Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = ryegrass growth yield

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1513 KiB  
Article
Forage Yield, Quality, and Weed Suppression in Narbon Vetch (Vicia narbonensis L.) and Italian Ryegrass (Lolium multiflorum L.) Mixtures Under Organic Management
by Melek Demircan, Emine Serap Kizil Aydemir and Koray Kaçan
Agronomy 2025, 15(8), 1796; https://doi.org/10.3390/agronomy15081796 - 25 Jul 2025
Viewed by 191
Abstract
This study aimed to evaluate the forage yield, quality, and weed suppression potential of narbon vetch (Vicia narbonensis L.) and Italian ryegrass (Lolium multiflorum L.) grown as sole crops and in mixtures under organic farming conditions in Bilecik, Turkey, during the [...] Read more.
This study aimed to evaluate the forage yield, quality, and weed suppression potential of narbon vetch (Vicia narbonensis L.) and Italian ryegrass (Lolium multiflorum L.) grown as sole crops and in mixtures under organic farming conditions in Bilecik, Turkey, during the 2020–2021 growing season. The experiment included 15 treatments comprising monocultures and mixed sowing at different ratios. Measurements included morphological traits, forage yield components (green herbage, hay, and crude protein), fiber content, botanical composition, and weed biomass. The results reveal significant differences among treatments in terms of growth parameters and forage performance. Monocultures of IFVN 567 and Bartigra showed the highest green and hay yields, while mixtures such as IFVN 567 + Trinova and IFVN 567 + Bartigra outperformed in terms of land equivalent ratio (LER) and protein yield, demonstrating a clear advantage in land use efficiency. Furthermore, these mixtures showed superior weed suppression compared to monocultures. Overall, the findings suggest that carefully selected vetch–ryegrass combinations can enhance forage productivity, nutritional quality, and weed management under organic systems. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

30 pages, 5734 KiB  
Article
Evaluating Remote Sensing Products for Pasture Composition and Yield Prediction
by Karen Melissa Albacura-Campues, Izar Sinde-González, Javier Maiguashca, Myrian Herrera, Judith Zapata and Theofilos Toulkeridis
Remote Sens. 2025, 17(15), 2561; https://doi.org/10.3390/rs17152561 - 23 Jul 2025
Viewed by 342
Abstract
Vegetation and soil indices are able to indicate patterns of gradual plant growth. Therefore, productivity data may be used to predict performance in the development of pastures prior to grazing, since the morphology of the pasture follows repetitive cycles through the grazing of [...] Read more.
Vegetation and soil indices are able to indicate patterns of gradual plant growth. Therefore, productivity data may be used to predict performance in the development of pastures prior to grazing, since the morphology of the pasture follows repetitive cycles through the grazing of animals. Accordingly, in recent decades, much attention has been paid to the monitoring and development of vegetation by means of remote sensing using remote sensors. The current study seeks to determine the differences between three remote sensing products in the monitoring and development of white clover and perennial ryegrass ratios. Various grass and legume associations (perennial ryegrass, Lolium perenne, and white clover, Trifolium repens) were evaluated in different proportions to determine their yield and relationship through vegetation and soil indices. Four proportions (%) of perennial ryegrass and white clover were used, being 100:0; 90:10; 80:20 and 70:30. Likewise, to obtain spectral indices, a Spectral Evolution PSR-1100 spectroradiometer was used, and two UAVs with a MAPIR 3W RGNIR camera and a Parrot Sequoia multispectral camera, respectively, were employed. The data collection was performed before and after each cut or grazing period in each experimental unit, and post-processing and the generation of spectral indices were conducted. The results indicate that there were no significant differences between treatments for yield or for vegetation indices. However, there were significant differences in the index variables between sensors, with the spectroradiometer and Parrot obtaining similar values for the indices both pre- and post-grazing. The NDVI values were closely correlated with the yield of the forage proportions (R2 = 0.8948), constituting an optimal index for the prediction of pasture yield. Full article
(This article belongs to the Special Issue Application of Satellite and UAV Data in Precision Agriculture)
Show Figures

