# A Hexapod Robot with Non-Collocated Actuators

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Design Issues

## 3. Mechanism

## 4. Tripod Gaits

## 5. Modeling and Analysis

## 6. Hardware Configuration

## 7. Software Development

`iface eth0 auto wlan0`

`inet dhcp`

`wpa-ssid “User’s Identification”`

`wpa-psk “User’s Password”`

`#sudo/etc/init.d/networking restart (or #sudo service networking restart)`

`#ssh xx.xx.xx.xx –p 22 –l pi`

## 8. Simulation and Testing

## 9. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- McGhee, R.B. Some finite state aspect of legged locomotion. Math. Biosci.
**1968**, 2, 67–84. [Google Scholar] [CrossRef] - McGhee, R.B.; Frank, A.A. On the stability properties of quadruped creeping gaits. Math. Biosci.
**1968**, 3, 331–351. [Google Scholar] [CrossRef] - Orin, D. Interactive Control of a Six-Legged Vehicle with Optimization of Both Stability and Energy. Ph.D Thesis, Ohio State University, Columbus, OH, USA, 1976. [Google Scholar]
- Kar, D.C. Design of statically stable walking robot: A review. J. Robot. Syst.
**2003**, 20, 617–686. [Google Scholar] [CrossRef] - Moosavian, S.A.A.; Dabiri, A. Dynamics and planning for stable motion of a hexapod robot. In Proceedings of the 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Montreal, QC, Canada, 6–9 July 2010; pp. 818–823. [Google Scholar]
- Lee, T.T.; Liao, C.M.; Chen, T.K. On the stability properties of hexapod tripod gait. IEEE J. Robot. Autom.
**1988**, 4, 427–434. [Google Scholar] [CrossRef] - Vukobratovic, M.; Juricic, D. Contribution to the synthesis of biped gait. IEEE Trans. Biomed. Eng.
**1969**, BME-16, 1–6. [Google Scholar] [CrossRef] - Vukobratovi´c, M.; Borovac, B. Zero-moment point—Thirty five years of its life. Int. J. Hum. Robot.
**2004**, 1, 157–173. [Google Scholar] [CrossRef] - Zadeh, L.A. Fuzzy Sets. Inf. Control
**1965**, 8, 338–353. [Google Scholar] [CrossRef] - Mamdani, E.H. Application of Fuzzy Algorithm for Control of Simple Dynamic Plants. Proc. IEEE
**1974**, 121, 1585–1588. [Google Scholar] [CrossRef] - Kaufmann, A.; Gupta, M.M. Introduction to Fuzzy Arithmetic Theory and Applications; Van Nostrand Reinhold: New York, NY, USA, 1991. [Google Scholar]
- Mamdani, E. Fuzzy Reasoning and Its Applications; Academic Press: Cambridge, MA, USA, 1981. [Google Scholar]
- Matia, F.; Jimenez, A.; Galan, R.; Sanz, R. Fuzzy Controllers: Lifting the linear-nonlinear frontier. Fuzzy Sets Syst.
**1992**, 52, 113–128. [Google Scholar] [CrossRef] - Matia, F.; Jimenez, A. On Optimal Implementation of Fuzzy Controllers. Int. J. Intell. Control Syst.
**1996**, 1, 407–415. [Google Scholar] [CrossRef] - Hecht-Nielsen, R. Neurocomputing; Addison-Wesley: Reading, NY, USA, 1989. [Google Scholar]
- Wasserman, P.D. Neural Computing, Theory and Practice; Van Nostrand Reinhold: New York, NY, USA, 1989. [Google Scholar]
- Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithm; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Matsuoka, K. Mechanisms of frequency and pattern control in the neural rhythm generators. Biol. Cybern.
**1987**, 56, 345–353. [Google Scholar] [CrossRef] [PubMed] - Haojun, Z.; Xiuli, Z. Biologically-Inspired Motion Control Theory and Its Application for a Legged-Robot; University Press: Beijing, China, 2004. [Google Scholar]
- Xu, Y.; Gao, F.; Pan, Y.; Chai, X. Hexapod adaptive gait inspired by human behavior for six-legged robot without force sensor. J. Intell. Robot. Syst.
**2017**, 88, 19–35. [Google Scholar] [CrossRef] - Yu, H.; Gao, H.; Ding, L.; Li, M.; Deng, Z.; Liu, G. Gait generation with smooth transition using CPG-based locomotion control for hexapod waking robot. IEEE Trans. Ind. Electron.
**2016**, 63, 5488–5500. [Google Scholar] [CrossRef] - Juang, C.F.; Jhan, Y.H.; Chen, Y.M.; Hsu, C.M. Evolutionary wall-following hexapod robot using advanced multi-objective continuous ant colony optimized fuzzy controller. IEEE Trans. Cognit. Dev. Syst.
**2017**. [Google Scholar] [CrossRef] - Wang, W.J.; Chou, H.G.; Chen, Y.J.; Lu, R.C. Fuzzy control strategy for a hexapod robot walking on an incline. Int. J. Fuzzy Syst.
**2017**, 19, 1703–1717. [Google Scholar] [CrossRef] - Collins, J.J.; Richmond, S.A. Hard–wired central pattern generators for quadrupedal locomotion. Biol. Cybern.
**1994**, 71, 375–385. [Google Scholar] [CrossRef] - Lewis, A.; Fagg, A.H.; Bekey, G.A. Genetic algorithms for gait synthesis in a hexapod robot in recent trends in mobile robots. World Sci.
**1994**, 11, 317–331. [Google Scholar] - Nagashino, H.; Nomura, Y.; Kinouchi, Y. A neural network model for quadruped gait generation and transitions. Neurocomputing
**2001**, 38, 1469–1475. [Google Scholar] [CrossRef] - Ijspeert, A.J. Central pattern generators for locomotion control in animals and robots: A review. Neural Netw.
**2008**, 21, 642–653. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Zak, M.; Rozman, J. Design, Construction and Control of Hexapod Walking Robots. In Proceedings of the IEEE 13th International Scientific Conference on Informatics—Informatics, Poprad, Slovakia, 18–20 November 2015; pp. 302–307. [Google Scholar]
- Erdman, A.G.; Sandor, G.N. Mechanism Design: Analysis and Synthesis; Prentice-Hall: London, UK, 1984. [Google Scholar]

