Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = sacrificial ink

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6563 KB  
Article
Additive Manufacturing via Direct Ink Writing of Customized Silicone Foam with Glycerol as Dispersed Phase for Diverse Applications
by Kenrick Weiting Tie, Jia Huey Sim, Jing Yuen Tey, Wei Hong Yeo, Zhi Hua Lee, Law Yong Ng, Soo Tueen Bee, Tin Sin Lee and Luqman Chuah Abdullah
Processes 2025, 13(3), 677; https://doi.org/10.3390/pr13030677 - 27 Feb 2025
Viewed by 1762
Abstract
Direct ink writing (DIW) enables the additive manufacturing of silicone elastomers, offering an alternative to traditional moulding and casting methods for applications from healthcare products to machine–human interaction sensors. Polydimethylsiloxane (PDMS) foam, a porous silicone elastomer, is valued for its elasticity, chemical and [...] Read more.
Direct ink writing (DIW) enables the additive manufacturing of silicone elastomers, offering an alternative to traditional moulding and casting methods for applications from healthcare products to machine–human interaction sensors. Polydimethylsiloxane (PDMS) foam, a porous silicone elastomer, is valued for its elasticity, chemical and thermal resistance, hydrophobicity, and biocompatibility. The emulsion templating method is a simple and cost-effective approach to create silicone foams by incorporating and later removing a sacrificial dispersed phase from the PDMS precursor. This study developed glycerol/PDMS emulsion-based inks for DIW using high-shear centrifugal mixing, with ethanol as a solvent to remove the glycerol template, creating silicone foam. An optimal glycerol dosage of 50 parts per hundred rubber (phr) produced foam with 27.63% porosity and pore diameter up to 4.66 µm. Each 10 phr increase in glycerol content raised porosity by 10% and average pore diameter by 2 µm. Both tensile and compressive behaviour inversely correlated with porosity, with a 10% porosity rise in the silicone foam reducing tensile strength by 0.07 MPa and stiffness by 0.02 MPa. Models with strong data alignment were developed to benefit researchers in 3D printing to customize silicone foams (pore properties, mechanical properties, compressive properties) based on specific application requirements. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

16 pages, 4640 KB  
Article
Coaxial Bioprinting of Enzymatically Crosslinkable Hyaluronic Acid-Tyramine Bioinks for Tissue Regeneration
by Alma Tamunonengiofori Banigo, Laura Nauta, Bram Zoetebier and Marcel Karperien
Polymers 2024, 16(17), 2470; https://doi.org/10.3390/polym16172470 - 30 Aug 2024
Cited by 8 | Viewed by 2318
Abstract
Three-dimensional (3D) bioprinting has emerged as an important technique for fabricating tissue constructs with precise structural and compositional control. However, developing suitable bioinks with biocompatible crosslinking mechanisms remains a significant challenge. This study investigates extrusion-based bioprinting (EBB) using uniaxial or coaxial nozzles with [...] Read more.
Three-dimensional (3D) bioprinting has emerged as an important technique for fabricating tissue constructs with precise structural and compositional control. However, developing suitable bioinks with biocompatible crosslinking mechanisms remains a significant challenge. This study investigates extrusion-based bioprinting (EBB) using uniaxial or coaxial nozzles with enzymatic crosslinking (EC) to produce 3D tissue constructs in vitro. Initially, low-molecular-weight dextran-tyramine and hyaluronic acid-tyramine (LMW Dex-TA/HA-TA) bioink prepolymers were evaluated. Enzymatically pre-crosslinking these prepolymers, achieved by the addition of horseradish peroxidase and hydrogen peroxide, produced viscous polymer solutions. However, this approach resulted in inconsistent bioprinting outcomes (uniaxial) due to inhomogeneous crosslinking, leading to irreproducible properties and suboptimal shear recovery behavior of the hydrogel inks. To address these challenges, we explored a one-step coaxial bioprinting system consisting of enzymatically crosslinkable high-molecular-weight hyaluronic acid-tyramine conjugates (HMW HA-TA) mixed with horseradish peroxidase (HRP) in the inner core and a mixture of Pluronic F127 and hydrogen peroxide in the outer shell. This configuration resulted in nearly instantaneous gelation by diffusion of the hydrogen peroxide into the core. Stable hydrogel fibers with desirable properties, including appropriate swelling ratios and controlled degradation rates, were obtained. The optimized bioink and printing parameters included 1.3% w/v HMW HA-TA and 5.5 U/mL HRP (bioink, inner core), and 27.5% w/v Pluronic F127 and 0.1% H2O2 (sacrificial ink, outer shell). Additionally, optimal pressures for the inner core and outer shell were 45 and 80 kPa, combined with a printing speed of 300 mm/min and a bed temperature of 30 °C. The extruded HMW HA-TA core filaments, containing bovine primary chondrocytes (BPCs) or 3T3 fibroblasts (3T3 Fs), exhibited good cell viabilities and were successfully cultured for up to seven days. This study serves as a proof-of-concept for the one-step generation of core filaments using a rapidly gelling bioink with an enzymatic crosslinking mechanism, and a coaxial bioprinter nozzle system. The results demonstrate significant potential for developing designed, printed, and organized 3D tissue fiber constructs. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

