Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = rudder interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 6817 KB  
Article
Numerical Study on Non-Icebreaking Ship Maneuvering in Floating Ice Based on Coupled NDEM–MMG Modeling
by Deling Wang, Luyuan Zou, Zhiheng Zhang and Xinqiang Chen
J. Mar. Sci. Eng. 2025, 13(8), 1578; https://doi.org/10.3390/jmse13081578 - 17 Aug 2025
Viewed by 251
Abstract
The maneuvering performance of ships in marginal ice zones is critical for navigational safety, yet most existing studies focus on icebreaking vessels. This study develops a coupled numerical framework that integrates the Non-Smooth Discrete Element Method (NDEM) for simulating ship–ice interactions with the [...] Read more.
The maneuvering performance of ships in marginal ice zones is critical for navigational safety, yet most existing studies focus on icebreaking vessels. This study develops a coupled numerical framework that integrates the Non-Smooth Discrete Element Method (NDEM) for simulating ship–ice interactions with the three-degree-of-freedom MMG model for ship dynamics. The framework was applied to an S175 container ship, and numerical simulations were conducted for turning circle and Zig-Zag maneuvers under varying ice concentrations (0–60%), floe sizes, and rudder angles. NDEM efficiently handles complex, high-frequency multi-body collisions with larger time steps compared to conventional DEM or CFD–DEM approaches, enabling large-scale simulations of realistic ice conditions. Results indicate that increasing ice concentration from 0% to 60% reduces the turning diameter from 4.11L to 3.21L and decreases steady turning speed by approximately 53%. Larger floes form stable force chains that restrict lateral motion, while higher rudder angles improve responsiveness but may induce dynamic instability. These findings improve understanding of non-icebreaking ship maneuverability in ice and provide practical guidance for safe and efficient Arctic navigation. Full article
Show Figures

Figure 1

36 pages, 44618 KB  
Article
Analysis of the Accuracy of a Body-Force Propeller Model and a Discretized Propeller Model in RANS Simulations of the Flow Around a Maneuvering Ship
by Long Jiang, Jianxi Yao and Zuyuan Liu
J. Mar. Sci. Eng. 2025, 13(4), 788; https://doi.org/10.3390/jmse13040788 - 15 Apr 2025
Cited by 1 | Viewed by 478
Abstract
Currently, the RANS (Reynolds-Averaged Navier–Stokes) method is widely recognized as a prevalent approach for computing ship maneuvering forces and moments. Obtaining hydrodynamic derivatives using pure RANS is time-consuming, especially with rotating propellers. A reasonable simplification of the propeller is usually necessary to improve [...] Read more.
Currently, the RANS (Reynolds-Averaged Navier–Stokes) method is widely recognized as a prevalent approach for computing ship maneuvering forces and moments. Obtaining hydrodynamic derivatives using pure RANS is time-consuming, especially with rotating propellers. A reasonable simplification of the propeller is usually necessary to improve simulation efficiency. The ITTC suggests both the discretized propeller model (DPM) and the body-force model (BFM) for RANS simulations. While BFM offers computational efficiency, it may not accurately represent large-amplitude ship maneuvers. It is quite significant to figure out how BFM affects numerical accuracy. This study compares the DPM and a very simple BFM in RANS simulations of the KCS (KRISO Container Ship), focusing on static rudder, drift, and circle motion tests. The main purpose is to check the differences between the simulated results by using the BFM and DPM. While side forces and yaw moments from both models are similar, discrepancies in longitudinal forces increase with higher rudder angles, drift angles, or turning rates. Errors in side forces and yaw moments are under 10% for both models, compared with experimental data. But BFM’s longitudinal force errors exceed 20% at large motion amplitudes, indicating reduced accuracy compared to DPM. The results of the BFM method are subject to two main sources of error. First, the lack of physical shape representation for the propeller blades leads to the absence of lather force during rotation. This in turn results in an inaccurate prediction of the interaction between the propeller blade root or blade tip leakage vortices and the rudder. Second, the limitations of the adopted model prevent it from accurately providing the thrust and torque generated by the propeller under actual operating conditions. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 13145 KB  
Article
Numerical Method for Aeroelastic Simulation of Flexible Aircraft in High Maneuver Flight Based on Rigid–Flexible Model
by Shuang Chen, Pengzhen He and Shuling Tian
Appl. Sci. 2025, 15(8), 4333; https://doi.org/10.3390/app15084333 - 14 Apr 2025
Viewed by 566
Abstract
Traditional elastic correction methods fail to address the significant aeroelastic interactions arising from unsteady flow fields and structural deformations during aggressive maneuvers. To resolve this, a numerical method is developed by solving unsteady aerodynamic equations coupled with a rigid–flexible dynamics equations derived from [...] Read more.
Traditional elastic correction methods fail to address the significant aeroelastic interactions arising from unsteady flow fields and structural deformations during aggressive maneuvers. To resolve this, a numerical method is developed by solving unsteady aerodynamic equations coupled with a rigid–flexible dynamics equations derived from Lagrangian mechanics in quasi-coordinates. Validation via a flexible pendulum test and AGARD445.6 wing flutter simulations demonstrates excellent agreement with experimental data, confirming the method’s accuracy. Application to a slender air-to-air missile reveals that reducing structural stiffness can destabilize the aircraft, transitioning it from stable to unstable states during forced pitching motions. Studies on longitudinal flight under preset rudder deflection control indicate that the aeroelastic effect increases both the amplitude and period of pitch angles, ultimately resulting in larger equilibrium angles compared to a rigid-body model. The free-flight simulations highlight trajectory deviations due to deformation-induced aerodynamic forces, which emphasizes the necessity of multidisciplinary coupling analysis. The numerical results show that the proposed CFD/CSD-based coupling methodology offers a robust aeroelastic effect analysis tool for flexible flight vehicles during aggressive maneuvers. Full article
Show Figures

