Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (153)

Search Parameters:
Keywords = sCO2 foam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10208 KiB  
Article
Development of Ni-P-N-C/Nickel Foam for Efficient Hydrogen Production via Urea Electro-Oxidation
by Abdullah M. Aldawsari, Maged N. Shaddad and Saba A. Aladeemy
Catalysts 2025, 15(7), 662; https://doi.org/10.3390/catal15070662 - 7 Jul 2025
Viewed by 441
Abstract
Electrocatalytic urea oxidation reaction (UOR) is a promising dual-purpose approach for hydrogen production and wastewater treatment, addressing critical energy and environmental challenges. However, conventional anode materials often suffer from limited active sites and high charge transfer resistance, restricting UOR efficiency. To overcome these [...] Read more.
Electrocatalytic urea oxidation reaction (UOR) is a promising dual-purpose approach for hydrogen production and wastewater treatment, addressing critical energy and environmental challenges. However, conventional anode materials often suffer from limited active sites and high charge transfer resistance, restricting UOR efficiency. To overcome these issues, a novel NiP@PNC/NF electrocatalyst was developed via a one-step thermal annealing process under nitrogen, integrating nickel phosphide (NiP) with phosphorus and nitrogen co-doped carbon nanotubes (PNCs) on a nickel foam (NF) substrate. This design enhances catalytic activity and charge transfer, achieving current densities of 50 mA cm−2 at 1.34 V and 100 mA cm−2 at 1.43 V versus the reversible hydrogen electrode (RHE). The electrode’s high electrochemical surface area (235 cm2) and double-layer capacitance (94.1 mF) reflect abundant active sites, far surpassing NiP/NF (48 cm2, 15.8 mF) and PNC/NF (39.5 cm2, 12.9 mF). It maintains exceptional stability, with only a 16.3% performance loss after 35 h, as confirmed by HR-TEM showing an intact nanostructure. Our single-step annealing technique provides simplicity, scalability, and efficient integration of NiP nanoparticles inside a PNC matrix on nickel foam. This method enables consistent distribution and robust substrate adhesion, which are difficult to attain with multi-step or more intricate techniques. Full article
Show Figures

Graphical abstract

11 pages, 1940 KiB  
Article
Hydroxyl Derivatives of Oils from Solid Fats as Components for Production of Polyurethane Foams
by Elżbieta Malewska, Maria Kurańska, Klara Grelowska, Aleksandra Put, Hubert Ożóg, Julia Sędzimir, Natalia Kowalik, Michał Kucała and Aleksander Prociak
Molecules 2025, 30(13), 2703; https://doi.org/10.3390/molecules30132703 - 23 Jun 2025
Viewed by 373
Abstract
Biopolyols derived from solid fats of both vegetable origin (coconut oil (P/CO) and palm oil (P/PA)) and animal origin (pork fat (P/PO) and duck fat (P/DU)) were used to produce thermal insulation polyurethane foams. The biopolyols were characterized by hydroxyl numbers in the [...] Read more.
Biopolyols derived from solid fats of both vegetable origin (coconut oil (P/CO) and palm oil (P/PA)) and animal origin (pork fat (P/PO) and duck fat (P/DU)) were used to produce thermal insulation polyurethane foams. The biopolyols were characterized by hydroxyl numbers in the range of 341–396 mgKOH/g, a viscosity of 60–88 mPa·s, and a functionality of 2.3–3.4. Open-cell polyurethane foams were obtained by replacing from 50 to 100 wt.% of a petrochemical polyol with the biopolyols from solid fats. The most advantageous properties were found for the materials modified with the biopolyol based on pork fat, which was attributed to its high degree of cell openness. At a low apparent density, the foam materials were characterized by good dimensional stability. The use of solid fats offers new possibilities for modifying thermal insulation polyurethane foams. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Figure 1

