Sustainability of Lolium multiflorum L. ‘Cajamarquino Ecotype’, Associated with Trifolium repens L., at Three Cutting Frequencies in the Northern Highlands of Peru
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location
2.2. Soil Characteristics and Weather Conditions
2.3. Sample Collection
2.4. Parameters Assessed
2.5. Nutritional Value
2.6. Statistical Analysis
3. Results and Discussion
3.1. Productive Performance
3.2. Plant Morphology
3.3. Floristic Composition
3.4. Nutritional Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Escurra M, E. Situación de la ganadería lechera en Cajamarca. Rev. Investig. Vet. Perú 2001, 12, 21–26. [Google Scholar]
- MIDAGRI. Anuario Estadístico-PRODUCCIÓN GANADERA Y AVICOLA 2022; Reporte 07; Ministerio de Desarrollo Agrario y Riego: Lima, Peru, 2023.
- Soder, K.J.; Brito, A.F. Enteric methane emissions in grazing dairy systems. JDS Commun. 2023, 4, 324–328. [Google Scholar] [CrossRef]
- Loges, R.; Vogeler, I.; Kluß, C.; Hasler, M.; Taube, F. Renovation of grasslands with grass and white clover–Effects on yield and carbon sequestration. Soil Tillage Res. 2024, 240, 106076. [Google Scholar] [CrossRef]
- Cao, M.; Xiang, Y.; He, H.; Cheng, J.; Song, Y.; Jin, C.; Xin, G.; He, C. Italian ryegrass (Lolium multiflorum L.)-rice (Oryza sativa L.) rotation promotes the nitrogen cycle in the rice rhizosphere through dominant ammonia-oxidizing bacteria. Appl. Soil Ecol. 2024, 193, 105121. [Google Scholar] [CrossRef]
- Phillips, C.L.; Wang, R.; Mattox, C.; Trammell, T.L.; Young, J.; Kowalewski, A. High soil carbon sequestration rates persist several decades in turfgrass systems: A meta-analysis. Sci. Total. Environ. 2023, 858, 159974. [Google Scholar] [CrossRef]
- Guest, E.J.; Palfreeman, L.J.; Holden, J.; Chapman, P.J.; Firbank, L.G.; Lappage, M.G.; Helgason, T.; Leake, J.R. Soil macroaggregation drives sequestration of organic carbon and nitrogen with three-year grass-clover leys in arable rotations. Sci. Total. Environ. 2022, 852, 158358. [Google Scholar] [CrossRef]
- Egan, M.; Galvin, N.; Hennessy, D. Incorporating white clover (Trifolium repens L.) into perennial ryegrass (Lolium perenne L.) swards receiving varying levels of nitrogen fertilizer: Effects on milk and herbage production. J. Dairy Sci. 2018, 101, 3412–3427. [Google Scholar] [CrossRef]
- Komainda, M.; Isselstein, J. Effects of functional traits of perennial ryegrass cultivars on forage quality in mixtures and pure stands. J. Agric. Sci. 2020, 158, 173–184. [Google Scholar] [CrossRef]
- Enriquez-Hidalgo, D.; Gilliland, T.J.; Egan, M.; Hennessy, D. Production and quality benefits of white clover inclusion into ryegrass swards at different nitrogen fertilizer rates. J. Agric. Sci. 2018, 156, 378–386. [Google Scholar] [CrossRef]
- Pinares-Patiño, C.; Manhire, J.; Ticllacuri, R.G.; Madrid, J.L.B.; Marroquin, V.M.V. Smallholder dairy farmers in the Peruvian Andes fulfilling the role of extension agents. In Proceedings of the Joint International Grassland & International Rangeland Kenya 2021 Virtual Congress, Nairobi, Kenya, 25–29 October 2021; p. 4. [Google Scholar]
- Giambalvo, D.; Ruisi, P.; Miceli, G.D.; Frenda, A.S.; Amato, G. Forage production, N uptake, N2 fixation, and N recovery of berseem clover grown in pure stand and in mixture with annual ryegrass under different managements. Plant Soil 2011, 342, 379–391. [Google Scholar] [CrossRef]
- Tilus, G.; Zinn, R.; Joseph, M.; Canul, A.J.C.; Santillano-Cazares, J.; Galicia-Juarez, M.; Tilus, M.; Tilus, D.; Estrada-Delgado, E.; Montaño-Gomez, M. FORAGE YIELD, ELONGATION RATE AND BOTANICAL COMPOSITION OF Lolium multiflorum LAMB. IN RESPONSE TO DIFFERENT GRAZING INTERVALS AND INTEN. Trop. Subtrop. Agroecosyst. 2022, 25. [Google Scholar] [CrossRef]