Figure 1

27 pages, 13034 KB  
Article
Numerical Research on Hull–Propeller–Rudder–Ice Interaction of Full-Scale Polar Transport Ship in Brash Ice Channel
by Jinlong Zhang, Jianing Zhang, Lei Zhang, Weimin Chen and Qingshan Zhang
J. Mar. Sci. Eng. 2025, 13(1), 145; https://doi.org/10.3390/jmse13010145 - 15 Jan 2025
Cited by 1 | Viewed by 1345
Abstract
A strong nonlinear ice load has a significant impact on the resistance and power demand of polar transport ships under different drafts in brash ice channels. In this study, the CFD-DEM coupling method is used to investigate the self-propulsion performance of a full-scale [...] Read more.
A strong nonlinear ice load has a significant impact on the resistance and power demand of polar transport ships under different drafts in brash ice channels. In this study, the CFD-DEM coupling method is used to investigate the self-propulsion performance of a full-scale polar transport ship in brash ice channels. The interactions between the full-scale polar transport ship, propeller, rudder, and brash ice are effectively simulated. First, the hydrodynamic performance of an open-water propeller is tested, and it is found that the numerical errors of efficiency and the experimental result are less than 8%. Then, the ice resistance, total thrust, effective power, delivered power, and propulsive efficiency of the polar transport ship under different draft conditions are studied, and the results are in good agreement with those of the self-propulsion model tests in the brash ice channel. Through a numerical simulation of self-propulsion in the brash ice channel, self-propulsion points under different drafts and brash ice thicknesses are obtained. It is found that the propeller rotation speed is closely related to the draft depth. Finally, experiments and numerical simulations of the total ice resistance are carried out under different brash ice thicknesses, and the results are consistent with those of the empirical formulas. The accuracy of the three empirical formulas under different drafts is compared. This research work determines the resistance, power demand, and propulsive efficiency of a polar transport ship under given ice conditions and speeds, as well as the self-propulsion points under different ice thicknesses. It is of great significance for the control of ships in polar navigation. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 5672 KB  
Article
Online Safe Flight Control Method Based on Constraint Reinforcement Learning
by Jiawei Zhao, Haotian Xu, Zhaolei Wang and Tao Zhang
Drones 2024, 8(9), 429; https://doi.org/10.3390/drones8090429 - 26 Aug 2024
Viewed by 1423
Abstract
UAVs are increasingly prominent in the competition for space due to their multiple characteristics, such as strong maneuverability, long flight distance, and high survivability. A new online safe flight control method based on constrained reinforcement learning is proposed for the intelligent safety control [...] Read more.
UAVs are increasingly prominent in the competition for space due to their multiple characteristics, such as strong maneuverability, long flight distance, and high survivability. A new online safe flight control method based on constrained reinforcement learning is proposed for the intelligent safety control of UAVs. This method adopts constrained policy optimization as the main reinforcement learning framework and develops a constrained policy optimization algorithm with extra safety budget, which introduces Lyapunov stability requirements and limits rudder deflection loss to ensure flight safety and improves the robustness of the controller. By efficiently interacting with the constructed simulation environment, a control law model for UAVs is trained. Subsequently, a condition-triggered meta-learning online learning method is used to adjust the control raw online ensuring successful attitude angle tracking. Simulation experimental results show that using online control laws to perform aircraft attitude angle control tasks has an overall score of 100 points. After introducing online learning, the adaptability of attitude control to comprehensive errors such as aerodynamic parameters and wind improved by 21% compared to offline learning. The control law can be learned online to adjust the control policy of UAVs, ensuring their safety and stability during flight. Full article
Show Figures