7 pages, 836 KiB  
Proceeding Paper
The Effect of Fly Ash Nanoparticles on Foam Stability for CO2 Flooding
by Gadis Wahyu Ramadhani, Syahrir Ridha, Astra Agus Pramana, Dara Ayuda Maharsi, Mohammad Yusuf and Hussameldin Ibrahim
Eng. Proc. 2024, 76(1), 111; https://doi.org/10.3390/engproc2024076111 - 12 Jun 2025
Viewed by 465
Abstract
Foam–CO2 EOR Flooding is not very successful if unaccompanied by foam stabilizers such as nanoparticle fly ash (NFA). This study was conducted to determine the effect of NFA on foam stability by considering particle characteristics using the Bulk Foam Method as an [...] Read more.
Foam–CO2 EOR Flooding is not very successful if unaccompanied by foam stabilizers such as nanoparticle fly ash (NFA). This study was conducted to determine the effect of NFA on foam stability by considering particle characteristics using the Bulk Foam Method as an additional condition. The test resulted in half-life times, which showed that in the absence of NFA, when oil was added, it was 211.5 s, and in salinity conditions, it was 232.5 s. This succeeds in improving half-life times to 226 s (with oil) and 241.5 s (with salinity) by adding NFA-Type F. For further research, conducting tests using reservoir conditions is recommended. Full article
Show Figures

Figure 1

15 pages, 5517 KiB  
Article
Cellulose Valorization via Electrochemical Oxidation: Efficient Formate Generation for Green Energy Storage
by Shuhan Xiao and Yang Yang
Biomass 2025, 5(2), 27; https://doi.org/10.3390/biomass5020027 - 16 May 2025
Viewed by 750
Abstract
Achieving efficient electrocatalytic oxidation of cellulose-derived biomass is a pivotal strategy for advancing bioenergy utilization and achieving carbon neutrality. This study addresses the challenges of low conversion efficiency caused by cellulose’s high crystallinity and excessive energy consumption in conventional processes by proposing a [...] Read more.
Achieving efficient electrocatalytic oxidation of cellulose-derived biomass is a pivotal strategy for advancing bioenergy utilization and achieving carbon neutrality. This study addresses the challenges of low conversion efficiency caused by cellulose’s high crystallinity and excessive energy consumption in conventional processes by proposing a novel integrated system combining solid heteropoly acid catalytic pretreatment and electrocatalytic oxidation. By preparing the (C16TA)H2PW solid acid catalyst, we successfully achieved hydrolysis of microcrystalline cellulose under 180 °C for 60 min, attaining a glucose yield of 40.1%. Furthermore, a non-noble metal electrocatalyst system based on foam copper (CuF) was developed, with the Co3O4/CuF electrode material demonstrating a Faradaic efficiency of 85.3% for formate production at 1.66 V (vs. RHE) in 1 mol L−1 KOH electrolyte containing the pretreated cellulose mixture, accompanied by a partial current density of 153.2 mA cm−2. The mechanism study indicates that hydroxyl radical-mediated C-C bond selective cleavage dominates the formate generation. This integrated system overcomes the limitations of poor catalyst stability and low product selectivity in biomass conversion, offering a sustainable strategy for green manufacturing of high-value chemicals from cellulose. Full article
Show Figures

Figure 1

16 pages, 2302 KiB  
Article
Investigation of the Factors and Mechanisms Affecting the Foaming of Triethylene Glycol in Natural Gas Purification
by Hongyi Liang, Qian Huang, Xin Li, Quan Wu, Han Yan, Jiang Meng and Xueyuan Long
Processes 2025, 13(5), 1261; https://doi.org/10.3390/pr13051261 - 22 Apr 2025
Cited by 1 | Viewed by 612
Abstract
With increasing natural gas processing demands, triethylene glycol (TEG) in dehydration systems becomes contaminated by gas-carried impurities, leading to problematic foaming, degradation, and significant glycol losses that compromise operational economics, pipeline integrity, and product quality. To systematically investigate impurity effects, we conducted comprehensive [...] Read more.
With increasing natural gas processing demands, triethylene glycol (TEG) in dehydration systems becomes contaminated by gas-carried impurities, leading to problematic foaming, degradation, and significant glycol losses that compromise operational economics, pipeline integrity, and product quality. To systematically investigate impurity effects, we conducted comprehensive single-factor TEG regeneration experiments simulating field conditions. Through precise measurements of foaming height, defoaming time, and interfacial tension, we established clear correlations between impurity types and TEG foaming characteristics. Our results demonstrate a distinct hierarchy of foaming influence: chemical additives > solid impurities > water-soluble inorganic salts > MDEA > hydrogen sulfide > hydrocarbons. Chemical additives showed the most pronounced effect on surface tension, reducing it to 31.1 mN/m at 1500 mg/L. Water-soluble inorganic salts affected foaming through combined decomposition and crystalline morphology effects, ranked as MgCl2 > NaHCO3 > KCl > NaCl > Na2SO4 > CaCl2 (MgCl2 achieving 33.8 mN/m at 2000 mg/L). Solid impurity impacts correlated strongly with particle morphology (CaCO3 > Fe2O3 > CaSO4 > ZnO > CuO > Al2O3 > FeS), stabilizing at 1.5 mg/L. Hydrocarbons showed negligible influence, while hydrogen sulfide and MDEA caused only minor surface tension reductions with limited foaming effects. Based on these findings, we propose targeted mitigation strategies for industrial implementation. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

