Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = run and tumble

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 301 KiB  
Article
Entropy Production of Run-and-Tumble Particles
by Matteo Paoluzzi, Andrea Puglisi and Luca Angelani
Entropy 2024, 26(6), 443; https://doi.org/10.3390/e26060443 - 24 May 2024
Cited by 3 | Viewed by 1437
Abstract
We analyze the entropy production in run-and-tumble models. After presenting the general formalism in the framework of the Fokker–Planck equations in one space dimension, we derive some known exact results in simple physical situations (free run-and-tumble particles and harmonic confinement). We then extend [...] Read more.
We analyze the entropy production in run-and-tumble models. After presenting the general formalism in the framework of the Fokker–Planck equations in one space dimension, we derive some known exact results in simple physical situations (free run-and-tumble particles and harmonic confinement). We then extend the calculation to the case of anisotropic motion (different speeds and tumbling rates for right- and left-oriented particles), obtaining exact expressions of the entropy production rate. We conclude by discussing the general case of heterogeneous run-and-tumble motion described by space-dependent parameters and extending the analysis to the case of d-dimensional motions. Full article
(This article belongs to the Collection Disorder and Biological Physics)
Show Figures

Figure 1

17 pages, 5732 KiB  
Article
Motility in Periweissella Species: Genomic and Phenotypic Characterization and Update on Motility in Lactobacillaceae
by Francesca Fanelli, Marco Montemurro, Daniele Chieffi, Gyu-Sung Cho, Hui-Zhi Low, Frank Hille, Charles M. A. P. Franz and Vincenzina Fusco
Microorganisms 2023, 11(12), 2923; https://doi.org/10.3390/microorganisms11122923 - 5 Dec 2023
Cited by 2 | Viewed by 1702
Abstract
The genus Weissella and the recently described genus Periweissella, to which some previously named Weissella species have been reclassified as a result of a taxogenomic assessment, includes lactic acid bacteria species with high biotechnological and probiotic potential. Only one species, namely, Periweissella [...] Read more.
The genus Weissella and the recently described genus Periweissella, to which some previously named Weissella species have been reclassified as a result of a taxogenomic assessment, includes lactic acid bacteria species with high biotechnological and probiotic potential. Only one species, namely, Periweissella (P.) beninensis, whose type strain has been shown to possess probiotic features, has so far been described to be motile. However, the availability of numerous genome sequences of Weissella and Periweissella species prompted the possibility to screen for the presence of the genetic determinants encoding motility in Weissella and Periweissellas spp. other than P. beninensis. Herein, we performed a comprehensive genomic analysis to identify motility-related proteins in all Weissella and Periweissella species described so far, and extended the analysis to the recently sequenced Lactobacillaceae spp. Furthermore, we performed motility assays and transmission electron microscopy (TEM) on Periweissella type strains to confirm the genomic prediction. The homology-based analysis revealed genes coding for motility proteins only in the type strains of P. beninensis, P. fabalis, P. fabaria and P. ghanensis genomes. However, only the P. beninensis type strain was positive in the motility assay and displayed run-and-tumble behavior. Many peritrichous and long flagella on bacterial cells were visualized via TEM, as well. As for the Lactobacillaceae, in addition to the species previously described to harbor motility proteins, the genetic determinants of motility were also found in the genomes of the type strains of Lactobacillus rogosae and Ligilactobacillus salitolerans. This study, which is one of the first to analyze the genomes of Weissella, Periweissella and the recently sequenced Lactobacillaceae spp. for the presence of genes coding for motility proteins and which assesses the associated motility phenotypes, provides novel results that expand knowledge on these genera and are useful in the further characterization of lactic acid bacteria. Full article
Show Figures