Figure 1

33 pages, 15293 KB  
Article
Dynamic Fluid Structure Interaction of NACRA 17 Foil
by Stig Staghøj Knudsen, Laura Marimon Giovannetti, Brian Nyvang Legarth and Jens Honoré Walther
J. Mar. Sci. Eng. 2024, 12(2), 237; https://doi.org/10.3390/jmse12020237 - 29 Jan 2024
Cited by 1 | Viewed by 2564
Abstract
The NACRA 17 is a small foiling catamaran that is lifted out of the water by two asymmetric z-foils and two rudder elevators. This paper investigates how foil deflection affects not only foil performance but overall boat behaviour using a numerical Fluid Structure [...] Read more.
The NACRA 17 is a small foiling catamaran that is lifted out of the water by two asymmetric z-foils and two rudder elevators. This paper investigates how foil deflection affects not only foil performance but overall boat behaviour using a numerical Fluid Structure Interaction (FSI) model. The deformations are solved with a solid model based on the Finite Element Method (FEM) and the flow is solved with a Reynolds Average Navier-Stokes (RANS) based Finite Volume Model (FVM). The models are strongly coupled to allow dynamic FSI simulations. The numerical model is validated by comparing it to an experimental campaign conducted at the RISE SSPA Maritime Center in Sweden.Validation shows reasonable agreement, but the model can only be considered validated for some rake angles. The large deformation of the foils is found to have a profound effect on the performance of the foils and therefore of the overall catamaran. Turbulence transition and boat speed are found to affect foil forces and, in turn, deformation. Dynamic response of the foils during boat motion as exposed to waves is investigated and finally the full boat hydrodynamic is simulated by including both foils and the rudders in various scenarios. Full article
(This article belongs to the Special Issue Computational Fluid Mechanics II)
Show Figures

