Effect of a Mineral-Organic Concentrate on a Yield Increase and Seed Quality of Perennial Ryegrass (Lolium perenne L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experiment Design and Factor
2.3. Statistical Analysis
2.4. Weather Conditions
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cristofano, F.; El-Nakhel, C.; Rouphael, Y. Biostimulant Substances for Sustainable Agriculture: Origin, Operating Mechanisms and Effects on Cucurbits, Leafy Greens, and Nightshade Vegetables Species. Biomolecules 2021, 11, 1103. [Google Scholar] [CrossRef] [PubMed]
- Amiri Forotaghe, Z.; Souri, M.K.; Ghanbari Jahromi, M.; Mohammadi Torkashvand, A. Influence of Humic Acid Application on Onion Growth Characteristics under Water Deficit Conditions. J. Plant Nutr. 2022, 45, 1030–1040. [Google Scholar] [CrossRef]
- Najarian, A.; Souri, M.K.; Nabigol, A. Influence of Humic Substance on Vegetative Growth, Flowering and Leaf Mineral Elements of Pelargonium × Hortorum. J. Plant Nutr. 2022, 45, 107–112. [Google Scholar] [CrossRef]
- Wolski, K.; Biernacik, M.; Świerszcz, S.; Talar-Krasa, M.; Leshchenko, O. Effect of the Application of a Biostimulant and Mineral Fertilizers on the Concentration of Mineral Elements in the Sward of Forage Mixtures Cultivated on Light Soil. J. Elem. 2019, 24, 385. [Google Scholar] [CrossRef]
- Perminova, I.V.; García-Mina, J.M.; Knicker, H.; Miano, T. Humic Substances and Nature-like Technologies: Learning from Nature: Understanding Humic Substances Structures and Interactions for the Development of Environmentally Friendly, Nature-like Technologies. J. Soils Sediments 2019, 19, 2663–2664. [Google Scholar] [CrossRef]
- Pizzeghello, D.; Nicolini, G.; Nardi, S. Hormone-like Activity of Humic Substances in Fagus Sylvaticae Forests. New Phytol. 2001, 151, 647–657. [Google Scholar] [CrossRef]
- Yang, C.-M.; Wang, M.-C.; Lu, Y.-F.; Chang, I.-F.; Chou, C.-H. Humic Substances Affect the Activity of Chlorophyllase. J. Chem. Ecol. 2004, 30, 1057–1065. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, R.; Nielsen, S.; Joseph, S.D.; Huang, D.; Thomas, T. A Combination of Biochar-Mineral Complexes and Compost Improves Soil Bacterial Processes, Soil Quality, and Plant Properties. Front. Microbiol. 2016, 7, 372. [Google Scholar] [CrossRef]
- Skamarokhova, A.; Petenko, A.; Gneush, A.; Yurina, N.; Yurin, D. The Role of Foschami Bio-Fertilizer in Increasing the Yield of Green Mass of Vetch-Wheat Grass Mixture. In Proceedings of the International Scientific Conference Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East (AFE-2021), Volozhenin, Russia, 21–22 June 2021; Springer International Publishing: Cham, Switzerland, 2022; Volume 354. [Google Scholar]
- Urrutia, O.; Fuentes, M.; Olaetxea, M.; Garnica, M.; Baigorri, R.; Zamarreño, A.M.; Movila, M.; De Hita, D.; Garcia-Mina, J.M. The Effect of Soil Organic Matter on Plant Mineral Nutrition. In Achieving Sustainable Crop Nutrition; Burleigh Dodds Science Publishing: Cambridge, UK, 2020. [Google Scholar]
- Tavares, O.C.H.; Santos, L.A.; Ferreira, L.M.; Sperandio, M.V.L.; da Rocha, J.G.; García, A.C.; Dobbss, L.B.; Berbara, R.L.L.; de Souza, S.R.; Fernandes, M.S. Humic Acid Differentially Improves Nitrate Kinetics under Low- and High-Affinity Systems and Alters the Expression of Plasma Membrane H+-ATPases and Nitrate Transporters in Rice. Ann. Appl. Biol. 2017, 170, 89–103. [Google Scholar] [CrossRef]