15 pages, 5930 KiB  
Article
Comparative Study on the Foaming and Fireproof Properties of PDMS Foam Composites with Different Inorganic Fillers
by Xin He, Mengmeng Yang, Fangzhou Hu, Guodong Jiang and Yucai Shen
Buildings 2025, 15(7), 1172; https://doi.org/10.3390/buildings15071172 - 3 Apr 2025
Viewed by 510
Abstract
In recent years, the increasing frequency of building fires has highlighted the limitations of traditional polymeric materials due to their inadequate fireproof performance. Ceramifiable polymer composites have emerged as a promising alternative by incorporating ceramic-forming fillers that create rigid ceramic-like structures through high-temperature [...] Read more.
In recent years, the increasing frequency of building fires has highlighted the limitations of traditional polymeric materials due to their inadequate fireproof performance. Ceramifiable polymer composites have emerged as a promising alternative by incorporating ceramic-forming fillers that create rigid ceramic-like structures through high-temperature eutectic reactions, offering exceptional thermal insulation and fireproof properties. These composites maintain structural integrity under fire exposure through sufficient mechanical strength retention. The effects of several ceramifiable inorganic fillers (CIFs) on the properties of polydimethylsiloxane (PDMS) foams were systematically investigated in this study. The research demonstrated that fillers with better matrix compatibility significantly enhance the foaming quality, mechanical performance, and fireproof capabilities. Notably, the CaCO3-filled PDMS foam composite (CPF-Ca) demonstrates exceptional foaming characteristics with 84% porosity and a remarkably low density of 0.36 g/cm3. The material achieves tensile and compressive strengths of 0.22 MPa and 0.84 MPa, representing 22% and 127% enhancements, respectively, compared to pure PDMS foam (PPF). Regarding the ceramic conversion capability, the sintered residue of CPF-Ca maintains a compressive strength of 4.39 MPa under high-temperature conditions. This composite material exhibited superior fireproof performance, successfully withstanding a butane torch for 300 s without penetration while maintaining a remarkably low backside temperature of merely 83.6 °C. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

24 pages, 6184 KiB  
Article
Integration of Complexed Caffeic Acid into Poly(Lactic Acid)-Based Biopolymer Blends by Supercritical CO2-Assisted Impregnation and Foaming: Processing, Structural and Thermal Characterization
by Patricia Rivera, Alejandra Torres, Miguel Pacheco, Julio Romero, Marina P. Arrieta, Francisco Rodríguez-Mercado and Julio Bruna
Polymers 2025, 17(6), 803; https://doi.org/10.3390/polym17060803 - 18 Mar 2025
Cited by 1 | Viewed by 738
Abstract
Conventional techniques for incorporating active ingredients into polymeric matrices are accompanied by certain disadvantages, primarily attributable to the inherent characteristics of the active ingredient itself, including its sensitivity to temperature. A potential solution to these challenges lies in the utilization of supercritical carbon [...] Read more.
Conventional techniques for incorporating active ingredients into polymeric matrices are accompanied by certain disadvantages, primarily attributable to the inherent characteristics of the active ingredient itself, including its sensitivity to temperature. A potential solution to these challenges lies in the utilization of supercritical carbon dioxide (scCO2) for the formation of polymeric foam and the incorporation of active ingredients, in conjunction with the encapsulation of inclusion complexes (ICs), to ensure physical stability and augmented bioactivity. The objective of this study was to assess the impact of IC impregnation and subsequent foam formation on PLA films and PLA/PBAT blends that had been previously impregnated. The study’s methodology encompassed the formation and characterization of ICs with caffeic acid (CA) and β-cyclodextrin (β-CD), along with the thermal, structural, and morphological properties of the resulting materials. Higher incorporation of impregnated IC into the PLA(42)/PBAT(58) blend was observed at 12 MPa pressure and a depressurization rate of 1 MPa/min. The presence of IC, in addition to a lower rate of expansion, contributed to the formation of homogeneous cells with a size range of 4–44 um. On the other hand, the incorporation of IC caused a decrease in the crystallinity of the PLA fraction due to the interaction of the complex with the polymer. This study makes a significant contribution to the advancement of knowledge on the incorporation of compounds encapsulated in β-CD by scCO2, as well as to the development of active materials with potential applications in food packaging. Full article
Show Figures