- Phelan, P.; Casey, I.A.; Humphreys, J. The effects of simulated summer-to-winter grazing management on herbage production in a grass–clover sward. Grass Forage Sci. 2014, 69, 251–265. [Google Scholar] [CrossRef]
- Parish, J. Comparison of Virginia wildrye, annual ryegrass, and wheat for weaned beef steers grazing and confinement feeding. Prof. Anim. Sci. 2018, 34, 356–363. [Google Scholar] [CrossRef]
- Gierus, M.; Kleen, J.; Loges, R.; Taube, F. Forage legume species determine the nutritional quality of binary mixtures with perennial ryegrass in the first production year. Anim. Feed. Sci. Technol. 2012, 172, 150–161. [Google Scholar] [CrossRef]
- Costa, D.; Ferreira, L.; Silva, J.; Fluck, A.C.; Kröning, A.B.; Oliveira, L.; Coelho, T.; Brondani, W.C. Yield, structural composition and nutritive characteristics of ryegrass cultivars used to haymaking in lowland soils. Biosci. J. 2018, 34, 1232–1238. [Google Scholar] [CrossRef]
- Bell, M.J.; Huggett, Z.J.; Slinger, K.R.; Roos, F. Effect of pasture cover and height on nutrient concentrations in diverse swards in the UK. Grassl. Sci. 2021, 67, 267–272. [Google Scholar] [CrossRef]
- Wims, C.; Delaby, L.; Boland, T.; O’Donovan, M. Effect of pre-grazing herbage mass on dairy cow performance, grass dry matter production and output from perennial ryegrass (Lolium perenne L.) pastures. Animal 2014, 8, 141–151. [Google Scholar] [CrossRef]
- Claffey, A.; Delaby, L.; Lewis, E.; Boland, T.M.; Kennedy, E. Pasture allowance, duration, and stage of lactation—Effects on early and total lactation animal performance. J. Dairy Sci. 2019, 102, 8986–8998. [Google Scholar] [CrossRef]
- Tozer, K.; Chapman, D.; Bell, N.; Crush, J.; King, W.; Rennie, G.; Wilson, D.; Mapp, N.; Rossi, L.; Aalders, L.; et al. Botanical survey of perennial ryegrass-based dairy pastures in three regions of New Zealand: Implications for ryegrass persistence. N. Z. J. Agric. Res. 2014, 57, 14–29. [Google Scholar] [CrossRef]
- Mendoza, I.; Garay, A.; Rafael, G.; Humberto, V.; Huerta, V.; Reynoso, O.R.; Rivera, R.C. Productive behavior of perennial ryegrass alone and associated with ovillo grass and white clover. Rev. Mex. Cienc. AgríColas 2018, 9, 343–353. [Google Scholar]
- Hofer, D.; Suter, M.; Haughey, E.; Finn, J.A.; Hoekstra, N.J.; Buchmann, N.; Lüscher, A. Yield of temperate forage grassland species is either largely resistant or resilient to experimental summer drought. J. Appl. Ecol. 2016, 53, 1023–1034. [Google Scholar] [CrossRef]
- Lluga-Rizani, K.; Šoljan, D.; Berisha, N.; Kurteshi, K.; Letaj, K. Morphological variability of Trifolium repens L. (Fabaceae). Hacquetia 2021, 20, 281–290. [Google Scholar] [CrossRef]
- Zegler, C.H.; Brink, G.E.; Renz, M.J.; Ruark, M.D.; Casler, M.D. Management Effects on Forage Productivity, Nutritive Value, and Legume Persistence in Rotationally Grazed Pastures. Crop. Sci. 2018, 58, 2657–2664. [Google Scholar] [CrossRef]
- Ventura, J.; Hernández, E.; Santiago, M.; Wilson, C.; Maldonado, M.; Rojas, A. Rendimiento de trébol blanco asociado con pasto ovillo a diferentes frecuencias de pastoreo. Rev. Mex. Cienc. AgríColas 2020, 24, 1–12. [Google Scholar]
- Chapman, D.F.; Parsons, A.J.; Schwinning, S. Management of clover in grazed pastures: Expectations, limitations and opportunities. Nzga Res. Pract. Ser. 1995, 6, 55–64. [Google Scholar] [CrossRef]
- Inga, E.L.; Cruz, M.O.; Fernández, P.H.; Guerra, R.U.; Arce, V.V.; Acosta, M.H. Comportamiento agronómico y composición nutricional de diez variedades de pastos mejorados. Idesia (Arica) 2021, 39, 131–138. [Google Scholar] [CrossRef]