**Figure 16.**Infrastructure of wireless remote control. WAN: wide area network; WLAN: wireless local area network.

Server Socket | Client Socket |
---|---|

int Sock0, Sock1, n;struct_sockaddr_in Addr;Socket0 = socket(AF_INET,SOCK_STREAM,0);Addr.sin_family = AF_INET;Addr.sin_addr.s_addr = INADDR_ANY;Addr.sin_port = htons (49152);n = sizeof (Addr);bind (Socket0, (struct sockaddr *) & Addr, n);listen (Socket0,3);Socket1 = accept (Socket0, (struct sockaddr *) & Addr, & sizeof (struct sockaddr_in)); | int Sock0, n;struct_sockaddr_in Addr;Socket0 = socket (AF_INET,SOCK_STREAM,0);Addr.sin_family = AF_INET;Addr.sin_addr.s_addr = inet_addr (argv [1]);Addr.sin_port = htons (49152);n = sizeof (Addr);connect (Socket0, (struct sockaddr *) & Addr, n); |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hwang, M.-C.; Huang, C.-J.; Liu, F.
A Hexapod Robot with Non-Collocated Actuators. *Appl. Syst. Innov.* **2018**, *1*, 20.
https://doi.org/10.3390/asi1030020

**AMA Style**

Hwang M-C, Huang C-J, Liu F.
A Hexapod Robot with Non-Collocated Actuators. *Applied System Innovation*. 2018; 1(3):20.
https://doi.org/10.3390/asi1030020

**Chicago/Turabian Style**

Hwang, Min-Chan, Chiou-Jye Huang, and Feifei Liu.
2018. "A Hexapod Robot with Non-Collocated Actuators" *Applied System Innovation* 1, no. 3: 20.
https://doi.org/10.3390/asi1030020