Figure 1

17 pages, 3867 KiB  
Article
Silver Ions Inhibit Bacterial Movement and Stall Flagellar Motor
by Benjamin Russell, Ariel Rogers, Ryan Yoder, Matthew Kurilich, Venkata Rao Krishnamurthi, Jingyi Chen and Yong Wang
Int. J. Mol. Sci. 2023, 24(14), 11704; https://doi.org/10.3390/ijms241411704 - 20 Jul 2023
Cited by 4 | Viewed by 2112
Abstract
Silver (Ag) in different forms has been gaining broad attention due to its antimicrobial activities and the increasing resistance of bacteria to commonly prescribed antibiotics. However, various aspects of the antimicrobial mechanism of Ag have not been understood, including how Ag affects bacterial [...] Read more.
Silver (Ag) in different forms has been gaining broad attention due to its antimicrobial activities and the increasing resistance of bacteria to commonly prescribed antibiotics. However, various aspects of the antimicrobial mechanism of Ag have not been understood, including how Ag affects bacterial motility, a factor intimately related to bacterial virulence. Here, we report our study on how Ag+ ions affect the motility of E. coli bacteria using swimming, tethering, and rotation assays. We observed that the bacteria slowed down dramatically by >70% when subjected to Ag+ ions, providing direct evidence that Ag+ ions inhibit the motility of bacteria. In addition, through tethering and rotation assays, we monitored the rotation of flagellar motors and observed that the tumbling/pausing frequency of bacteria increased significantly by 77% in the presence of Ag+ ions. Furthermore, we analyzed the results from the tethering assay using the hidden Markov model (HMM) and found that Ag+ ions decreased bacterial tumbling/pausing-to-running transition rate significantly by 75%. The results suggest that the rotation of bacterial flagellar motors was stalled by Ag+ ions. This work provided a new quantitative understanding of the mechanism of Ag-based antimicrobial agents in bacterial motility. Full article
(This article belongs to the Special Issue Flagella 2.0)
Show Figures

Figure 1

19 pages, 8271 KiB  
Article
Experimental and CFD Investigation of Fuel Mixing in an Optical-Access Direct-Injection NG Engine and Correlation with Test Rig Combustion and Performance Data
by Daniela Misul, Mirko Baratta, Jiajie Xu, Alois Fuerhapter and Rene Heindl
Energies 2023, 16(7), 3004; https://doi.org/10.3390/en16073004 - 25 Mar 2023
Cited by 4 | Viewed by 2175
Abstract
The present paper is the result of a cooperation between Politecnico di Torino and AVL List Gmbh within a recent collaborative research project funded by the EC. The research work was focused on the experimental and numerical characterization of mixture formation, combustion, and [...] Read more.
The present paper is the result of a cooperation between Politecnico di Torino and AVL List Gmbh within a recent collaborative research project funded by the EC. The research work was focused on the experimental and numerical characterization of mixture formation, combustion, and emissions in direct-injection NG engines, to draw useful indication for the design of innovative, high-performance engine concepts. As a matter of fact, direct-injection IC engines running on NG are believed to be a competitive transition solution towards a sustainable mobility scenario, given their maturity, technological readiness, and flexibility with respect to the fuel quality. Moreover, gaseous-fuel engines can further decrease their carbon footprint if blending of natural gas with hydrogen is considered. Provided that mixture formation represents a key aspect for the design of direct-injection engines, the activity presented in this paper is focused on the characterization of NG injection and on the mixing process, as well as the impact these latter hold on the combustion process as well as on engine-out emissions. The mixture formation process was analyzed by means of combined CFD and optical investigations. Furthermore, a full version of the engine was tested on a dynamic test rig, providing quantitative information on the engine performance and emission characteristics. The CFD results highlighted the correlation between the mixture homogeneity and the combustion stability and hinted at a relevant impact of the jet characteristics on the air charge tumble and turbulence characteristics. Full article
(This article belongs to the Special Issue Experiments and Simulations of Combustion Process)
Show Figures

Figure 1

23 pages, 4500 KiB  
Review
Cyanobacteria: Model Microorganisms and Beyond
by Malihe Mehdizadeh Allaf and Hassan Peerhossaini
Microorganisms 2022, 10(4), 696; https://doi.org/10.3390/microorganisms10040696 - 24 Mar 2022
Cited by 81 | Viewed by 16804
Abstract
In this review, the general background is provided on cyanobacteria, including morphology, cell membrane structure, and their photosynthesis pathway. The presence of cyanobacteria in nature, and their industrial applications are discussed, and their production of secondary metabolites are explained. Biofilm formation, as a [...] Read more.
In this review, the general background is provided on cyanobacteria, including morphology, cell membrane structure, and their photosynthesis pathway. The presence of cyanobacteria in nature, and their industrial applications are discussed, and their production of secondary metabolites are explained. Biofilm formation, as a common feature of microorganisms, is detailed and the role of cell diffusion in bacterial colonization is described. Then, the discussion is narrowed down to cyanobacterium Synechocystis, as a lab model microorganism. In this relation, the morphology of Synechocystis is discussed and its different elements are detailed. Type IV pili, the complex multi-protein apparatus for motility and cell-cell adhesion in Synechocystis is described and the underlying function of its different elements is detailed. The phototaxis behavior of the cells, in response to homogenous or directional illumination, is reported and its relation to the run and tumble statistics of the cells is emphasized. In Synechocystis suspensions, there may exist a reciprocal interaction between the cell and the carrying fluid. The effects of shear flow on the growth, doubling per day, biomass production, pigments, and lipid production of Synechocystis are reported. Reciprocally, the effects of Synechocystis presence and its motility on the rheological properties of cell suspensions are addressed. This review only takes up the general grounds of cyanobacteria and does not get into the detailed biological aspects per se. Thus, it is substantially more comprehensive in that sense than other reviews that have been published in the last two decades. It is also written not only for the researchers in the field, but for those in physics and engineering, who may find it interesting, useful, and related to their own research. Full article
(This article belongs to the Special Issue Cyanobacteria and Their Phages in the Aquatic Ecosystem)
Show Figures