Figure 1

13 pages, 2375 KiB  
Article
Mitigating Soil Phosphorus Leaching Risk and Improving Pear Production Through Planting and Mowing Ryegrass Mode
by Haoran Fu, Qingxu Ma, Hong Chen, Lianghuan Wu and Yanmei Ye
Agronomy 2025, 15(6), 1296; https://doi.org/10.3390/agronomy15061296 - 26 May 2025
Viewed by 450
Abstract
Excessive phosphorus (P) fertilization has led to high soil P accumulation in pear orchards across China, increasing the risk of P loss while limiting economic returns. Orchard grassing has been proposed as a strategy to optimize soil P content and reduce P loss; [...] Read more.
Excessive phosphorus (P) fertilization has led to high soil P accumulation in pear orchards across China, increasing the risk of P loss while limiting economic returns. Orchard grassing has been proposed as a strategy to optimize soil P content and reduce P loss; however, its limited economic benefits have hindered widespread adoption. To address this, we developed a novel planting and mowing ryegrass (MF) system, integrating P loss mitigation with improved economic returns. A two-year field experiment was conducted in the Yangtze River Basin to assess the effects of this system on soil P fractions, P loss risk, and pear production. The results showed that soil available nitrogen (N), available potassium (K), and total P content were significantly lower in the MF treatment compared to natural grassing (NG) at different growth stages. Moreover, the MF treatment increased pear yield by 14.7–16.7% and reduced titratable acidity by 23.5–47.1%, with these improvements primarily driven by changes in phosphorus-related indicators (NaOH-Pi, NaHCO3-Pi, and intermediate P) across different years. Additionally, the reduction in NaHCO3-Pi in the MF treatment contributed to a decline in P leaching risk indicators, including Olsen-P and CaCl2-P. These findings highlight the potential of the MF system as a sustainable orchard management strategy, effectively optimizing soil P dynamics, mitigating P leaching risks, and enhancing pear yield and quality under high P conditions. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

22 pages, 2850 KiB  
Article
Conversion of Kitchen Waste into Sustainable Fertilizers: Comparative Effectiveness of Biological, Microbial, and Thermal Treatments in a Ryegrass Growth Trial
by Ksawery Kuligowski, Izabela Konkol, Lesław Świerczek, Adrian Woźniak and Adam Cenian
Appl. Sci. 2025, 15(10), 5281; https://doi.org/10.3390/app15105281 - 9 May 2025
Cited by 1 | Viewed by 777
Abstract
This study investigated the conversion of kitchen waste into environmentally friendly fertilizers and soil improvers using five various treatments: (1) inoculation with effective microorganisms followed by anaerobic fermentation, (2) 12 days of decay before adding a double dose of effective microbes, (3) sterilization [...] Read more.
This study investigated the conversion of kitchen waste into environmentally friendly fertilizers and soil improvers using five various treatments: (1) inoculation with effective microorganisms followed by anaerobic fermentation, (2) 12 days of decay before adding a double dose of effective microbes, (3) sterilization at 70 °C for 1 h after 12 days of decay, and (4) sterilization followed by effective microbes addition. In (5), waste was decayed, sterilized, and digested without effective microbes. For comparison, a commercial NPK fertilizer and pelleted cow manure were also applied. These treatments were tested in a ryegrass growth experiment in a glasshouse under warm conditions in northern Poland, with four successive harvests. Measurements included dry matter yield, N uptake, N utilization per hectare, and soil properties. Results showed that granulated cow manure and (5) were the most effective fertilizers during the first two months, while other kitchen waste treatments performed better in months 3 and 4, functioning as slow-release fertilizers. The relative agronomic effectiveness after four months was 88%, 67.8%, 60.2%, 48.6%, and 48.6% for (5), (4), (2), (3), and (1), respectively, compared to cow manure, and 36.3%, 27.9%, 24.8%, 20%, and 20% compared to NPK fertilizer. The study indicated that using a double dose of effective microbes produced yields comparable to sterilized waste, suggesting that microbial treatments could replace energy-intensive sterilization, reducing costs. Soil properties were largely unaffected, but residual soil N levels increased from 0.5 to 1.1 g/kg. Full article
Show Figures