- Zandonadi, D.B.; Canellas, L.P.; Façanha, A.R. Indolacetic and Humic Acids Induce Lateral Root Development through a Concerted Plasmalemma and Tonoplast H+ Pumps Activation. Planta 2007, 225, 1583–1595. [Google Scholar] [CrossRef] [PubMed]
- Kaya, C.; Şenbayram, M.; Akram, N.A.; Ashraf, M.; Alyemeni, M.N.; Ahmad, P. Sulfur-Enriched Leonardite and Humic Acid Soil Amendments Enhance Tolerance to Drought and Phosphorus Deficiency Stress in Maize (Zea mays L.). Sci. Rep. 2020, 10, 6432. [Google Scholar] [CrossRef]
- El-Said, M.A.S.; Mahdy, A.Y. Response of Two Wheat Cultivars to Foliar Application with Amino Acids under Low Levels of Nitrogen Fertilization. Middle East J. Agric. Res. 2018, 5, 462–472. [Google Scholar]
- Hounsome, N.; Hounsome, B.; Tomos, D.; Edwards-Jones, G. Plant Metabolites and Nutritional Quality of Vegetables. J. Food Sci. 2008, 73, R48–R65. [Google Scholar] [CrossRef]
- Hammad, S.A.R.; Ali, O.A.M. Physiological and Biochemical Studies on Drought Tolerance of Wheat Plants by Application of Amino Acids and Yeast Extract. Ann. Agric. Sci. 2014, 59, 133–145. [Google Scholar] [CrossRef]
- Paciolla, C.; Fortunato, S.; Dipierro, N.; Paradiso, A.; De Leonardis, S.; Mastropasqua, L.; de Pinto, M.C. Vitamin C in Plants: From Functions to Biofortification. Antioxidants 2019, 8, 519. [Google Scholar] [CrossRef]
- Fujiwara, A.; Shimura, H.; Masuta, C.; Sano, S.; Inukai, T. Exogenous ascorbic acid derivatives and dehydroascorbic acid are effective antiviral agents against Turnip mosaic virus in Brassica rapa. J. Gen. Plant Pathol. 2013, 79, 198–204. [Google Scholar] [CrossRef]
- Li, J.; Trivedi, P.; Wang, N. Field Evaluation of Plant Defense Inducers for the Control of Citrus Huanglongbing. Phytopathology 2016, 106, 37–46. [Google Scholar] [CrossRef]
- Tejada, M.; Gonzalez, J.L. Influence of Foliar Fertilization with Amino Acids and Humic Acids on Productivity and Quality of Asparagus. Biol. Agric. Hortic. 2003, 21, 277–291. [Google Scholar] [CrossRef]
- Hegarty, M.; Yadav, R.; Lee, M.; Armstead, I.; Sanderson, R.; Scollan, N.; Powell, W.; Skøt, L. Genotyping by RAD Sequencing Enables Mapping of Fatty Acid Composition Traits in Perennial Ryegrass (Lolium perenne (L.)). Plant Biotechnol. J. 2013, 11, 572–581. [Google Scholar] [CrossRef]
- Lee, M.R.F.; Jones, E.L.; Moorby, J.M.; Humphreys, M.O.; Theodorou, M.K.; Macrae, J.C.; Scollan, N.D. Production Responses from Lambs Grazed on Lolium Perenne Selected for an Elevated Water-Soluble Carbohydrate Concentration. Anim. Res. 2001, 50, 441–449. [Google Scholar] [CrossRef]
- Miller, L.A.; Moorby, J.M.; Davies, D.R.; Humphreys, M.O.; Scollan, N.D.; MacRae, J.C.; Theodorou, M.K. Increased Concentration of Water-Soluble Carbohydrate in Perennial Ryegrass (Lolium perenne L.): Milk Production from Late-Lactation Dairy Cows. Grass Forage Sci. 2001, 56, 383–394. [Google Scholar] [CrossRef]
- Humphreys, M.O. Water-Soluble Carbohydrates in Perennial Ryegrass Breeding. Grass Forage Sci. 1989, 44, 237–244. [Google Scholar] [CrossRef]
- International Seed Testing Association (ISTA). International Rules for Seed Testing; International Seed Testing Association (ISTA): Zurich, Switzerland, 2010. [Google Scholar]