Figure 1

14 pages, 6086 KB  
Article
Experimental Study on Hypersonic Double-Wedge Induced Flow Based on Plasma Active Actuation Array
by Bo Yang, Hesen Yang, Ning Zhao, Hua Liang, Zhi Su and Dongsheng Zhang
Aerospace 2024, 11(1), 60; https://doi.org/10.3390/aerospace11010060 - 9 Jan 2024
Cited by 5 | Viewed by 2518
Abstract
The double-wedge configuration is a typical characteristic shape of the rudder surface of high-speed aircraft. The impact of the shock wave/boundary layer interaction and the shock wave/shock wave interaction resulting from the double wedge on aircraft aerodynamics cannot be ignored. The aerodynamic performance [...] Read more.
The double-wedge configuration is a typical characteristic shape of the rudder surface of high-speed aircraft. The impact of the shock wave/boundary layer interaction and the shock wave/shock wave interaction resulting from the double wedge on aircraft aerodynamics cannot be ignored. The aerodynamic performance of the aircraft would be seriously affected. Accordingly, to reduce the wave drag, and to relieve the thermal load and pressure load, flow control is required for the shock wave/shock wave interaction and the shock wave/boundary layer interaction induced by the double-wedge configuration. In this paper, double-wedge shock wave/shock wave interaction is controlled by a high-energy surface arc discharge array and observed by high-speed schlieren flow field measurement at Mach 8. The 30-channel discharge array is set on the primary wedge plane, and actuation is generated. Hypersonic V shock wave/shock wave interaction is effectively controlled by the shock wave array induced by the high-energy surface arc discharge array, which makes the shock wave/shock wave interaction structure disappear or intermittent. The potential control mechanism is to reduce strong shock wave interaction by transforming the type of shock wave interaction. Therefore, the ability of plasma array actuation to control complex shock wave/shock wave interaction is verified, which provides a new method for hypersonic shock wave/shock wave interaction control. Full article
(This article belongs to the Special Issue Shock-Dominated Flow)
Show Figures

Figure 1

18 pages, 16536 KB  
Article
Conditional Enhanced Variational Autoencoder-Heterogeneous Graph Attention Neural Network: A Novel Fault Diagnosis Method for Electric Rudders Based on Heterogeneous Information
by Ximing Cao, Ruifeng Yang, Chenxia Guo and Hao Qin
Sensors 2024, 24(1), 272; https://doi.org/10.3390/s24010272 - 2 Jan 2024
Cited by 1 | Viewed by 1882
Abstract
In machine fault diagnosis, despite the wealth of information multi-sensor data provide for constructing high-quality graphs, existing graph data-driven diagnostic methods face challenges posed by handling these heterogeneous multi-sensor data. To address this issue, we propose CEVAE-HGANN, an innovative model for fault diagnosis [...] Read more.
In machine fault diagnosis, despite the wealth of information multi-sensor data provide for constructing high-quality graphs, existing graph data-driven diagnostic methods face challenges posed by handling these heterogeneous multi-sensor data. To address this issue, we propose CEVAE-HGANN, an innovative model for fault diagnosis based on the electric rudder, which can process heterogeneous data efficiently. Initially, we facilitate interaction between conditional information and the original features, followed by dimensional reduction via a conditional enhanced variational autoencoder, thereby achieving a more robust state representation. Subsequently, we define two meta-paths and employ both the Euclidean distance and Pearson coefficient in crafting an effective adjacency matrix to delineate the relationships among edges within the graph, thereby effectively representing the complex interrelations among these subsystems. Ultimately, we incorporate heterogeneous graph attention neural networks for classification, which emphasizes the connections among different subsystems, moving beyond the reliance on node-level fault identification and effectively capturing the complex interactions between subsystems. The experimental outcomes substantiate the superiority of the electric rudder-based CEVAE-HGANN model fault diagnosis. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