Figure 1

17 pages, 1584 KiB  
Article
Effects of Different Irrigation Water Sources Contaminated with Heavy Metals on Seed Germination and Seedling Growth of Different Field Crops
by Ömer Süha Uslu, Osman Gedik, Ali Rahmi Kaya, Adem Erol, Emre Babur, Haroon Khan, Mahmoud F. Seleiman and Daniel O. Wasonga
Water 2025, 17(6), 892; https://doi.org/10.3390/w17060892 - 19 Mar 2025
Cited by 4 | Viewed by 1332
Abstract
Irrigation water quality is of critical importance for optimum crop yield of economically important field crops in the Kahramanmaraş plains. A preliminary ecotoxicological assessment is necessary before large-scale irrigation. Therefore, this study aims to evaluate the quality of irrigation water supplied from different [...] Read more.
Irrigation water quality is of critical importance for optimum crop yield of economically important field crops in the Kahramanmaraş plains. A preliminary ecotoxicological assessment is necessary before large-scale irrigation. Therefore, this study aims to evaluate the quality of irrigation water supplied from different water sources (Karasu, Erkenez, and Oklu streams on the Aksu River and Sır Dam) and the effects on the seed germination and early seedling growth of different field crops (wheat, alfalfa, ryegrass, and maize) irrigated with this water. For this, in order to evaluate the effects on seed germination and early growth parameters of forage crop seedlings, a Petri dish germination test was carried out with four replications using a completely randomized design (CRD). Before the germination assay, heavy metal concentrations including copper (Cu), iron (Fe), lead (Pb), chromium (Cr), arsenic (As), nickel (Ni), and cadmium (Cd) were analyzed in water samples obtained from different water sources. In all water samples used for the experiment, Cu concentrations exceeded the acceptable limit of 0.2 mg L⁻1. The Cu levels found were 0.98 mg L⁻1 in Karasu (KC), 1.627 mg L⁻1 in Oklu (OC), 0.945 mg L⁻1 in Erkenez (EC), and 1.218 mg L⁻1 in Sır Dam (SD) waters. Additionally, Fe exceeded the limit only in KC, while Cd surpassed the permissible levels in EC and SD water samples. Seeds exposed to different water treatments were germinated in a climate chamber at 20 ± 1 °C. Over two weeks, daily germination and seedling growth parameters were measured. The results indicated that higher heavy metal concentrations in irrigation water led to a decline in seed germination rates and adversely impacted early seedling growth. Notably, water from Karasu Creek exhibited the most significant negative impact on all germination and growth parameters in the tested crops, especially due to Cu and Fe metal toxicity. Additionally, ryegrass seeds were most affected by these irrigation waters. This study highlights the importance of using uncontaminated quality irrigation water for optimal crop production by quantifying its impact, such as the percentage of decrease in germination or seedling growth. Full article
(This article belongs to the Special Issue Agricultural Water-Land-Plant System Engineering)
Show Figures

Figure 1

14 pages, 3063 KiB  
Article
Using Microbial Bioagents to Enhance the Nutritional Status of Annual Ryegrass
by Vladimir Ivezić, Jurica Jović, Vladimir Zebec, Suzana Kristek and Zdenko Lončarić
Sustainability 2024, 16(24), 11220; https://doi.org/10.3390/su162411220 - 20 Dec 2024
Viewed by 901
Abstract
The challenge of today’s agriculture is to maintain stable production and at the same time improve soil conditions. Appropriate crop management can contribute to the increase of yields, nutritional status of plants, and below-ground biomass which consequently increases soil organic carbon (SOC). One [...] Read more.
The challenge of today’s agriculture is to maintain stable production and at the same time improve soil conditions. Appropriate crop management can contribute to the increase of yields, nutritional status of plants, and below-ground biomass which consequently increases soil organic carbon (SOC). One promising approach to increase yield and reduce the use of synthetic fertilizers involves using plant growth-promoting microorganisms. The present study explores the possibility of applying microbial bioagents as a sustainable alternative to synthetic fertilizers in Italian ryegrass cultivation. Four microbial formulations, consisting of nitrogen-fixing bacteria, phosphate-solubilizing microorganisms, and beneficial fungi, were evaluated under full and reduced nitrogen fertilization regimes. The experiment consisted of the two levels of nitrogen fertilization, and the experimental treatments where four different microbial bioagents that were a combination of several different microorganisms were applied in four different application treatments (control (without microbial bioagents), in soil, on seed, and in soil and seed). The results indicate that by reducing mineral fertilization and using microbial bioagents we can achieve twice-as-high yields compared to the sole full mineral fertilization, significantly increasing the uptake of nutrients and SOC. The uptake of toxic trace elements also increased, however, all levels remained below permissible thresholds, ensuring feed safety. The findings highlight the potential of microbial bioagents to enhance soil health, improve plant nutrition, and increase ryegrass yields while reducing reliance on synthetic inputs, contributing to climate change mitigation through improved SOC storage, and presenting a pathway for sustainable agriculture. Full article
Show Figures