- De Pascale, S.; Rouphael, Y.; Colla, G. Plant Biostimulants: Innovative Tool for Enhancing Plant Nutrition in Organic Farming. Eur. J. Hortic. Sci. 2017, 82, 277–285. [Google Scholar] [CrossRef]
- Meddich, A.; Ait El Mokhtar, M.; Bourzik, W.; Mitsui, T.; Baslam, M.; Hafidi, M. Optimizing Growth and Tolerance of Date Palm (Phoenix dactylifera L.) to Drought, Salinity, and Vascular Fusarium-Induced Wilt (Fusarium oxysporum) by Application of Arbuscular Mycorrhizal Fungi (AMF). In Root Biology; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Tian, Y.; Cui, L.; Lin, Q.; Li, G.; Zhao, X. The Sewage Sludge Biochar at Low Pyrolysis Temperature Had Better Improvement in Urban Soil and Turf Grass. Agronomy 2019, 9, 156. [Google Scholar] [CrossRef]
- Zhao, J.; Ni, T.; Li, J.; Lu, Q.; Fang, Z.; Huang, Q.; Zhang, R.; Li, R.; Shen, B.; Shen, Q. Effects of Organic–Inorganic Compound Fertilizer with Reduced Chemical Fertilizer Application on Crop Yields, Soil Biological Activity and Bacterial Community Structure in a Rice–Wheat Cropping System. Appl. Soil Ecol. 2016, 99, 1–12. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, S.; Jiang, N.; Xiu, W.; Zhao, J.; Yang, D. Effects of Organic Fertilizer Incorporation Practices on Crops Yield, Soil Quality, and Soil Fauna Feeding Activity in the Wheat–Maize Rotation System. Front. Environ. Sci. 2022, 10, 2292. [Google Scholar] [CrossRef]
- Zhang, X.; Ervin, E.H.; Schmidt, R.E. Physiological Effects of Liquid Applications of a Seaweed Extract and a Humic Acid on Creeping Bentgrass. J. Am. Soc. Hortic. Sci. 2003, 128, 492–496. [Google Scholar] [CrossRef]
- Kandil, A.A.; Sharief, A.E.M.; Seadh, S.E.; Altai, D.S.K. Role of Humic Acid and Amino Acids in Limiting Loss of Nitrogen Fertilizer and Increasing Productivity of Some Wheat Cultivars Grown under Newly Reclaimed Sandy soil. J. Adv. Res. Biol. Sci. 2016, 3, 123–136. [Google Scholar]
- Akdağ, N.; Avcı, S. The Impact of Sowing Time and Biostimulant Application on Seed Production in Italian Ryegrass. Turk. J. Agric. Food Sci. Technol. 2023, 11, 1260–1264. [Google Scholar] [CrossRef]
- Radkowski, A.; Radkowska, I.; Bocianowski, J.; Cyplik, A.; Wolski, K.; Bujak, H. Effect of Amino Acids and Effective Microorganisms on Meadow Silage Chemical Composition. Agronomy 2021, 11, 1198. [Google Scholar] [CrossRef]
- Laskosky, J.D.; Mante, A.A.; Zvomuya, F.; Amarakoon, I.; Leskiw, L. A Bioassay of Long-Term Stockpiled Salvaged Soil Amended with Biochar, Peat, and Humalite. Agrosyst. Geosci. Environ. 2020, 3, e20068. [Google Scholar] [CrossRef]
- Nardi, S.; Schiavon, M.; Francioso, O. Chemical Structure and Biological Activity of Humic Substances Define Their Role as Plant Growth Promoters. Molecules 2021, 26, 2256. [Google Scholar] [CrossRef]
- Van Tol de Castro, T.A.; Berbara, R.L.L.; Tavares, O.C.H.; Mello, D.F.d.G.; Pereira, E.G.; Souza, C.d.C.B.d.; Espinosa, L.M.; García, A.C. Humic Acids Induce a Eustress State via Photosynthesis and Nitrogen Metabolism Leading to a Root Growth Improvement in Rice Plants. Plant Physiol. Biochem. 2021, 162, 171–184. [Google Scholar] [CrossRef]