9 pages, 31124 KB  
Article
Fabrication of Two-Layer Microfluidic Devices with Porous Electrodes Using Printed Sacrificial Layers
by Kosuke Ino, An Konno, Yoshinobu Utagawa, Taiyo Kanno, Kazuyuki Iwase, Hiroya Abe and Hitoshi Shiku
Micromachines 2024, 15(8), 1054; https://doi.org/10.3390/mi15081054 - 22 Aug 2024
Viewed by 1869
Abstract
Two-layer microfluidic devices with porous membranes have been widely used in bioapplications such as microphysiological systems (MPS). Porous electrodes, instead of membranes, have recently been incorporated into devices for electrochemical cell analysis. Generally, microfluidic channels are prepared using soft lithography and assembled into [...] Read more.
Two-layer microfluidic devices with porous membranes have been widely used in bioapplications such as microphysiological systems (MPS). Porous electrodes, instead of membranes, have recently been incorporated into devices for electrochemical cell analysis. Generally, microfluidic channels are prepared using soft lithography and assembled into two-layer microfluidic devices. In addition to soft lithography, three-dimensional (3D) printing has been widely used for the direct fabrication of microfluidic devices because of its high flexibility. However, this technique has not yet been applied to the fabrication of two-layer microfluidic devices with porous electrodes. This paper proposes a novel fabrication process for this type of device. In brief, Pluronic F-127 ink was three-dimensionally printed in the form of sacrificial layers. A porous Au electrode, fabricated by sputtering Au on track-etched polyethylene terephthalate membranes, was placed between the top and bottom sacrificial layers. After covering with polydimethylsiloxane, the sacrificial layers were removed by flushing with a cold solution. To the best of our knowledge, this is the first report on the sacrificial approach-based fabrication of two-layer microfluidic devices with a porous electrode. Furthermore, the device was used for electrochemical assays of serotonin and could successfully measure concentrations up to 5 µM. In the future, this device can be used for MPS applications. Full article
(This article belongs to the Special Issue Microelectrodes and Microdevices for Electrochemical Applications)
Show Figures