Figure 1

16 pages, 1053 KiB  
Article
Identification of Phenolic Compounds in the Invasive Plants Staghorn Sumac and Himalayan Balsam: Impact of Time and Solvent on the Extraction of Phenolics and Extract Evaluation on Germination Inhibition
by Maja Mikulic-Petkovsek, Eva Ravnjak and Denis Rusjan
Plants 2024, 13(23), 3339; https://doi.org/10.3390/plants13233339 - 28 Nov 2024
Cited by 2 | Viewed by 978
Abstract
An HPLC-MS-DAD analysis of phenolic compounds was carried out on the extracts of staghorn sumac (Rhus typhina L.) and Himalayan balsam (Impatiens glandulifera Royle). This study focuses on the influence of solvent type and extraction time on the phenolic extraction efficiency [...] Read more.
An HPLC-MS-DAD analysis of phenolic compounds was carried out on the extracts of staghorn sumac (Rhus typhina L.) and Himalayan balsam (Impatiens glandulifera Royle). This study focuses on the influence of solvent type and extraction time on the phenolic extraction efficiency from both invasive plants. Methanol extraction resulted in a 4.2 times higher content of hydroxybenzoic acids, a 3.7 times higher content of hydroxycinnamic acids, a 3.2 times higher content of flavanols, a 9.6 times higher content of flavanones, and an 8.7 times higher content of flavonols in the Himalayan balsam extract compared to aqueous extraction. Anthocyanins were only detected in the alcohol-based extraction. In comparison, the aqueous extraction from staghorn sumac resulted in a higher yield of total hydroxybenzoic acids, hydroxycinnamic acids, and flavonols, while the methanol extraction resulted in a 1.4-fold lower total polyphenolic content compared to the aqueous extraction. The type of solvent had no significant effect on the total content of flavanols in staghorn sumac. Extraction time considerably affected the total phenolic content in both plant extracts. After 84 h of extraction, the staghorn sumac extract showed a 3.5-fold increase in the total phenolic content compared to the initial measurement. In contrast, the Himalayan balsam extract showed a 40% decrease in the total phenolic content after 84 h. The Himalayan balsam extract reduced the germination of perennial ryegrass seeds by 55%, while the staghorn sumac extract reduced it by 80%. Both extracts also inhibited shoot and root growth of perennial ryegrass, although the Himalayan balsam extract at a concentration of 0.125 g/mL stimulated root growth of perennial ryegrass. The strategic use of invasive alien plants could be an effective approach to control their spread in the environment, potentially reducing management costs. The effectiveness of this approach depends largely on the type and content of allelochemicals present in the invasive plants. Full article
Show Figures