Figure 1

25 pages, 5439 KiB  
Article
Does the Rainbow Trout Ovarian Fluid Promote the Spermatozoon on Its Way to the Egg?
by Vitaliy Kholodnyy, Borys Dzyuba, Marek Rodina, Hermes Bloomfield-Gadêlha, Manabu Yoshida, Jacky Cosson and Sergii Boryshpolets
Int. J. Mol. Sci. 2021, 22(17), 9519; https://doi.org/10.3390/ijms22179519 - 1 Sep 2021
Cited by 7 | Viewed by 3751
Abstract
The fertilization of freshwater fish occurs in an environment that may negatively affect the gametes; therefore, the specific mechanisms triggering the encounters of gametes would be highly expedient. The egg and ovarian fluid are likely the major sources of these triggers, which we [...] Read more.
The fertilization of freshwater fish occurs in an environment that may negatively affect the gametes; therefore, the specific mechanisms triggering the encounters of gametes would be highly expedient. The egg and ovarian fluid are likely the major sources of these triggers, which we confirmed here for rainbow trout (Oncorhynchus mykiss). The ovarian fluid affected significantly spermatozoa performance: it supported high velocity for a longer period and changed the motility pattern from tumbling in water to straightforward moving in the ovarian fluid. Rainbow trout ovarian fluid induced a trapping chemotaxis-like effect on activated male gametes, and this effect depended on the properties of the activating medium. The interaction of the spermatozoa with the attracting agents was accompanied by the “turn-and-run” behavior involving asymmetric flagellar beating and Ca2+ concentration bursts in the bent flagellum segment, which are characteristic of the chemotactic response. Ovarian fluid created the optimal environment for rainbow trout spermatozoa performance, and the individual peculiarities of the egg (ovarian fluid)–sperm interaction reflect the specific features of the spawning process in this species. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Sperm Activation)
Show Figures

Figure 1

20 pages, 4278 KiB  
Article
Fluctuations in Intracellular CheY-P Concentration Coordinate Reversals of Flagellar Motors in E. coli
by Yong-Suk Che, Takashi Sagawa, Yuichi Inoue, Hiroto Takahashi, Tatsuki Hamamoto, Akihiko Ishijima and Hajime Fukuoka
Biomolecules 2020, 10(11), 1544; https://doi.org/10.3390/biom10111544 - 12 Nov 2020
Cited by 10 | Viewed by 3572
Abstract
Signal transduction utilizing membrane-spanning receptors and cytoplasmic regulator proteins is a fundamental process for all living organisms, but quantitative studies of the behavior of signaling proteins, such as their diffusion within a cell, are limited. In this study, we show that fluctuations in [...] Read more.
Signal transduction utilizing membrane-spanning receptors and cytoplasmic regulator proteins is a fundamental process for all living organisms, but quantitative studies of the behavior of signaling proteins, such as their diffusion within a cell, are limited. In this study, we show that fluctuations in the concentration of the signaling molecule, phosphorylated CheY, constitute the basis of chemotaxis signaling. To analyze the propagation of the CheY-P signal quantitatively, we measured the coordination of directional switching between flagellar motors on the same cell. We analyzed the time lags of the switching of two motors in both CCW-to-CW and CW-to-CCW switching (∆τCCW-CW and ∆τCW-CCW). In wild-type cells, both time lags increased as a function of the relative distance of two motors from the polar receptor array. The apparent diffusion coefficient estimated for ∆τ values was ~9 µm2/s. The distance-dependency of ∆τCW-CCW disappeared upon loss of polar localization of the CheY-P phosphatase, CheZ. The distance-dependency of the response time for an instantaneously applied serine attractant signal also disappeared with the loss of polar localization of CheZ. These results were modeled by calculating the diffusion of CheY and CheY-P in cells in which phosphorylation and dephosphorylation occur in different subcellular regions. We conclude that diffusion of signaling molecules and their production and destruction through spontaneous activity of the receptor array generates fluctuations in CheY-P concentration over timescales of several hundred milliseconds. Signal fluctuation coordinates rotation among flagella and regulates steady-state run-and-tumble swimming of cells to facilitate efficient responses to environmental chemical signals. Full article
(This article belongs to the Special Issue Perspectives on Bacterial Flagellar Motor)
Show Figures