Figure 1

15 pages, 3468 KB  
Article
Biofabrication of Sodium Alginate Hydrogel Scaffolds for Heart Valve Tissue Engineering
by Yannick Rioux, Julie Fradette, Yvan Maciel, André Bégin-Drolet and Jean Ruel
Int. J. Mol. Sci. 2022, 23(15), 8567; https://doi.org/10.3390/ijms23158567 - 2 Aug 2022
Cited by 22 | Viewed by 4662
Abstract
Every year, thousands of aortic valve replacements must take place due to valve diseases. Tissue-engineered heart valves represent promising valve substitutes with remodeling, regeneration, and growth capabilities. However, the accurate reproduction of the complex three-dimensional (3D) anatomy of the aortic valve remains a [...] Read more.
Every year, thousands of aortic valve replacements must take place due to valve diseases. Tissue-engineered heart valves represent promising valve substitutes with remodeling, regeneration, and growth capabilities. However, the accurate reproduction of the complex three-dimensional (3D) anatomy of the aortic valve remains a challenge for current biofabrication methods. We present a novel technique for rapid fabrication of native-like tricuspid aortic valve scaffolds made of an alginate-based hydrogel. Using this technique, a sodium alginate hydrogel formulation is injected into a mold produced using a custom-made sugar glass 3D printer. The mold is then dissolved using a custom-made dissolving module, revealing the aortic valve scaffold. To assess the reproducibility of the technique, three scaffolds were thoroughly compared. CT (computed tomography) scans showed that the scaffolds respect the complex native geometry with minimal variations. The scaffolds were then tested in a cardiac bioreactor specially designed to reproduce physiological flow and pressure (aortic and ventricular) conditions. The flow and pressure profiles were similar to the physiological ones for the three valve scaffolds, with small variabilities. These early results establish the functional repeatability of this new biofabrication method and suggest its application for rapid fabrication of ready-to-use cell-seeded sodium alginate scaffolds for heart valve tissue engineering. Full article
(This article belongs to the Special Issue Tissue Engineering and Cell Therapy)
Show Figures

Figure 1

16 pages, 4411 KB  
Article
Design and Manufacturing of Si-Based Non-Oxide Cellular Ceramic Structures through Indirect 3D Printing
by Ghenwa El Chawich, Joelle El Hayek, Vincent Rouessac, Didier Cot, Bertrand Rebière, Roland Habchi, Hélène Garay, Mikhael Bechelany, Mirvat Zakhour, Philippe Miele and Chrystelle Salameh
Materials 2022, 15(2), 471; https://doi.org/10.3390/ma15020471 - 8 Jan 2022
Cited by 16 | Viewed by 4348
Abstract
Additive manufacturing of Polymer-Derived Ceramics (PDCs) is regarded as a disruptive fabrication process that includes several technologies such as light curing and ink writing. However, 3D printing based on material extrusion is still not fully explored. Here, an indirect 3D printing approach combining [...] Read more.
Additive manufacturing of Polymer-Derived Ceramics (PDCs) is regarded as a disruptive fabrication process that includes several technologies such as light curing and ink writing. However, 3D printing based on material extrusion is still not fully explored. Here, an indirect 3D printing approach combining Fused Deposition Modeling (FDM) and replica process is demonstrated as a simple and low-cost approach to deliver complex near-net-shaped cellular Si-based non-oxide ceramic architectures while preserving the structure. 3D-Printed honeycomb polylactic acid (PLA) lattices were dip-coated with two preceramic polymers (polyvinylsilazane and allylhydridopolycarbosilane) and then converted by pyrolysis respectively into SiCN and SiC ceramics. All the steps of the process (printing resolution and surface finishing, cross-linking, dip-coating, drying and pyrolysis) were optimized and controlled. Despite some internal and surface defects observed by topography, 3D-printed materials exhibited a retention of the highly porous honeycomb shape after pyrolysis. Weight loss, volume shrinkage, roughness and microstructural evolution with high annealing temperatures are discussed. Our results show that the sacrificial mold-assisted 3D printing is a suitable rapid approach for producing customizable lightweight highly stable Si-based 3D non-oxide ceramics. Full article
(This article belongs to the Special Issue Advances in 3D Printing of Polymer-Derived Ceramics)
Show Figures