Figure 1

13 pages, 7150 KiB  
Article
Silicon Enhanced Italian Ryegrass (Lolium multiflorum) Production and Induced Defense Responses Against Fall Armyworm (Spodoptera frugiperda)
by Ya-Nan Deng, Hui Wang, Li-Sha Yuan, Tao Li, Dun Jiang, Ge Song and Shan-Chun Yan
Agronomy 2024, 14(12), 2827; https://doi.org/10.3390/agronomy14122827 - 27 Nov 2024
Cited by 1 | Viewed by 703
Abstract
The spread of invasive pests exacerbates the direct damage to host plants and the potential threat to the environment. Silicon has the potential to enhance host plant resistance to insects while also increasing plant yield. This study evaluated changes in Italian ryegrass biological [...] Read more.
The spread of invasive pests exacerbates the direct damage to host plants and the potential threat to the environment. Silicon has the potential to enhance host plant resistance to insects while also increasing plant yield. This study evaluated changes in Italian ryegrass biological yield and resistance to fall armyworm (Spodoptera frugiperda) larvae after silicon supplementation (sodium silicate and potassium silicate at 6 mmol·L−1 were denoted as groups T1 and T2, respectively). Silicon supplementation significantly increased the shoot biological yield (T1 by 30.26%, T2 by 23.05%) and silicon content (T1 by 22.61% and T2 by 12.43%) of Italian ryegrass. At the same time, silicon supplementation increased the protein, soluble sugar, and vitamin contents of Italian ryegrass, while also stimulating the improvement of its physical and chemical defenses. Therefore, even though the nutrient intake of fall armyworm increased, the synergistic physical-chemical defense formed by silica deposition, flavonoid content, and increased protease inhibitor activity in the Italian ryegrass still weakened the antioxidant capacity of the larvae and inhibited larval feeding and protein accumulation. The larval body weight of the T1 and T2 groups decreased by 20.32% and 15.16%, respectively. The comprehensive scores showed that sodium silicate and potassium silicate of the same concentration had similar effects on the growth and insect resistance of Italian ryegrass. These findings suggest that both sodium and potassium silicate are effective silicon supplements for host plants. Therefore, reasonable supplementation of silicon fertilizer may become an important alternative plan for optimizing the comprehensive pest control strategy in agricultural production areas in the future, but this still needs further field research verification. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

14 pages, 968 KiB  
Article
Impact of Forage Sources on Ruminal Bacteriome and Carcass Traits in Hanwoo Steers During the Late Fattening Stages
by Ryukseok Kang, Jaeyong Song, Joong Kook Park, Sukjun Yun, Jeong Heon Lee, Jun Sang Ahn, Chaemin Yu, Geonwoo Kim, Jongsik Jeong, Myeong-Gwan Oh, Wanho Jo, Woohyung Lee, Mekonnen Tilahun and Tansol Park
Microorganisms 2024, 12(10), 2082; https://doi.org/10.3390/microorganisms12102082 - 17 Oct 2024
Cited by 1 | Viewed by 1434
Abstract
This study examined the effects of different forage sources on the ruminal bacteriome, growth performance, and carcass characteristics of Hanwoo steers during the fattening stage. In Korea, where high-concentrate feeding is common, selecting suitable forage is crucial for sustainable beef production. Fifteen 23-month-old [...] Read more.
This study examined the effects of different forage sources on the ruminal bacteriome, growth performance, and carcass characteristics of Hanwoo steers during the fattening stage. In Korea, where high-concentrate feeding is common, selecting suitable forage is crucial for sustainable beef production. Fifteen 23-month-old Hanwoo steers, weighing an average of 679.27 ± 43.60 kg, were fed the following five different forage sources: oat hay (OAT), rye silage (RYE), Italian ryegrass (IRS), barley forage (BAR), and rice straw silage (RSS), alongside 1.5 kg of dry matter concentrate daily for five months. Carcass traits were evaluated post-slaughter, and rumen fluid samples were analyzed using full-length 16S rRNA gene sequencing to determine the bacteriome composition. The forage source significantly affected the alpha-diversity indices and bacteriome biomarkers linked to the feed efficiency and ruminal fermentation. Differences in the backfat thickness and meat yield index were noted, with alpha-diversity indices correlating with carcass traits. The phylum Planctomycetota, especially the family Thermoguttaceae, was linked to nitrogen fixation in high-protein diets like IRS, while the genus Limimorpha emerged as a biomarker for the meat yield. These findings highlight the importance of forage selection during late fattening to optimize beef production, considering diet and bacteriome shifts. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