Graphical abstract

18 pages, 5186 KiB  
Article
Numerical Investigation of the Effect of Incorporated Guide Vane Length with SCC Piston for High-Viscosity Fuel Applications
by Mohd Fadzli Hamid, Mohamad Yusof Idroas, Mazlan Mohamed, Shukriwani Sa'ad, Teoh Yew Heng, Sharzali Che Mat, Muhamad Azman Miskam, Zainal Alimuddin Zainal Alauddin and Muhammad Khalil Abdullah
Processes 2020, 8(11), 1328; https://doi.org/10.3390/pr8111328 - 22 Oct 2020
Cited by 3 | Viewed by 3789
Abstract
Compression ignition (CI) engines that run on high-viscosity fuels (HVF) like emulsified biofuels generally demonstrate poor engine performance. An engine with a consistently low performance, in the long run, will have a negative effect on its lifespan. Poor combustion in engines occurs mainly [...] Read more.
Compression ignition (CI) engines that run on high-viscosity fuels (HVF) like emulsified biofuels generally demonstrate poor engine performance. An engine with a consistently low performance, in the long run, will have a negative effect on its lifespan. Poor combustion in engines occurs mainly due to the production of less volatile, less flammable, denser, and heavier molecules of HVF during injection. This paper proposes a guide vane design (GVD) to be installed at the intake manifold, which is incorporated with a shallow depth re-entrance combustion chamber (SCC) piston. This minor modification will be advantageous in improving the evaporation, diffusion, and combustion processes in the engine to further enhance its performance. The CAD models of the GVD and SCC piston were designed using SolidWorks 2018 while the flow run analysis of the cold flow CI engine was conducted using ANSYS Fluent Version 15. In this study, five designs of the GVD with varying lengths of the vanes from 0.6D (L) to 3.0D (L) were numerically evaluated. The GVD design with 0.6D (L) demonstrated improved turbulence kinetic energy (TKE) as well as swirl (Rs), tumble (RT), and cross tumble (RCT) ratios in the fuel-injected zone compared to other designs. The suggested improvements in the design would enhance the in-cylinder airflow characteristics and would be able to break up the penetration length of injection to mix in the wider area of the piston-bowl. Full article
(This article belongs to the Special Issue CFD Applications in Energy Engineering Research and Simulation)
Show Figures

Figure 1

17 pages, 3977 KiB  
Article
Processing of Biltong (Dried Beef) to Achieve USDA-FSIS 5-log Reduction of Salmonella without a Heat Lethality Step
by Caitlin E. Karolenko, Arjun Bhusal, Jacob L. Nelson and Peter M. Muriana
Microorganisms 2020, 8(5), 791; https://doi.org/10.3390/microorganisms8050791 - 25 May 2020
Cited by 7 | Viewed by 7566
Abstract
In the US, dried beef products (beef jerky) are a popular snack product in which the manufacture often requires the use of a heat lethality step to provide adequate reduction of pathogens of concern (i.e., 5-log reduction of Salmonella as recommended by the [...] Read more.
In the US, dried beef products (beef jerky) are a popular snack product in which the manufacture often requires the use of a heat lethality step to provide adequate reduction of pathogens of concern (i.e., 5-log reduction of Salmonella as recommended by the United States Department of Agriculture Food Safety and Inspection Service (USDA-FSIS)). Biltong, a South African-style dried beef product, is manufactured with low heat and humidity. Our objectives were to examine processes for the manufacture of biltong that achieves a 5-log reduction of Salmonella without a heat lethality step and with, or without, the use of additional antimicrobials. Beef pieces (1.9 cm × 5.1 cm × 7.6 cm) were inoculated with a 5-serovar mixture of Salmonella (Salmonella Thompson 120, Salmonella Heidelberg F5038BG1, Salmonella Hadar MF60404, Salmonella Enteritidis H3527, and Salmonella Typhimurium H3380), dipped in antimicrobial solutions (lactic acid, acidified calcium sulfate, sodium acid sulfate) or water (no additional antimicrobial), and marinaded while vacuum tumbling and/or while held overnight at 5 °C. After marination, beef pieces were hung in an oven set at 22.2 °C (72 °F), 23.9 °C (75 °F), or 25 °C (77 °F) depending on the process, and maintained at 55% relative humidity. Beef samples were enumerated for Salmonella after inoculation, after dip treatment, after marination, and after 2, 4, 6, and 8 days of drying. Water activity was generally <0.85 by the end of 6–8 days of drying and weight loss was as high as 60%. Trials also examined salt concentration (1.7%, 2.2%, 2.7%) and marinade vinegar composition (2%, 3%, 4%) in the raw formulation. Nearly all approaches achieved 5-log10 reduction of Salmonella and was attributed to the manner of microbial enumeration eliminating the effects of microbial concentration on dried beef due to moisture loss. All trials were run as multiple replications and statistical analysis of treatments were determined by repeated measures analysis of variance (RM-ANOVA) to determine significant differences (p < 0.05). We believe this is the first published report of a biltong process achieving >5.0 log10 reduction of Salmonella which is a process validation requirement of USDA-FSIS for the sale of dried beef in the USA. Full article
(This article belongs to the Special Issue Antimicrobial Interventions for Raw and Processed Foods)
Show Figures