- Amoah-Antwi, C.; Kwiatkowska-Malina, J.; Thornton, S.F.; Fenton, O.; Malina, G.; Szara, E. Restoration of Soil Quality Using Biochar and Brown Coal Waste: A Review. Sci. Total Environ. 2020, 722, 137852. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant Biostimulants: Definition, Concept, Main Categories and Regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Zhang, X.; Goatley, M. Evaluating Effects of Humic and Fulvic Acids for Improving Creeping Bentgrass Putting Green Quality and Root Growth during Summer Stress. Va. Turfgrass Counc. 2019, 1, 26–28. [Google Scholar]
- Van Dyke, A.; Johnson, P.G.; Grossl, P.R. Influence of Humic Acid on Water Retention and Nutrient Acquisition in Simulated Golf Putting Greens. Soil Use Manag. 2009, 25, 255–261. [Google Scholar] [CrossRef]
- Gao, Y.; Li, D. Foliar Fertilization by Tank-Mixing with Organic Amendment on Creeping Bentgrass. Horttechnology 2012, 22, 157–163. [Google Scholar] [CrossRef]
- Zhang, X.; Schmidt, R.E. Hormone-Containing Products’ Impact on Antioxidant Status of Tall Fescue and Creeping Bentgrass Subjected to Drought. Crop Sci. 2000, 40, 1344–1349. [Google Scholar] [CrossRef]
- Zhang, X.; Ervin, E.H.; Schmidt, R.E. Seaweed Extract, Humic Acid, and Propiconazole Improve Tall Fescue Sod Heat Tolerance and Posttransplant Quality. HortScience 2003, 38, 440–443. [Google Scholar] [CrossRef]
- White, J.F.; Chang, X.; Kingsley, K.L.; Zhang, Q.; Chiaranunt, P.; Micci, A.; Velazquez, F.; Elmore, M.; Crane, S.; Li, S.; et al. Endophytic Bacteria in Grass Crop Growth Promotion and Biostimulation. Grass Res. 2021, 1, 5. [Google Scholar] [CrossRef]
- Regelink, I.C.; Koopmans, G.F. Effects of Biostimulants and Fertilization on Nutrient Uptake by Grass and Composition of Soil Pore Water Versus 0.01 M CaCl2 Soil Extracts. Commun. Soil Sci. Plant Anal. 2021, 52, 2516–2532. [Google Scholar] [CrossRef]
- Espie, P.; Ridgway, H. Bioactive Carbon Improves Nitrogen Fertiliser Efficiency and Ecological Sustainability. Sci. Rep. 2020, 10, 3227. [Google Scholar] [CrossRef]
- Gerke, J.; Meyer, U.; Römer, W. Phosphate, Fe and Mn Uptake of N2 Fixing Red Clover and Ryegrass from an Oxisol as Affected by P and Model Humic Substances Application. 1. Plant Parameters and Soil Solution Composition. Z. Pflanzenernähr. Bodenkd. 1995, 158, 261–268. [Google Scholar] [CrossRef]
- Little, K.R.; Rose, M.T.; Jackson, W.R.; Cavagnaro, T.R.; Patti, A.F. Do Lignite-Derived Organic Amendments Improve Early-Stage Pasture Growth and Key Soil Biological and Physicochemical Properties? Crop Pasture Sci. 2014, 65, 899–910. [Google Scholar] [CrossRef]
- Tahir, M.M.; Khurshid, M.; Khan, M.Z.; Abbasi, M.K.; Kazmi, M.H. Lignite-Derived Humic Acid Effect on Growth of Wheat Plants in Different Soils. Pedosphere 2011, 21, 124–131. [Google Scholar] [CrossRef]
- Osman, E.A.M.; El-Masry, A.A.; Khatab, K.A. Effect of Nitrogen Fertilizer Sources and Foliar Spray of Humic and/or Fulvic Acids on Yield and Quality of Rice Plants. Adv. Appl. Sci. Res. 2013, 4, 174–183. [Google Scholar]
- Alabdulla, S.A. Effect of Foliar Application of Humic Acid on Fodder and Grain Yield of Oat (Avena sativa L.). Res. Crops 2019, 20, 880–885. [Google Scholar] [CrossRef]
- Dyke, A. Van Influence of Humic Acid on Kentucky Bluegrass Establishment. Available online: Humintech.com. (accessed on 4 December 2023).