28 pages, 26266 KB  
Article
Adaptive Mesh Refinement for Trailing Vortices Generated by Propellers in Interaction with Slipstream Obstacles
by Jan Geese, Julian Kimmerl, Marc Nadler and Moustafa Abdel-Maksoud
J. Mar. Sci. Eng. 2023, 11(11), 2148; https://doi.org/10.3390/jmse11112148 - 10 Nov 2023
Cited by 1 | Viewed by 1852
Abstract
The investigation of cavitating trailing vortices emerging from marine propellers is of great interest in the industry. With the help of computational fluid dynamics (CFD), studying the cavitating trailing vortices may be facilitated. However, limitations in computational power raise the necessity to execute [...] Read more.
The investigation of cavitating trailing vortices emerging from marine propellers is of great interest in the industry. With the help of computational fluid dynamics (CFD), studying the cavitating trailing vortices may be facilitated. However, limitations in computational power raise the necessity to execute numerical simulations as efficiently as possible. The time-efficient simulation of cavitating trailing vortices interacting with rigid bodies is especially challenging due to the continuous change of cavity locations. This study investigates the usability, capability, and practicability of automatic adaptive refinement at every calculation time step for transient Reynolds-averaged Navier–Stokes (RANS) and large eddy CFD simulations of the cavitating tip and hub vortices, utilizing the Schnerr–Sauer cavitation model, in the presence of a rudder located in the propeller slipstream and for an isolated propeller, with additional focus on the computational effort necessary for using high frequency updating adaptive mesh refinement (AMR). It is found that AMR is suitable for resolving cavities with relative motion to the propeller and in interaction with slipstream obstacles. However, the computation time is significantly increased, which renders this method useful only if a classic AMR is not possible due to geometrical limitations. Even in the cases that benefit from the automated AMR, numerical instabilities may lead to unphysical pressure fluctuations, which reduce the suitability of the method for the evaluation of underwater radiated noise. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 10112 KB  
Article
Influence of Stern Rudder Type on Flow Noise of Underwater Vehicles
by Chunxu Wang, Lei Huang, Yue Zhao, Jinchi Dai and Yichen Jiang
J. Mar. Sci. Eng. 2022, 10(12), 1866; https://doi.org/10.3390/jmse10121866 - 2 Dec 2022
Cited by 6 | Viewed by 2412
Abstract
The stern rudder of an underwater vehicle has a significant impact on the wake field and the flow noise. Hence, it is important to optimize the design of the stern rudder for reducing the radiated noise. In this work, a numerical model is [...] Read more.
The stern rudder of an underwater vehicle has a significant impact on the wake field and the flow noise. Hence, it is important to optimize the design of the stern rudder for reducing the radiated noise. In this work, a numerical model is set up to predict the flow noise of the underwater vehicle, based on the LES turbulence model and FW-H acoustic analogy method. After the verification study, the numerical prediction of the flow noise is compared with the experimental measurements to verify the accuracy of the numerical model. Then, the influence of sails on the flow noise is explored. It is observed that the existence of the sail significantly increases the noise at the low frequency. Furthermore, to examine the influence of the stern rudder type, the sound pressure levels of underwater vehicles with three full appendages having cross-type rudders, X-type rudders, and T-type rudders, are compared. The strong interaction between the sail’s wake and the stern rudder is evident. The underwater vehicle with T-type rudders exhibits the lowest sound pressure. In addition, the influence of the stern rudder type on the directivity of sound pressure levels is also presented. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

31 pages, 13432 KB  
Article
Assessment of CFD-Based Ship Maneuvering Predictions Using Different Propeller Modeling Methods
by Changzhe Chen, Lu Zou, Zaojian Zou and Haipeng Guo
J. Mar. Sci. Eng. 2022, 10(8), 1131; https://doi.org/10.3390/jmse10081131 - 17 Aug 2022
Cited by 5 | Viewed by 3404
Abstract
Propeller modeling in virtual captive model tests is crucial to the prediction accuracy of ship maneuvering motion. In the present study, the Computational Fluid Dynamics (CFD) method with two propeller modeling methods, Sliding Mesh (SM) and Multiple Reference Frames (MRF), was used to [...] Read more.
Propeller modeling in virtual captive model tests is crucial to the prediction accuracy of ship maneuvering motion. In the present study, the Computational Fluid Dynamics (CFD) method with two propeller modeling methods, Sliding Mesh (SM) and Multiple Reference Frames (MRF), was used to simulate the captive model tests for a KVLCC2 tanker model. The virtual captive model tests, including for resistance, self-propulsion, rudder force, oblique towing, circular motion, oblique towing and steady turning tests with rudder angle, were conducted by solving the Reynolds-averaged Navier–Stokes (RANS) equations. The computed hydrodynamic forces, hydrodynamic derivatives, and hull-propeller-rudder interaction coefficients were validated against the available captive model test data and the CFD results obtained by a Body Force (BF) method in the literature. Then the standard turning circle and zig-zag maneuvers were simulated by using the MMG (Maneuvering Modeling Group) model with the computed hydrodynamic derivatives and hull-propeller-rudder interaction coefficients, and the results were validated against available free-running model test data. The most satisfactory agreement in terms of the ship hydrodynamic forces and maneuvering parameters and the most accurate rudder normal force were obtained by the SM method rather than by the MRF or the BF methods, while the lateral forces and yaw moments obtained by the SM and the MRF methods were all in good agreement with the model test data. Full article
(This article belongs to the Special Issue Hydrodynamic Analysis on Ship Performance)
Show Figures