Graphical abstract

15 pages, 4010 KB  
Article
Direct Writing Corrugated PVC Gel Artificial Muscle via Multi-Material Printing Processes
by Bin Luo, Yiding Zhong, Hualing Chen, Zicai Zhu and Yanjie Wang
Polymers 2021, 13(16), 2734; https://doi.org/10.3390/polym13162734 - 15 Aug 2021
Cited by 9 | Viewed by 3818
Abstract
Electroactive PVC gel is a new artificial muscle material with good performance that can mimic the movement of biological muscle in an electric field. However, traditional manufacturing methods, such as casting, prevent the broad application of this promising material because they cannot achieve [...] Read more.
Electroactive PVC gel is a new artificial muscle material with good performance that can mimic the movement of biological muscle in an electric field. However, traditional manufacturing methods, such as casting, prevent the broad application of this promising material because they cannot achieve the integration of the PVC gel electrode and core layer, and at the same time, it is difficult to create complex and diverse structures. In this study, a multi-material, integrated direct writing method is proposed to fabricate corrugated PVC gel artificial muscle. Inks with suitable rheological properties were developed for printing four functional layers, including core layers, electrode layers, sacrificial layers, and insulating layers, with different characteristics. The curing conditions of the printed CNT/SMP inks under different applied conditions were also discussed. The structural parameters were optimized to improve the actuating performance of the PVC gel artificial muscle. The corrugated PVC gel with a span of 1.6 mm had the best actuating performance. Finally, we printed three layers of corrugated PVC gel artificial muscle with good actuating performance. The proposed method can help to solve the inherent shortcomings of traditional manufacturing methods of PVC gel actuators. The printed structures have potential applications in many fields, such as soft robotics and flexible electronic devices. Full article
(This article belongs to the Special Issue Advanced Materials in 3D/4D Printing Technology)
Show Figures

Graphical abstract

16 pages, 3919 KB  
Article
Bioinstructive Layer-by-Layer-Coated Customizable 3D Printed Perfusable Microchannels Embedded in Photocrosslinkable Hydrogels for Vascular Tissue Engineering
by Cristiana F. V. Sousa, Catarina A. Saraiva, Tiago R. Correia, Tamagno Pesqueira, Sónia G. Patrício, Maria Isabel Rial-Hermida, João Borges and João F. Mano
Biomolecules 2021, 11(6), 863; https://doi.org/10.3390/biom11060863 - 10 Jun 2021
Cited by 38 | Viewed by 5907
Abstract
The development of complex and large 3D vascularized tissue constructs remains the major goal of tissue engineering and regenerative medicine (TERM). To date, several strategies have been proposed to build functional and perfusable vascular networks in 3D tissue-engineered constructs to ensure the long-term [...] Read more.
The development of complex and large 3D vascularized tissue constructs remains the major goal of tissue engineering and regenerative medicine (TERM). To date, several strategies have been proposed to build functional and perfusable vascular networks in 3D tissue-engineered constructs to ensure the long-term cell survival and the functionality of the assembled tissues after implantation. However, none of them have been entirely successful in attaining a fully functional vascular network. Herein, we report an alternative approach to bioengineer 3D vascularized constructs by embedding bioinstructive 3D multilayered microchannels, developed by combining 3D printing with the layer-by-layer (LbL) assembly technology, in photopolymerizable hydrogels. Alginate (ALG) was chosen as the ink to produce customizable 3D sacrificial microstructures owing to its biocompatibility and structural similarity to the extracellular matrices of native tissues. ALG structures were further LbL coated with bioinstructive chitosan and arginine–glycine–aspartic acid-coupled ALG multilayers, embedded in shear-thinning photocrosslinkable xanthan gum hydrogels and exposed to a calcium-chelating solution to form perfusable multilayered microchannels, mimicking the biological barriers, such as the basement membrane, in which the endothelial cells were seeded, denoting an enhanced cell adhesion. The 3D constructs hold great promise for engineering a wide array of large-scale 3D vascularized tissue constructs for modular TERM strategies. Full article
(This article belongs to the Special Issue Biological Biomaterials for Regenerative Medicine)
Show Figures