Figure 1

17 pages, 2578 KiB  
Article
Sulfur-Doped CoFe/NF Catalysts for High-Efficiency Electrochemical Urea Oxidation and Hydrogen Production: Structure Optimization and Performance Enhancement
by Sirong Li, Lang Yao, Zhenlong Wang, Zhonghe Xu and Xuechun Xiao
Catalysts 2025, 15(3), 285; https://doi.org/10.3390/catal15030285 - 18 Mar 2025
Viewed by 835
Abstract
In this study, a sulfur-doped cobalt–iron catalyst (CoFeS/NF) was synthesized on a nickel foam (NF) substrate via a facile one-step electrodeposition method, and its performance in urea electrolysis for hydrogen production was systematically investigated. Sulfur doping induced significant morphology optimization, forming a highly [...] Read more.
In this study, a sulfur-doped cobalt–iron catalyst (CoFeS/NF) was synthesized on a nickel foam (NF) substrate via a facile one-step electrodeposition method, and its performance in urea electrolysis for hydrogen production was systematically investigated. Sulfur doping induced significant morphology optimization, forming a highly dispersed nanosheet structure, which enhanced the specific surface area increase by 1.9 times compared with the undoped sample, exposing abundant active sites. Meanwhile, the introduction of sulfur facilitated electron redistribution at the surface modulated the valence states of nickel and cobalt, promoted the formation of high-valence Ni3+/Co3+, optimized the adsorption energy of the reaction intermediates, and reduced the charge transfer resistance. Electrochemical evaluations revealed that CoFeS/NF achieves a current density of 10 mA cm−2 at a remarkably low potential of 1.18 V for the urea oxidation reaction (UOR), outperforming both the undoped catalyst (1.24 V) and commercial RuO2 (1.35 V). In addition, the catalyst also exhibited excellent catalytic activity and long-term stability in the total urea decomposition process, which was attributed to the amorphous structure and the synergistic enhancement of corrosion resistance by sulfur doping. This study provides a new idea for the application of sulfur doping strategy in the design of multifunctional electrocatalysts, which promotes the coupled development of urea wastewater treatment and efficient hydrogen production technology. Full article
(This article belongs to the Special Issue Design and Synthesis of Nanostructured Catalysts, 2nd Edition)
Show Figures

Graphical abstract

25 pages, 6133 KiB  
Article
Chemical Looping CH4 Reforming Through Isothermal Two-Step Redox Cycling of SrFeO3 Oxygen Carrier in a Tubular Solar Reactor
by Stéphane Abanades, Xinhe Wang and Srirat Chuayboon
Molecules 2025, 30(5), 1076; https://doi.org/10.3390/molecules30051076 - 26 Feb 2025
Viewed by 662
Abstract
The chemical looping reforming of methane using an SrFeO3 oxygen carrier to produce synthesis gas from solar energy was experimentally investigated and validated. High-temperature solar heat was used to provide the reaction enthalpy, and therefore the methane feedstock was entirely dedicated to [...] Read more.
The chemical looping reforming of methane using an SrFeO3 oxygen carrier to produce synthesis gas from solar energy was experimentally investigated and validated. High-temperature solar heat was used to provide the reaction enthalpy, and therefore the methane feedstock was entirely dedicated to producing syngas. The two-step isothermal process encompassed partial perovskite reduction with methane (partial oxidation of CH4) and exothermic oxidation of SrFeO3-δ with CO2 or H2O splitting under the same operating temperature. The oxygen carrier material was shaped in the form of a reticulated porous foam structure for enhancing heat and mass transfer, and it was cycled in a solar-heated tubular reactor under different operating parameters (temperature: 950–1050 °C, methane mole fraction: 5–30%, and type of oxidant gas: H2O vs. CO2). This study aimed to assess the fuel production capacity of the two-step process and to demonstrate the potential of using strontium ferrite perovskite during solar cycling for the first time. The maximum H2 and CO production rates during CH4-induced reduction were 70 and 25 mL/min at 1000 °C and 15% CH4 mole fraction. The increase in both the cycle temperature and the methane mole fraction promoted the reduction step, thereby enhancing syngas yields up to 569 mL/g during reduction at 1000 °C under 30% CH4 (778 mL/g including both cycle steps), and thus outperforming the performance of the benchmark ceria material. In contrast, the oxidation step was not significantly affected by the experimental conditions and the material’s redox performance was weakly dependent on the nature of the oxidizing gas. The syngas yield remained above 200 mL/g during the oxidation step either with H2O or CO2. Twelve successive redox cycles with stable patterns in the syngas production yields validated material stability. Combining concentrated solar energy and chemical looping reforming was shown to be a promising and sustainable pathway toward carbon-neutral solar fuels. Full article
(This article belongs to the Special Issue 10th Anniversary of Green Chemistry Section)
Show Figures