Figure 1

17 pages, 4381 KiB  
Article
Numerical Investigation of Fluid Flow and In-Cylinder Air Flow Characteristics for Higher Viscosity Fuel Applications
by Mohd Fadzli Hamid, Mohamad Yusof Idroas, Shukriwani Sa’ad, Teoh Yew Heng, Sharzali Che Mat, Zainal Alimuddin Zainal Alauddin, Khairul Akmal Shamsuddin, Raa Khimi Shuib and Muhammad Khalil Abdullah
Processes 2020, 8(4), 439; https://doi.org/10.3390/pr8040439 - 8 Apr 2020
Cited by 9 | Viewed by 4512
Abstract
Generally, the compression ignition (CI) engine that runs with emulsified biofuel (EB) or higher viscosity fuel experiences inferior performance and a higher emission compared to petro diesel engines. The modification is necessary to standard engine level in order to realize its application. This [...] Read more.
Generally, the compression ignition (CI) engine that runs with emulsified biofuel (EB) or higher viscosity fuel experiences inferior performance and a higher emission compared to petro diesel engines. The modification is necessary to standard engine level in order to realize its application. This paper proposes a guide vane design (GVD), which needs to be installed in the intake manifold, is incorporated with shallow depth re-entrance combustion chamber (SCC) pistons. This will organize and develop proper in-cylinder airflow to promote better diffusion, evaporation and combustion processes. The model of GVD and SCC piston was designed using SolidWorks 2017; while ANSYS Fluent version 15 was utilized to run a 3D analysis of the cold flow IC engine. In this research, seven designs of GVD with the number of vanes varied from two to eight vanes (V2–V8) are used. The four-vane model (V4) has shown an excellent turbulent flow as well as swirl, tumble and cross tumble ratios in the fuel-injected region compared to other designs. This is indispensable to break up heavier fuel molecules of EB to mix with the air that will eventually improve engine performance. Full article
Show Figures

Figure 1

15 pages, 6909 KiB  
Article
A Hexapod Robot with Non-Collocated Actuators
by Min-Chan Hwang, Chiou-Jye Huang and Feifei Liu
Appl. Syst. Innov. 2018, 1(3), 20; https://doi.org/10.3390/asi1030020 - 25 Jun 2018
Cited by 4 | Viewed by 4801
Abstract
The primary issue in developing hexapod robots is generating legged motion without tumbling. However, when the hexapod is designed with collocated actuators, where each joint is directly mounted with an actuator, the number of actuators is usually high. The adverse effects of using [...] Read more.
The primary issue in developing hexapod robots is generating legged motion without tumbling. However, when the hexapod is designed with collocated actuators, where each joint is directly mounted with an actuator, the number of actuators is usually high. The adverse effects of using a great number of actuators include the rise in the challenge of algorithms to control legged motion, the decline in loading capacity, and the increase in the cost of construction. In order to alleviate these problems, we propose a hexapod robot design with non-collocated actuators which is achieved through mechanisms. This hexapod robot is reliable and robust which, because of its mechanism-generated (as opposed to computer-generated) tripod gaits, is always is statically stable, even if running out of battery or due to electronic failure. Full article
(This article belongs to the Special Issue Selected papers from IEEE ICASI 2018)
Show Figures

Figure 1

Back to TopTop