared from polymer-infiltrated ceramic network (PICN) blocks. The specimens were divided into eight groups, according to the surface-etching treatment and glaze application: P (polished specimens); PG (polishing plus glaze); E (hydrofluoric acid etching plus stain); EG (acid etching plus stain plus glaze); A (aluminum oxide sandblasting plus stain); AG (sandblasting plus stain plus glaze); S (self-etching primer plus stain); SG (self-etching primer plus stain plus glaze). Half of the samples were subjected to a wear simulation with a steatite antagonist, and the other half was tested using a PICN antagonist. The test parameters were: 15 N, 1.7 Hz, 6 mm of horizontal sliding, 5000 cycles. The discs and the antagonists’ masses were measured before and after the wear tests. The average roughness and spacing defects were evaluated. The etching treatment affected the surface and antagonist mass loss when tested against steatite. AG showed the highest mass loss. This influence was not detected when using the PICN antagonist. The glaze application after staining ensures a smoother surface and avoids antagonist wear. Full article
(This article belongs to the Special Issue Porous Ceramics, Glasses and Composites)
Show Figures

Figure 1

16 pages, 2273 KiB  
Article
Effects of Different Titanium Surface Treatments on Adhesion, Proliferation and Differentiation of Bone Cells: An In Vitro Study
by Milan Stoilov, Lea Stoilov, Norbert Enkling, Helmut Stark, Jochen Winter, Michael Marder and Dominik Kraus
J. Funct. Biomater. 2022, 13(3), 143; https://doi.org/10.3390/jfb13030143 - 5 Sep 2022
Cited by 27 | Viewed by 3527
Abstract
The objective of this study was to evaluate the impacts of different sandblasting procedures in acid etching of Ti6Al4V surfaces on osteoblast cell behavior, regarding various physicochemical and topographical parameters. Furthermore, differences in osteoblast cell behavior between cpTi and Ti6Al4V SA surfaces were [...] Read more.
The objective of this study was to evaluate the impacts of different sandblasting procedures in acid etching of Ti6Al4V surfaces on osteoblast cell behavior, regarding various physicochemical and topographical parameters. Furthermore, differences in osteoblast cell behavior between cpTi and Ti6Al4V SA surfaces were evaluated. Sandblasting and subsequent acid etching of cpTi and Ti6Al4V discs was performed with Al2O3 grains of different sizes and with varying blasting pressures. The micro- and nano-roughness of the experimental SA surfaces were analyzed via confocal, atomic force and scanning electron microscopy. Surface free energy and friction coefficients were determined. hFOB 1.19 cells were seeded to evaluate adhesion, proliferation and osteoblastic differentiation for up to 12 d via crystal violet assays, MTT assays, ALP activity assays and Alizarin Red staining assays. Differences in blasting procedures had significant impacts on surface macro- and micro-topography. The crystal violet assay revealed a significant inverse relationship between blasting grain size and hFOB cell growth after 7 days. This trend was also visible in the Alizarin Red assays staining after 12 d: there was significantly higher biomineralization visible in the group that was sandblasted with smaller grains (F180) when compared to standard-grain-size groups (F70). SA samples treated with reduced blasting pressure exhibited lower hFOB adhesion and growth capabilities at initial (2 h) and later time points for up to 7 days, when compared to the standard SA surface, even though micro-roughness and other relevant surface parameters were similar. Overall, etched-only surfaces consistently exhibited equivalent or higher adhesion, proliferation and differentiation capabilities when compared to all other sandblasted and etched surfaces. No differences were found between cpTi and Ti6Al4V SA surfaces. Subtle modifications in the blasting protocol for Ti6Al4V SA surfaces significantly affect the proliferative and differentiation behavior of human osteoblasts. Surface roughness parameters are not sufficient to predict osteoblast behavior on etched Ti6Al4V surfaces. Full article
(This article belongs to the Special Issue Advanced Biomaterials and Oral Implantology)
Show Figures

Figure 1

Back to TopTop