Figure 1

11 pages, 5003 KiB  
Article
Construction of CoNi2S4@Ni(OH)2 Nanosheet Structures for Asymmetric Supercapacitors with Excellent Performance
by Yongli Tong, Baoqian Chi, Yu Jiang and Xiang Wu
Batteries 2025, 11(3), 83; https://doi.org/10.3390/batteries11030083 - 20 Feb 2025
Viewed by 881
Abstract
It is crucial for energy storage devices to construct electrode materials with excellent performance. However, enhancing energy density and cycling stability for supercapacitors is a significant challenge. We successfully synthesized CoNi2S4@Ni(OH)2 nanosheets on the surface of Ni foam [...] Read more.
It is crucial for energy storage devices to construct electrode materials with excellent performance. However, enhancing energy density and cycling stability for supercapacitors is a significant challenge. We successfully synthesized CoNi2S4@Ni(OH)2 nanosheets on the surface of Ni foam substrate by a two-step hydrothermal approach. The obtained products exhibit a remarkable areal capacitance of 1534 F g−1 at a current density of 1 A g−1. Moreover, even after 10,000 cycles, the specific capacitance remains 90% of its initial value, highlighting the exceptional long-term stability and durability. Furthermore, an asymmetric supercapacitor (ASC) device incorporating the CoNi2S4@Ni(OH)2 material shows remarkable electrochemical performance. It delivers an energy density of 58.5 mW h g−1 at a power density of 2700 W kg−1. The outstanding performance mainly arises from the selection of materials, the design of the structure, and the synergistic interaction between the materials. The result suggests that this material holds great potential as an energy storage material. Full article
Show Figures

Figure 1

11 pages, 2161 KiB  
Article
P-Doped Metal–Organic Framework (MOF)-Derived Co3O4 Nanowire Arrays Supported on Nickle Foam: An Efficient Urea Electro-Oxidation Catalyst
by Yong Liu, Junqing Ma, Yifei Pei, Xinyue Han, Xinyuan Ren, Yanfang Liang, Can Li, Tingting Liang, Fang Wang and Xianming Liu
Coatings 2025, 15(2), 226; https://doi.org/10.3390/coatings15020226 - 14 Feb 2025
Viewed by 921
Abstract
The urea electro-oxidation reaction (UOR) is emerging as a new energy conversion technology and a promising method for alleviating water eutrophication problems. However, a rationally designed structure of the electrode materials is urgently required to achieve high UOR performance. Herein, P-doped MOF-derived Co [...] Read more.
The urea electro-oxidation reaction (UOR) is emerging as a new energy conversion technology and a promising method for alleviating water eutrophication problems. However, a rationally designed structure of the electrode materials is urgently required to achieve high UOR performance. Herein, P-doped MOF-derived Co3O4 nanowire arrays grown on nickel foam (P-Co3O4/NF) are successfully synthesized via the growth of Co-MOF and subsequent calcination followed by phosphorization treatment. Owing to the optimized electronic structure, the as-prepared P-Co3O4/NF composite exhibits much higher UOR electrocatalytic performance than the undoped Co3O4/NF sample. Beyond this, the meticulous structure of the one-dimensional nanowire arrays and the three-dimensional skeleton structure of nickel foam contribute to the enhanced electrocatalytic activity and stability toward UOR. As a result, the P-Co3O4/NF composite displays a low overpotential of 1.419 V vs. RHE at 50 mA cm−2, a small Tafel slope of 82 mV dec−1, as well as favorable long-term stability over 65,000 s in 1.0 M KOH with 1.0 M urea. This work opens a new avenue in designing non-precious electrocatalysts for high-performance urea electro-oxidation reactions. Full article
Show Figures