18 pages, 19274 KiB  
Article
Morphological Differentiation, Yield, and Cutting Time of Lolium multiflorum L. under Acid Soil Conditions in Highlands
by William Carrasco-Chilón, Marieta Cervantes-Peralta, Laura Mendoza, Yudith Muñoz-Vílchez, Carlos Quilcate, David Casanova Nuñez-Melgar, Héctor Vásquez and Wuesley Yusmein Alvarez-García
Plants 2024, 13(16), 2331; https://doi.org/10.3390/plants13162331 - 21 Aug 2024
Cited by 1 | Viewed by 2232
Abstract
Livestock production in the basins of the northern macro-region of Peru has as its primary source pastures of Lolium multiflorum L. ‘Cajamarquino ecotype’ (ryegrass CE) in monoculture, or in association with white clover Ladino variety, for feeding. The objective of this research work [...] Read more.
Livestock production in the basins of the northern macro-region of Peru has as its primary source pastures of Lolium multiflorum L. ‘Cajamarquino ecotype’ (ryegrass CE) in monoculture, or in association with white clover Ladino variety, for feeding. The objective of this research work was the morphological characterisation, yield evaluation, and cutting time evaluation of two local genotypes (LM-58 and LM-43) of Lolium multiflorum L. in six locations. An ANOVA was performed to compare fixed effects and interaction. It was determined that the LM-58 genotype is intermediate, growing semi-erect, with a dark green colouring and 0.8 cm broadleaf, and can reach an average stem length of 46 cm, up to 1.6 cm. day−1, achieving fourth-leaf growth at 28 days under appropriate management conditions. Despite the differentiated characteristics, according to BLASTn evaluation, the ITS1 sequences showed a greater than 99.9% similar identification to Lolium multiflorum L., characterising it as such. It was determined that the LM-58 genotype outperforms LM-43, achieving a forage yield of 4.49 Mg. ha−1, a seed production of 259.23 kg. ha−1, and an average of 13.48% crude protein (CP). The best biomass yield (49.10 Mg. ha−1.yr−1) is reached at 60 days; however, at 30 days, there is a high level of CP (14.84%) and there are no differences in the annual protein production at the cutting age of 60 and 45 days. With the results of the present study, LM-58 from a selection and crossbreeding of 680 ryegrass EC accessions emerges as an elite genotype adapted to the conditions of the northern high Andean zone of Peru. Full article
(This article belongs to the Special Issue Effects of Conservation Tillage on Crop Cultivation and Production)
Show Figures

Figure 1

13 pages, 10457 KiB  
Article
Sustainability of Lolium multiflorum L. ‘Cajamarquino Ecotype’, Associated with Trifolium repens L., at Three Cutting Frequencies in the Northern Highlands of Peru
by Romy Vallejos-Cacho, Luis Asunción Vallejos-Fernández, Wuesley Yusmein Alvarez-García, Eduardo Alberto Tapia-Acosta, Sylvia Saldanha-Odriozola and Carlos Enrique Quilcate-Pairazaman
Sustainability 2024, 16(16), 6927; https://doi.org/10.3390/su16166927 - 13 Aug 2024
Cited by 2 | Viewed by 1839
Abstract
Livestock farming feed in the northern highlands of Peru is based on the association of ryegrass (Lolium multiflorum L.) ecotype cajamarquino–white clover (Trifolium repens L.) Ladino variety, which constantly varies in its agronomic characteristics and nutritional value due to management considerations [...] Read more.
Livestock farming feed in the northern highlands of Peru is based on the association of ryegrass (Lolium multiflorum L.) ecotype cajamarquino–white clover (Trifolium repens L.) Ladino variety, which constantly varies in its agronomic characteristics and nutritional value due to management considerations and its association with the soil and the animal. The objective of this study was to evaluate yield, plant height, growth rate, tillering, tiller number, spikelets, basal diameter in ryegrass, elongation rate, internode length and decline points in clover over one year. Nutritive value was represented by crude protein (CP), neutral detergent fibre (NDF), in vitro digestibility of dry matter (IVDDM) and metabolisable energy (ME) at three cutting frequencies (30, 45 and 60 days). Better yield (5588 kg DM ha) and plant height (47.1 cm) were shown by the 60-day cutting frequency; however, there was no difference (p > 0.05) between the three cutting frequencies in annual yield. There were no differences between the number of tillers and basal diameter. Clover height, elongation rate and internode length were higher at 60 days. The highest CP concentration and the lowest NDF value (p < 0.05) were achieved by clover at 30 and 45 days. Producers should consider the results when deciding when to use this association in dairy cattle feeding. Full article
(This article belongs to the Special Issue Climate Change and Sustainable Agricultural System)
Show Figures