- García, A.R.R.; Garay, A.H.; Jacobo, M.A.R.; Pedroza, S.I.M.; de los Ángeles Maldonado Peralta, M.; Cancino, S.J. Population dynamics of orchard grass stalks (Dactylis glomerata L.) and perennial ryegrass (Lolium perenne L.) associated with white clover (Trifolium repens L.). Rev. Fac. Cienc. Agrar. 2017, 49, 35–49. [Google Scholar]
- Fernández, L.A.V.; García, W.Y.A.; Arana, M.P.; Odriozola, S.S.; Guillén-Sanchez, R.; Patiño, C.P.; Valdivia, J.B.; Ticllacuri, R.G. Comportamiento productivo y valor nutricional de siete genotipos de trébol en tres pisos altitudinales de la sierra norte del Perú. Rev. Investig. Vet. Perú 2021, 32, e17690. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Tomasoni, C. Optimizing legume content and forage yield of mown white clover–Italian ryegrass mixtures through nitrogen fertilization and grass row spacing. Grass Forage Sci. 2010, 65, 220–226. [Google Scholar] [CrossRef]
- Vallejos-Fernández, L.A.; Alvarez, W.Y.; Paredes-Arana, M.E.; Pinares-Patiño, C.; Bustíos-Valdivia, J.C.; Vásquez, H.; García-Ticllacuri, R. Productive behavior and nutritional value of 22 genotypes of ryegrass (Lolium spp.) on three high Andean floors of northern Peru. Sci. Agropecu. 2020, 11, 537–545. [Google Scholar] [CrossRef]
- Oliva, M.; Valqui, L.; Meléndez, J.; Milla, M.; Leiva, S.; Collazos, R.; Maicelo, J. Influence of arboreal native species on silvopastoral systems on the yield and nutritional value of Lolium multiflorum and Trifolium repens. Sci. Agropecu. 2018, 9, 579–583. [Google Scholar] [CrossRef]
- López, D.F.; Masmela, I.A.B.; Molano, C.E.R.; Vivas-Quila, N.J. Effect of the recovery period on the production and nutritional quality of some forage species. Biotecnol. Sect. Agropecu. Agroind. 2020, 18, 135. [Google Scholar] [CrossRef]
- Ganderats, S.; Hepp, C. Growth patterns of Lolium perenne, Festuca arundinacea and Dactylis glomerata in the Intermediate Zone of Aysén. Agric. TéCnica (Chile) 2003, 63, 259–265. [Google Scholar]
- Balocchi, O.; Kusanovic, K.; Loaiza, P.; López, I. Dinámica de crecimiento y calidad nutritiva de una pradera de Lolium perenne L. sometida a diferentes frecuencias de defoliación: Periodo primavera-verano. Agro Sur 2013, 41, 11–21. [Google Scholar] [CrossRef]
- Han, D.R.; Yao, T.; Li, H.Y.; Huang, S.C.; Yang, Y.S.; Gao, Y.M.; Li, C.N.; Zhang, Y.C. Effects of combined application of microbial fertilizer and chemical fertilizer on the growth of Lolium perenne. Acta Pratacult. Sin. 2022, 31, 136–143. [Google Scholar]
- Doussoulin, M.; Guajardo, C.; Campos, J.; Salazar, S. Evaluación agronómica de cultivares de trébol blanco (Trifolium repens) asociado a Ballica perenne (Lolium perenne), bajo condiciones de corte en condicones de riego, Ñuble, Chile. Arch. Latinoam. Prod. Anim. 2018, 26, 36. [Google Scholar]
- Ergon, Å.; Kirwan, L.; Bleken, M.A.; Skjelvåg, A.O.; Collins, R.P.; Rognli, O.A. Species interactions in a grassland mixture under low nitrogen fertilization and two cutting frequencies: 1. dry-matter yield and dynamics of species composition. Grass Forage Sci. 2016, 71, 667–682. [Google Scholar] [CrossRef]
- Fernández, L.A.V. Efecto de la Fertilización Fosforada y Frecuencia de Pastoreo Sobre el Valor Nutritivo de la Dieta y Comportamiento Ingestivo de las Vacas Holstein en Pasturas de Ryegrass-tréBol en Cajamarca; Universidad Nacional Agraria la Molina: La Molina, Perú, 2009. [Google Scholar]
- Fernández, L.A.V.; Guevara, I.B.R.; Gaitán, J.A.P.; Mendoza, J.A. Vacas pastoreadas a estaca y su efecto sobre el consumo y condición de la pastura. UCV-Scientia 2020, 11, 28–31. [Google Scholar] [CrossRef]
- Senamhi. Datos Hidrometeorológicos a Nivel Nacional. 2024. Available online: https://www.senamhi.gob.pe/?p=estaciones (accessed on 13 May 2024).