Figure 1

20 pages, 11227 KiB  
Article
Evaluating the Impact of Insulation Materials on Energy Efficiency Using BIM-Based Simulation for Existing Building Retrofits: Case Study of an Apartment Building in Kanazawa, Japan
by Xiao Teng, Zhenjiang Shen and Dara Citra Saraswati Tutuko
Buildings 2025, 15(4), 570; https://doi.org/10.3390/buildings15040570 - 13 Feb 2025
Cited by 2 | Viewed by 1946
Abstract
This research aims to facilitate informed decision-making to enhance building energy simulation, reduce costs, and minimize CO2 emissions through building insulation enhancements employing BIM-based simulation. Architectural models of an apartment, a prevalent residential structure in Japan, were developed and examined under diverse [...] Read more.
This research aims to facilitate informed decision-making to enhance building energy simulation, reduce costs, and minimize CO2 emissions through building insulation enhancements employing BIM-based simulation. Architectural models of an apartment, a prevalent residential structure in Japan, were developed and examined under diverse insulation scenarios utilizing ArchiCAD 28. Five insulation substances were chosen based on existing guidelines to ensure conformity with local standards and were evaluated for their thermal and environmental properties: Cellulose Fiber, Glass Wool, Urethane Foam, Phenolic Board, and Rock Wool for evaluation based on thermal and environmental properties. The simulation parameters were aligned with Japan’s energy efficiency standards and climate conditions. The factors addressed encompass energy performance evaluation, economic viability, and CO2 emissions. Simulation findings highlight Urethane Foam as the most effective and environmentally friendly building insulation material. This study provides valuable perspectives for property owners, building designers, and contractors, offering a framework for insulation enhancement choices that optimizes sustainable construction, reduces environmental impact, and enhances cost-effectiveness through the implementation of BIM-based simulation. Full article
(This article belongs to the Special Issue Advanced Studies in Nearly Zero-Energy Buildings and Optimal Design)
Show Figures

Figure 1

28 pages, 6455 KiB  
Article
Optimizing Bitumen Performance in Warm Mix Asphalt Using Cecabase RT BIO10: A Taguchi-Based Experimental Approach
by Mustafa Çakı and Fatih İrfan Baş
Appl. Sci. 2025, 15(4), 1761; https://doi.org/10.3390/app15041761 - 9 Feb 2025
Cited by 1 | Viewed by 1643
Abstract
Flexible pavements stand out as the most commonly used worldwide, compared to rigid and composite pavements, owing to their versatility and widespread application. The use of hot mix asphalt (HMA) in flexible pavements causes significant environmental concerns due to high CO2 emissions [...] Read more.
Flexible pavements stand out as the most commonly used worldwide, compared to rigid and composite pavements, owing to their versatility and widespread application. The use of hot mix asphalt (HMA) in flexible pavements causes significant environmental concerns due to high CO2 emissions and energy consumption, whereas warm mix asphalt (WMA) technologies have gained popularity in recent decades, offering a more sustainable alternative by enabling asphalt production at lower temperatures. WMA technologies can be categorized into three main groups: foaming, organic additives, and chemical additives, with each offering distinct benefits for performance and environmental impact. One of the chemical additives used in WMA production is Cecabase RT BIO10. In this study, virgin bitumen with 50/70 penetration was modified by adding Cecabase RT BIO10 at four levels: 0%, 0.3%, 0.4%, and 0.5% by weight. The experimental design employed a Taguchi L16 orthogonal array to systematically evaluate the effects of various factors on modified bitumen performance. Binders were prepared at four temperatures (110 °C, 120 °C, 130 °C, and 140 °C), four mixing durations (15, 20, 25, and 30 min), and four mixing speeds (1000, 2000, 3000, and 4000 rpm), enabling an efficient analysis of each parameter’s impact. The prepared binders were subjected to a series of tests, including penetration, softening point, flash point, rotational thin film oven test (RTFOT), elastic recovery, Marshall stability, ultrasonic pulse velocity (UPV), and FTIR analysis. These tests were conducted to investigate the effects of various parameters and levels on the binder properties. Additionally, stiffness and seismic modules were evaluated to provide a more comprehensive understanding of the binder’s performance. The experiment results revealed that the penetration, elastic recovery percentage, and Marshall stability increased with increasing additive content while the softening point and RTFOT mass loss decreased. At a high service temperature of 40 °C, the stiffness modulus of the modified bitumen decreased slightly. At a low service temperature of −10 °C, it decreased further. Additionally, the incorporation of Cecabase RT BIO10 led to an increase in the seismic modulus. Through optimization using the Taguchi method, the optimal levels were determined to be a 0.4% Cecabase RT BIO10 ratio, 140 °C mixing temperature, 30 min mixing time, and 1000 RPM mixing speed. The optimal responses for each test were identified and integrated into a unified optimal response, resulting in a comprehensive design guide with 95% confidence level estimates for all possible level combinations. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