Figure 1

14 pages, 1321 KiB  
Article
Plant and Soil Effects of Alternative Sources of Phosphorus over Three Years of Application
by Anna Karpinska, Thomais Kakouli-Duarte, S.M. Ashekuzzaman, John Byrne, Achim Schmalenberger and Patrick J. Forrestal
Agronomy 2024, 14(7), 1591; https://doi.org/10.3390/agronomy14071591 - 22 Jul 2024
Cited by 2 | Viewed by 1619
Abstract
Plant growth and food security depend heavily on phosphorus (P). Recovering and recycling P from animal, municipal, and food waste streams can significantly reduce dependency on traditional mineral P. This is particularly pertinent in the EU regions with limited native P supplies. The [...] Read more.
Plant growth and food security depend heavily on phosphorus (P). Recovering and recycling P from animal, municipal, and food waste streams can significantly reduce dependency on traditional mineral P. This is particularly pertinent in the EU regions with limited native P supplies. The agronomic performance of including P-based recycling-derived fertilisers (two struvite and two ashes) or cattle slurry was compared to a conventional mineral P fertilisation programme along with no P and no fertiliser controls over three years. A field-scale experiment was set up to evaluate the perennial ryegrass dry matter yield (DMY), P uptake, and soil test P effects. Struvite, ash, and cattle slurry proved effective in replacing P mineral fertiliser and produced yields similar to those of the mineral fertiliser programme. Differences were observed in plant P recovery, with struvite-based programmes achieving a significantly higher P recovery than ash-based programmes, which had the lowest plant P recovery. Differences in Morgan’s soil test P were also noted, with potato waste struvite (PWS) and poultry litter ash (PLA) showing significantly higher soil test P values. The findings strongly indicate that a range of recycled bio-based fertilisers from the bioeconomy can be used to reduce reliance on conventional imported mineral P fertiliser, with some programmes based on recycled fertilisers even surpassing the performance of conventional linear economy mineral fertilisers. Full article
Show Figures

Figure 1

16 pages, 2188 KiB  
Article
Diversification of Intensively Used Grassland: Resilience and Good Fodder Quality across Different Soil Types
by Regine Albers and Dirk Carl Albach
Agronomy 2024, 14(6), 1152; https://doi.org/10.3390/agronomy14061152 - 28 May 2024
Cited by 1 | Viewed by 1761
Abstract
In Central Europe, grasslands for dairy production are typically characterised by monocultures with high input rates of artificial fertilisers. However, it was suggested that biodiversity could reduce the need for anthropogenic inputs in functionally diversified grassland mixes while maintaining or enhancing yields and [...] Read more.
In Central Europe, grasslands for dairy production are typically characterised by monocultures with high input rates of artificial fertilisers. However, it was suggested that biodiversity could reduce the need for anthropogenic inputs in functionally diversified grassland mixes while maintaining or enhancing yields and fodder quality. To investigate this hypothesis, we developed five consecutively diversified grassland mixes consisting of ryegrass, legumes, a non-leguminous forb, and additional grass species for intensive fodder production, and tested them under regular agricultural conditions in a three-year experiment on sandy soil, marshland, and bog soil at one-hectare per mix and site. All mixtures produced similar high-quality forage in terms of utilisable crude protein content and net energy lactation rate, even under challenging climatic conditions. However, a high abundance of Dactylis glomerata can decrease these values, although factors such as seasonality and rainfall affect them to a greater degree. The seasonal composition changes between the functional groups, such as strong spring growth of grasses and strong summer growth of legumes, show complementarity rather than competition between the groups, resulting in consistent biomass production during the growth period. The results were consistent over the three soil types and provide the basis for further adaptation of mixes and breeding. Full article
(This article belongs to the Special Issue Advances in Grassland Ecology and Grass Phenotypic Plasticity)
Show Figures