Figure 1

15 pages, 5283 KB  
Article
Synthesis of Printable Polyvinyl Alcohol for Aerosol Jet and Inkjet Printing Technology
by Mahmuda Akter Monne, Chandan Qumar Howlader, Bhagyashree Mishra and Maggie Yihong Chen
Micromachines 2021, 12(2), 220; https://doi.org/10.3390/mi12020220 - 22 Feb 2021
Cited by 10 | Viewed by 4493
Abstract
Polyvinyl Alcohol (PVA) is a promising polymer due to its high solubility with water, availability in low molecular weight, having short polymer chain, and cost-effectiveness in processing. Printed technology is gaining popularity to utilize processible solution materials at low/room temperature. This work demonstrates [...] Read more.
Polyvinyl Alcohol (PVA) is a promising polymer due to its high solubility with water, availability in low molecular weight, having short polymer chain, and cost-effectiveness in processing. Printed technology is gaining popularity to utilize processible solution materials at low/room temperature. This work demonstrates the synthesis of PVA solution for 2.5% w/w, 4.5% w/w, 6.5% w/w, 8.5% w/w and 10.5% w/w aqueous solution was formulated. Then the properties of the ink, such as viscosity, contact angle, surface tension, and printability by inkjet and aerosol jet printing, were investigated. The wettability of the ink was investigated on flexible (Kapton) and non-flexible (Silicon) substrates. Both were identified as suitable substrates for all concentrations of PVA. Additionally, we have shown aerosol jet printing (AJP) and inkjet printing (IJP) can produce multi-layer PVA structures. Finally, we have demonstrated the use of PVA as sacrificial material for micro-electro-mechanical-system (MEMS) device fabrication. The dielectric constant of printed PVA is 168 at 100 kHz, which shows an excellent candidate material for printed or traditional transistor fabrication. Full article
(This article belongs to the Special Issue 3D Printing of MEMS Technology)
Show Figures

Figure 1

15 pages, 4084 KB  
Article
Support-Material-Free Microfluidics on an Electrochemical Sensors Platform by Aerosol Jet Printing
by Nicolò Giuseppe Di Novo, Edoardo Cantù, Sarah Tonello, Emilio Sardini and Mauro Serpelloni
Sensors 2019, 19(8), 1842; https://doi.org/10.3390/s19081842 - 18 Apr 2019
Cited by 35 | Viewed by 6951
Abstract
Printed electronics have led to new possibilities in the detection and quantification of a wide range of molecules important for medical, biotechnological, and environmental fields. The integration with microfluidics is often adopted to avoid hand-deposition of little volumes of reagents and samples on [...] Read more.
Printed electronics have led to new possibilities in the detection and quantification of a wide range of molecules important for medical, biotechnological, and environmental fields. The integration with microfluidics is often adopted to avoid hand-deposition of little volumes of reagents and samples on miniaturized electrodes that strongly depend on operator’s skills. Here we report design, fabrication and test of an easy-to-use electrochemical sensor platform with microfluidics entirely realized with Aerosol Jet Printing (AJP). We printed a six-electrochemical-sensors platform with AJP and we explored the possibility to aerosol jet print directly on it a microfluidic structure without any support material. Thus, the sacrificial material removal and/or the assembly with sensors steps are avoided. The repeatability observed when printing both conductive and ultraviolet (UV)-curable polymer inks can be supported from the values of relative standard deviation of maximum 5% for thickness and 9% for line width. We designed the whole microfluidic platform to make the sample deposition (20 μL) independent from the operator. To validate the platform, we quantified glucose at different concentrations using a standard enzyme-mediated procedure. Both mediator and enzyme were directly aerosol jet printed on working electrodes (WEs), thus the proposed platform is entirely fabricated by AJP and ready to use. The chronoamperometric tests show limit of detection (LOD) = 2.4 mM and sensitivity = 2.2 ± 0.08 µA/mM confirming the effectiveness of mediator and enzyme directly aerosol jet printed to provide sensing in a clinically relevant range (3–10 mM). The average relative standard inter-platform deviation is about 8%. AJP technique can be used for fabricating a ready-to-use microfluidic device that does not need further processing after fabrication, but is promptly available for electrochemical sample analysis. Full article
Show Figures

Figure 1

Back to TopTop