- AOAC. Método, AOAC. 928.08—“Kjeldahl method”. In Official Methods of Analysis of AOAC International, 19th ed.; Latimer, G.W., Ed.; AOAC International: Rockville, MD, USA; p. 5.
- Horwitz, W.; Latimer, G. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 2010; Volume 222. [Google Scholar]
- Thiex, N.; Novotny, L.; Crawford, A. Determination of ash in animal feed: AOAC official method 942.05 revisited. J. AOAC Int. 2012, 95, 1392–1397. [Google Scholar] [CrossRef]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Mabjeesh, S.; Cohen, M.; Arieli, A. In Vitro Methods for Measuring the Dry Matter Digestibility of Ruminant Feedstuffs: Comparison of Methods and Inoculum Source. J. Dairy Sci. 2000, 83, 2289–2294. [Google Scholar] [CrossRef]
- Posit Team. RStudio: Integrated Development Environment for R; Posit Software; PBC: Boston, MA, USA, 2024. [Google Scholar]
- Vera-Villalobos, H.; Lunario-Delgado, L.; Pérez-Retamal, D.; Román, D.; Leiva, J.C.; Zamorano, P.; Mercado-Seguel, A.; Gálvez, A.S.; Benito, C.; Wulff-Zottele, C. Sulfate nutrition improves short-term Al3+-stress tolerance in roots of Lolium perenne L. Plant Physiol. Biochem. 2020, 148, 103–113. [Google Scholar] [CrossRef]
Factors | Biomass (Kg × ha−1) | Plant Height (cm) | |||
---|---|---|---|---|---|
Day | Cut | Year | Ryegrass | Clover | |
Grazing frequency (days) | |||||
30 | 84.37 | 2531.20 c | 30,796.7 | 20.35 c | 10.23 c |
45 | 88.69 | 3991.00 b | 32,371.7 | 32.54 b | 14.54 b |
60 | 91.85 | 5511.26 a | 33,527 | 47.12 a | 18.25 a |
SE | 3.83 | 138.91 | 1398.76 | 3.13 | 0.91 |
p value | 0.4562 | 0.0003 | 0.4565 | 0.0002 | 0.0001 |
Time of year | |||||
Rainy | 96.11 a | 4360.33 | 35,140.27 a | 32.49 | 14.96 |
Dry | 79.89 b | 3648.22 | 29,592.55 b | 34.18 | 13.7 |
SE | 3.71 | 496.77 | 1036.54 | 4.8 | 1.41 |
p value | 0.008 | 0.328 | 0.0002 | 0.8071 | 0.542 |
Factors | Lolium multiflorum L. | Trifolium repens | |||||
---|---|---|---|---|---|---|---|
Number of Tillers | Number of Ears | Basal Diameter | Elongation Rate (cm × day−1) | Growing Points (m2) | Internode Length (cm) | Number of Flower Heads (m2) | |
Grazing frequency (days) | |||||||
30 | 101 | 3.54 b | 34.00 a | 0.44 c | 15.33 | 0.91 b | 22.02 |
45 | 174.89 | 11.30 b | 44.11 b | 0.59 b | 20.0 | 1.32 b | 42.11 |
60 | 128.44 | 30.61 a | 43.44 b | 0.89 a | 24.0 | 2.28 a | 44.44 |
SE | 24.48 | 2.51 | 1.41 | 0.01 | 1.99 | 0.136 | 8.38 |
p value | 0.2136 | 0.0037 | 0.0122 | 0.0000 | 0.0871 | 0.0048 | 0.2310 |
Factors | Ryegrass | Clover | Weeds | Rate R:C |
---|---|---|---|---|
Grazing frequency (days) | ||||
30 | 62.93 ab | 20.21 | 16.81 a | 3.34 |
45 | 60.49 a | 21.66 | 17.61 a | 3 |
60 | 74.94 b | 16.67 | 8.61 b | 5.47 |
SE | 3.26 | 2.52 | 1.84 | 0.77 |
p value | 0.0174 | 0.3822 | 0.0074 | 0.0816 |
Time of year | ||||
Rainy | 69.46 | 15.20 a | 15.31 | 5.13 b |
Dry | 62.78 | 23.82 b | 13.37 | 2.73 a |
SE | 3.27 | 1.38 | 2.08 | 0.57 |
p value | 0.1702 | 0.0006 | 0.5187 | 0.0102 |