Figure 1

14 pages, 2520 KiB  
Article
Effect of a Mineral-Organic Concentrate on a Yield Increase and Seed Quality of Perennial Ryegrass (Lolium perenne L.)
by Adam Radkowski, Iwona Radkowska, Karol Wolski, Piotr Kuc and Henryk Bujak
Agriculture 2024, 14(2), 200; https://doi.org/10.3390/agriculture14020200 - 27 Jan 2024
Cited by 1 | Viewed by 1466
Abstract
Treatment of plants with mineral-organic concentrates has developed intensively in recent years. Fertilizers containing, among others, humus, L-amino acids, vitamins, chelates and metal complexes, macro-, micro- and meso-elements, organic matter and humic acids from the top organic layer of leonardite coal have a [...] Read more.
Treatment of plants with mineral-organic concentrates has developed intensively in recent years. Fertilizers containing, among others, humus, L-amino acids, vitamins, chelates and metal complexes, macro-, micro- and meso-elements, organic matter and humic acids from the top organic layer of leonardite coal have a positive effect on plant growth and quality and seed yield. An experiment was conducted between 2019 and 2022 at the University of Agriculture in Kraków, in which the impact of mineral-organic concentrate on the seed yield and quality of perennial ryegrass (Lolium perenne L.) 2N Bokser (Hodowla Roślin Grunwald Ltd. Grupa IHAR, Grunwa, Poland) was determined. As part of the experiment, plants were sprayed with a mineral-organic product in three different doses: 1.0, 2.0 and 3.0 L·ha−1. The following parameters were examined: the number of generative shoots, the length of the flag leaf, seed yield, germination capacity and the weight of one thousand seeds. It turned out that the application of the concentrate with 3 L·ha−1 and 2 L·ha−1 led to a significant increase in the number of generative shoots and in seed yield, compared to control. In addition, seed germination capacity of fertilized plants was higher, with the greatest increase after the application of 3 L·ha−1. Moreover, the average weight of one thousand seeds was significantly higher in fertilized plants, compared to the control, and the largest increase was recorded in response to the highest dose. The results indicated a positive effect of the organic-mineral concentrate on perennial ryegrass development parameters and seed quality. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

11 pages, 1155 KiB  
Article
Testing the Feasibility of Usumacinta River Sediments as a Renewable Resource for Landscaping and Agronomy
by Mazhar Hussain, Daniel Levacher, Nathalie Leblanc, Hafida Zmamou, Irini Djeran-Maigre and Andry Razakamanantsoa
Sustainability 2023, 15(22), 15859; https://doi.org/10.3390/su152215859 - 11 Nov 2023
Viewed by 1437
Abstract
Fluvial sediment recycling in agronomy is a relatively recent development, as sediment fertilizing potential for crops is unexplored. Freshwater sediments can act as fertilizer and improve the aeration of soils to increase the yield of crops, support vegetation for landscaping, and provide protective [...] Read more.
Fluvial sediment recycling in agronomy is a relatively recent development, as sediment fertilizing potential for crops is unexplored. Freshwater sediments can act as fertilizer and improve the aeration of soils to increase the yield of crops, support vegetation for landscaping, and provide protective cover against erosion. This study focuses on the investigation of the agronomic potential of Usumacinta River sediments. The pH of the sediments is around 8.5, which is slightly alkaline. The organic matter content is low (5.7%). The sodium absorption ratio is 1.2 and the electrical conductivity is low (0.02 mS/cm). These values indicate that sediments are nonsaline, which is essential for the growth of crops and vegetation. The environmental characteristics of sediments show that the heavy metals, polycyclic aromatic hydrocarbon (PAH), and polychlorinated biphenyl (PCB) pollutants in sediments are below the recommended thresholds. In addition, sediments from the Usumacinta River contain minerals such as potassium and iron oxides that are helpful in improving the biological and nutritional characteristics of the soil. Furthermore, the pH, granulometry, mineralogy, organic matter, and carbonate contents of the Usumacinta River sediments are similar to agronomic soils. The Usumacinta River sediment’s potential for agronomy was practically investigated by sowing ryegrass (Lolium perenne) in a greenhouse by using the local climatic conditions and mixing sediments with potting soil. Three soil compositions were used to evaluate the germination and growth of ryegrass. The soil compositions were 100% potting soil (C1), 50% sediments + 50% potting soil (C2), and 100% sediments (C3). The growth rate of ryegrass was evaluated by monitoring the increase in grass height and production of fresh biomass. The germination of ryegrass was similar in all three compositions. The growth of ryegrass and production of fresh biomass were the most significant with 100% potting soil (0.25 kg/m2), somewhat less with sediment mix (0.18 kg·m2), and were the least significant with 100% sediments (0.05 kg/m2). The mixture of potting soil and sediments shows similar growth to 100% potting soil. The ryegrass seed germination, growth, and production of fresh biomass with the mixture of sediments gave encouraging results, and underlined the potential of sediments for soil amendments for agronomy and protective developments, such as limiting riverbank erosion, gardening, and landscaping. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

Back to TopTop