- De Luca, V.; de Barreda, D.G.; Lidón, A.; Lull, C. Effect of Nitrogen-Fixing Microorganisms and Amino Acid-Based Biostimulants on Perennial Ryegrass. Horttechnology 2020, 30, 280–291. [Google Scholar] [CrossRef]
- Povero, G.; Mejia, J.F.; Di Tommaso, D.; Piaggesi, A.; Warrior, P. A Systematic Approach to Discover and Characterize Natural Plant Biostimulants. Front. Plant Sci. 2016, 7, 435. [Google Scholar] [CrossRef]
- Drobek, M.; Frąc, M.; Cybulska, J. Plant Biostimulants: Importance of the Quality and Yield of Horticultural Crops and the Improvement of Plant Tolerance to Abiotic Stress-a Review. Agronomy 2019, 9, 335. [Google Scholar] [CrossRef]
- Mohamed, A.M. Effect of Some Bio-Chemical Fertilization Regimes on Yield of Maize. Ph.D. Thesis, Faculty of Agriculture, Zagazig University, Zagazig, Egypt, 2006. [Google Scholar]
- Al-Khateeb, S.A. Promotive Effect of 5-Aminolevulinic Acid on Growth, Yield and Gas Exchange Capacity of Barley (Hordeum vulgare L.) Grown under Different Irrigation Regimes. J. King Saud Univ. 2006, 18, 103–111. [Google Scholar]
Parameter/Element | Amount | Level/Range |
---|---|---|
pHKCl | 7.4 | alkaline |
N (total nitrogen) | 2.12 g∙kg−1 soil | – |
P (available phosphorus) | 58.52 mg∙kg−1 soil | medium |
K (available potassium) | 176.42 mg∙kg−1 soil | medium |
Mg (magnesium) | 125.82 mg∙kg−1 soil | high |
Dose | Year | Yield | TSW | No of Gen. Shoots | Germination Rate * | Flag Leaf Length |
---|---|---|---|---|---|---|
Control | 2020 | 2055 ± 60 | 1.65 ± 0.05 | 2832 ± 48 | 0.99 ± 0.00 | 12.7 ± 0.2 |
2021 | 1948 ± 13 | 1.61 ± 0.02 | 2528 ± 24 | 0.98 ± 0.00 | 10.4 ± 0.5 | |
2022 | 1898 ± 24 | 1.49 ± 0.06 | 2428 ± 44 | 0.97 ± 0.01 | 7.3 ± 0.2 | |
Mean | 1967 a ± 77 | 1.58 a ± 0.08 | 2597 a ± 185 | 0.98 b ± 0.01 | 10.1 a ± 2.4 | |
Fertilizer dose 1 dm3·ha−1 | 2020 | 2094 ± 11 | 1.73 ± 0.05 | 2876 ± 19 | 0.99 ± 0.00 | 13.4 ± 0.1 |
2021 | 2015 ± 87 | 1.70 ± 0.03 | 2591 ± 8.5 | 0.99 ± 0.00 | 11.0 ± 0.2 | |
2022 | 1966 ± 11 | 1.58 ± 0.07 | 2495 ± 13 | 0.98 ± 0.01 | 7.6 ± 0.1 | |
Mean | 2025 a ± 71 | 1.67 b ± 0.08 | 2657 b ± 172 | 0.99 a ± 0.00 | 10.7 b ± 2.5 | |
Fertilizer dose 2 dm3·ha−1 | 2020 | 2213 ± 15 | 1.80 ± 0.02 | 3173 ± 36 | 0.99 ± 0.00 | 14.1 ± 0.3 |