Species/Grazing Frequency (Days) | CP (%) | Ash (%) | NDF (%) | IVDDM (%) | ME (Mcal/kg MS) | Kg CP × ha × Year |
---|---|---|---|---|---|---|
Ryegrass | ||||||
30 | 13.99 a | 12.42 a | 36.90 a | 72.74 a | 2.75 a | 2710.57 ab |
45 | 12.34 ab | 9.79 b | 40.84 a | 69.92 a | 2.61 a | 2416.27 a |
60 | 11.36 b | 8.60 b | 45.87 b | 61.91 b | 2.26 b | 2855.20 b |
SE | 0.38 | 0.52 | 1.05 | 0.86 | 0.04 | 83.75 |
p value | 0.008 | 0.0052 | 0.0028 | 0.0003 | 0.0002 | 0.026 |
Clover | ||||||
30 | 27.32 a | 11.03 | 22.34 a | 75.96 a | 2.91 a | 1700.57 a |
45 | 26.43 a | 12.58 | 28.33 b | 72.71 b | 2.77 b | 1853.40 a |
60 | 21.43 b | 11.41 | 35.34 c | 69.59 c | 2.61 c | 1199.57 b |
SE | 0.88 | 0.71 | 1.07 | 0.66 | 0.03 | 51.97 |
p value | 0.0066 | 0.343 | 0.0004 | 0.0015 | 0.001 | 0.0003 |
Weeds | ||||||
30 | 17.35 a | 10.94 | 38.02 a | 69.80 a | 2.65 a | 898.17 a |
45 | 16.65 ab | 13.58 | 43.16 b | 68.35 ab | 2.56 ab | 949.53 a |
60 | 12.64 b | 12.08 | 54.08 c | 64.08 b | 2.37 b | 365.07 b |
SE | 0.93 | 0.65 | 0.91 | 1.07 | 0.05 | 45.66 |
p value | 0.0237 | 0.062 | 0.0000 | 0.0221 | 0.0167 | 0.0002 |
Association | ||||||
30 | 17.24 a | 11.89 a | 34.13 a | 72.86 a | 2.77 a | 5309.29 a |
45 | 16.12 a | 11.04 a | 38.44 b | 70.08 a | 2.63 a | 5219.19 a |
60 | 13.18 b | 9.47 b | 44.93 c | 63.52 b | 2.34 b | 4419.87 b |
SE | 0.45 | 0.31 | 0.8 | 0.77 | 0.04 | 145.18 |
p value | 0.0017 | 0.0044 | 0.0002 | 0.0004 | 0.0004 | 0.0091 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vallejos-Cacho, R.; Vallejos-Fernández, L.A.; Alvarez-García, W.Y.; Tapia-Acosta, E.A.; Saldanha-Odriozola, S.; Quilcate-Pairazaman, C.E. Sustainability of Lolium multiflorum L. ‘Cajamarquino Ecotype’, Associated with Trifolium repens L., at Three Cutting Frequencies in the Northern Highlands of Peru. Sustainability 2024, 16, 6927. https://doi.org/10.3390/su16166927
Vallejos-Cacho R, Vallejos-Fernández LA, Alvarez-García WY, Tapia-Acosta EA, Saldanha-Odriozola S, Quilcate-Pairazaman CE. Sustainability of Lolium multiflorum L. ‘Cajamarquino Ecotype’, Associated with Trifolium repens L., at Three Cutting Frequencies in the Northern Highlands of Peru. Sustainability. 2024; 16(16):6927. https://doi.org/10.3390/su16166927
Chicago/Turabian StyleVallejos-Cacho, Romy, Luis Asunción Vallejos-Fernández, Wuesley Yusmein Alvarez-García, Eduardo Alberto Tapia-Acosta, Sylvia Saldanha-Odriozola, and Carlos Enrique Quilcate-Pairazaman. 2024. "Sustainability of Lolium multiflorum L. ‘Cajamarquino Ecotype’, Associated with Trifolium repens L., at Three Cutting Frequencies in the Northern Highlands of Peru" Sustainability 16, no. 16: 6927. https://doi.org/10.3390/su16166927
APA StyleVallejos-Cacho, R., Vallejos-Fernández, L. A., Alvarez-García, W. Y., Tapia-Acosta, E. A., Saldanha-Odriozola, S., & Quilcate-Pairazaman, C. E. (2024). Sustainability of Lolium multiflorum L. ‘Cajamarquino Ecotype’, Associated with Trifolium repens L., at Three Cutting Frequencies in the Northern Highlands of Peru. Sustainability, 16(16), 6927. https://doi.org/10.3390/su16166927