Figure 1

20 pages, 7991 KB  
Article
Research on Optimization of Parametric Propeller Based on Anti-Icing Performance and Simulation of Cutting State of Ice Propeller
by Yu Lu, Chunxiao Wu, Shewen Liu, Zhuhao Gu, Wu Shao and Chuang Li
J. Mar. Sci. Eng. 2021, 9(11), 1247; https://doi.org/10.3390/jmse9111247 - 10 Nov 2021
Cited by 9 | Viewed by 3198
Abstract
When a ship sails in an ice area, the ice could cause damage to ship hull and the propeller as well as the rudder. In the design process of an ice class propeller, the strength verification of the propeller has always been the [...] Read more.
When a ship sails in an ice area, the ice could cause damage to ship hull and the propeller as well as the rudder. In the design process of an ice class propeller, the strength verification of the propeller has always been the focus of the design and research of the ice propeller. Based on the International Association of Classification Societies Unified Requirements for Polar Class (IACS Polar UR), it is required that the maximum torque from the propeller cannot exceed the required value to ensure the safety of the propeller shafting equipment. This paper investigates the hydrodynamic performance of the propeller under the condition of satisfying the propeller’s ice strength. A parametric propeller optimization design procedure was established in which the thrust coefficient and open water efficiency solved by CFD method were selected as the objective function and optimization target, the maximum ice torque was used as the optimization constraint under the condition that the ship’s shafting equipment remains unchanged, the propeller pitch, thickness, and camber at each radial direction were taken as the optimization design variables, and the optimization algorithm of SOBOL and NSGA-II was adopted. The interaction mode of propeller and ice was simulated by the method of explicit dynamics. The equivalent stress and displacement response of the blade during the cutting process of the ice propeller were calculated, monitoring the ice destruction process. The results show that the multi-objective Pareto optimal solution set of thrust coefficient and open water efficiency of the ice class propeller was formed at the design speed while maintain the maximum ice torque not exceeding the original ice torque. Full article
Show Figures

Figure 1

22 pages, 820 KB  
Article
Numerical Analysis of the Rudder–Propeller Interaction
by Diego Villa, Andrea Franceschi and Michele Viviani
J. Mar. Sci. Eng. 2020, 8(12), 990; https://doi.org/10.3390/jmse8120990 - 4 Dec 2020
Cited by 31 | Viewed by 5944
Abstract
The proper evaluation of the Rudder–Propeller interactions is mandatory to correctly predict the manoeuvring capability of a modern ship, in particular considering the commonly adopted ship layout (rudder often works in the propeller slipstream). Modern Computational Fluid Dynamics (CFD) solvers can provide, not [...] Read more.
The proper evaluation of the Rudder–Propeller interactions is mandatory to correctly predict the manoeuvring capability of a modern ship, in particular considering the commonly adopted ship layout (rudder often works in the propeller slipstream). Modern Computational Fluid Dynamics (CFD) solvers can provide, not only the performance of the whole system but also an insight into the flow problem. In the present paper, an open-source viscous flow solver has been validated against available literature experimental measurements in different conditions. After an extensive analysis of the numerical influence of the mesh arrangement and the turbulent quantities on the rudder provided forces, the study focused its attention on the forces generated by the rudder varying the propeller loading conditions and the mutual position between the two devices. These analyses give a hint to describe and improve a commonly-used semi-empirical method based on the actuator disk theory. These analyses also demonstrate the ability of these numerical approaches to correctly predict the interaction behaviour in pre-stall conditions with quite reasonable computational requests (proper also for a design stage), giving additional information on the sectional forces distribution along the span-wise rudder direction, useful to further develop a new semi-empirical rudder model. Full article
(This article belongs to the Special Issue CFD Simulations of Marine Hydrodynamics)
Show Figures