2021 | 2042 ± 83 | 1.74 ± 0.06 | 2911 ± 8 | 0.99 ± 0.00 | 11.4 ± 0.4 | |
2022 | 2001 ± 32 | 1.73 ± 0.06 | 2806 ± 6.2 | 0.99 ± 0.00 | 8.0 ± 0.1 | |
Mean | 2085 b ± 107 | 1.76 c ± 0.06 | 2936 c ± 165 | 0.99 a ± 0.00 | 11.2 c ± 2.7 | |
Fertilizer dose 3 dm3·ha−1 | 2020 | 2289 ± 42 | 1.93 ± 0.11 | 3257 ± 45 | 1.00 ± 0.00 | 14.2 ± 0.3 |
2021 | 2088 ± 18 | 1.86 ± 0.06 | 2964 ± 11 | 0.99 ± 0.00 | 12.0 ± 0.4 | |
2022 | 2062 ± 27 | 1.85 ± 0.04 | 2864 ± 38 | 0.99 ± 0.00 | 8.1 ± 0.3 | |
Mean | 2146 c ± 110 | 1.88 d ± 0.08 | 3029 d ± 179 | 0.99 a ± 0.00 | 11.5 d ± 2.7 | |
Effect of year 2020–2022 | 2020 | 2162 a ± 102 | 1.77 a ± 0.03 | 3034 a ± 194 | 0.99 a ± 0.00 | 13.6 a ± 0.2 |
2021 | 2023 b ± 75 | 1.73 a ± 0.03 | 2748 b ± 200 | 0.99 a ± 0.00 | 11.2 b ± 0.2 | |
2022 | 1981 b ± 65 | 1.66 b ± 0.04 | 2648 c ± 199 | 0.98 b ± 0.00 | 7.8 c ± 0.1 | |
Year effect (p-value) | 0.0000 | 0.0003 | 0.0000 | 0.0180 | 0.0000 | |
Dose effect (p-value) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
Standard deviation | 112 | 0.13 | 253.9 | 0.0077 | 2.5 | |
Variation coefficient | 5.4% | 7.5% | 9.0% | 0.8% | 23.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radkowski, A.; Radkowska, I.; Wolski, K.; Kuc, P.; Bujak, H. Effect of a Mineral-Organic Concentrate on a Yield Increase and Seed Quality of Perennial Ryegrass (Lolium perenne L.). Agriculture 2024, 14, 200. https://doi.org/10.3390/agriculture14020200
Radkowski A, Radkowska I, Wolski K, Kuc P, Bujak H. Effect of a Mineral-Organic Concentrate on a Yield Increase and Seed Quality of Perennial Ryegrass (Lolium perenne L.). Agriculture. 2024; 14(2):200. https://doi.org/10.3390/agriculture14020200
Chicago/Turabian StyleRadkowski, Adam, Iwona Radkowska, Karol Wolski, Piotr Kuc, and Henryk Bujak. 2024. "Effect of a Mineral-Organic Concentrate on a Yield Increase and Seed Quality of Perennial Ryegrass (Lolium perenne L.)" Agriculture 14, no. 2: 200. https://doi.org/10.3390/agriculture14020200
APA StyleRadkowski, A., Radkowska, I., Wolski, K., Kuc, P., & Bujak, H. (2024). Effect of a Mineral-Organic Concentrate on a Yield Increase and Seed Quality of Perennial Ryegrass (Lolium perenne L.). Agriculture, 14(2), 200. https://doi.org/10.3390/agriculture14020200