18 pages, 6339 KiB  
Article
A Sustained-Release Material for Removing Aniline from Groundwater Based on Waste Foamed Polystyrene as the Encapsulating Matrix
by Qizhi Zhu, Fanbin Meng, Yuning Yang, Bing Qin, Yushan Shi, Chuan Liang and Feng Zhang
Processes 2025, 13(2), 446; https://doi.org/10.3390/pr13020446 - 7 Feb 2025
Cited by 1 | Viewed by 683
Abstract
In this study, a novel slow-release material using recycled waste foamed polystyrene (WFPS) as the carrier was developed for the degradation of aniline-contaminated groundwater. Sodium persulfate (SPS) and zero-valent iron (ZVI) were embedded in WFPS, enabling the controlled and sustained release of reactive [...] Read more.
In this study, a novel slow-release material using recycled waste foamed polystyrene (WFPS) as the carrier was developed for the degradation of aniline-contaminated groundwater. Sodium persulfate (SPS) and zero-valent iron (ZVI) were embedded in WFPS, enabling the controlled and sustained release of reactive species. Systematic investigations were conducted to optimize the material’s composition and evaluate its performance under various conditions, including pH, initial aniline concentration, and the presence of common groundwater anions. The results revealed that the slow-release material effectively enhanced aniline degradation, achieving a maximum removal rate of 93.45% under flowing conditions. The degradation pathway was analyzed using GC-MS, identifying intermediates such as benzoquinone, hydroquinone, and dodecane, with eventual mineralization into CO2 and H2O. The material demonstrated robust performance, offering an efficient, cost-effective, and environmentally sustainable approach for in situ groundwater remediation. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

13 pages, 3968 KiB  
Article
One-Step Synthesis CuCoNiSxO4−x Thio/Oxy Spinel on Ni Foam for High-Performance Asymmetric Supercapacitors
by Anastassiya A. Migunova, Renata R. Nemkayeva, Yeldar A. Zhakanbayev and Yuriy Zh. Tuleushev
Energies 2025, 18(3), 561; https://doi.org/10.3390/en18030561 - 24 Jan 2025
Cited by 3 | Viewed by 1010
Abstract
Mixed transition metal sulfides are promising materials for positive electrodes of asymmetric supercapacitors because they have a large potential for increasing the electrical characteristics of these devices. The paper presents the results of a study of a material based on spinel CuCoNiSx [...] Read more.
Mixed transition metal sulfides are promising materials for positive electrodes of asymmetric supercapacitors because they have a large potential for increasing the electrical characteristics of these devices. The paper presents the results of a study of a material based on spinel CuCoNiSxO4−x with both sulfide and oxide sublattices, prepared by a one-step hydrothermal method directly on nickel foam, forming an array of whiskers. Electrochemical studies showed that a positive electrode, CuCoNiS2O2, exhibited a high specific capacitance of 3612 F g−1 at a current density of 1 A g−1. The assembled asymmetric supercapacitor with activated carbon as a negative electrode achieved a specific capacitance of 133.5 F g−1 at 1 A g−1 and a potential window of 1.7 V. Its energy density was 53.6 Wh kg−1 at a power density of 805 W kg−1 and the power density reached 17,000 W kg−1 at an energy density of 18.9 W h kg−1. The assembled device exhibits 52% of capacitance retention after the 20,000 cycles at a current density of 10 A g−1 with 97% coulombic efficiency. These results demonstrate that the CuCoNiSxO4−x system is competitive with other quaternary transition metal sulfides, and this type of spinel is a perspective electrode material for high-performance supercapacitors. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

Back to TopTop