Figure 1

25 pages, 21123 KB  
Article
A Discrete-Forcing Immersed Boundary Method for Moving Bodies in Air–Water Two-Phase Flows
by Haixuan Ye, Yang Chen and Kevin Maki
J. Mar. Sci. Eng. 2020, 8(10), 809; https://doi.org/10.3390/jmse8100809 - 19 Oct 2020
Cited by 4 | Viewed by 3862
Abstract
For numerical simulations of ship and offshore hydrodynamic problems, it is challenging to model the interaction between the free surface and moving complex geometries. This paper proposes a discrete-forcing immersed boundary method (IBM) to efficiently simulate moving solid boundaries in incompressible air–water two-phase [...] Read more.
For numerical simulations of ship and offshore hydrodynamic problems, it is challenging to model the interaction between the free surface and moving complex geometries. This paper proposes a discrete-forcing immersed boundary method (IBM) to efficiently simulate moving solid boundaries in incompressible air–water two-phase flows. In the present work, the air–water two-phase flows are modeled using the Volume-of-Fluid (VoF) method. The present IBM is suitable for unstructured meshes. It can be used combined with body-fitted wall boundaries to model the relative motions between solid walls, which makes it flexible to use in practical applications. A field extension method is used to model the interaction between the air–water interface and the immersed boundaries. The accuracy of the method is demonstrated through validation cases, including the three-dimensional dam-break problem with an obstacle, the water exit of a circular cylinder, and a ship model advancing with a rotating semi-balanced rudder. The flow field, free-surface profile and force on the immersed boundaries (IBs) are in good agreement with experimental data and other numerical results. Full article
(This article belongs to the Special Issue CFD Simulations of Marine Hydrodynamics)
Show Figures

Figure 1

20 pages, 12820 KB  
Article
The Effect of Rudder Existence on Propeller Eccentric Force
by Gisu Song, Hyounggil Park and Taegoo Lee
J. Mar. Sci. Eng. 2019, 7(12), 455; https://doi.org/10.3390/jmse7120455 - 12 Dec 2019
Cited by 9 | Viewed by 4024
Abstract
In order to design a safe shafting system in a ship, it is vital to precisely predict load on stern tube bearing. It is well known that load on stern tube bearing is directly influenced by the eccentric force of a propeller. In [...] Read more.
In order to design a safe shafting system in a ship, it is vital to precisely predict load on stern tube bearing. It is well known that load on stern tube bearing is directly influenced by the eccentric force of a propeller. In this paper, the effect of rudder existence on propeller eccentric force was studied based on numerical analysis with a 10,000 TEU class container vessel. To obtain propeller eccentric force, numerical simulations including propeller rotation motion using a sliding mesh technique were carried out. When a ship is turning, propeller eccentric force significantly changes compared to those of straight run. For starboard turning especially, the propeller vertical moment was decreased by about 50% due to the existence of a rudder compared to that without a rudder. In contrast, as for port turning, the results of simulations with and without a rudder were similar to each other. This difference is fundamentally due to the interaction between the direction of propeller rotation and the inflow direction to a propeller. Based on this study, it is inferred that the influence of appendages around a propeller need to be considered to ensure the reliable prediction of propeller eccentric force. Full article
Show Figures

Figure 1

Back to TopTop