Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = rotary air preheater

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6815 KiB  
Article
The Method for Assessing the Causes of Damage to a Bearing in a Rotary Air Preheater
by Paweł Maślak and Grzegorz Przybyłek
Energies 2024, 17(24), 6490; https://doi.org/10.3390/en17246490 - 23 Dec 2024
Viewed by 1045
Abstract
This article presents a method for identifying the cause of damage to a rotary air preheater on one of the fluidized bed boilers operating in a power plant. The bearing in question operates under harsh conditions with the exhaust gas temperature reaching 287 [...] Read more.
This article presents a method for identifying the cause of damage to a rotary air preheater on one of the fluidized bed boilers operating in a power plant. The bearing in question operates under harsh conditions with the exhaust gas temperature reaching 287 °C and causing its casing to heat up intensively. It is therefore important to ensure that the bearing is constantly cooled by water, which lowers the operating temperature and thus extends its service life. Unfortunately, after a short period of operation, the upper double-row spherical roller bearing was damaged, and the tests presented in the assessment method helped to determine the cause of damage to its casing. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

18 pages, 2627 KiB  
Article
Numerical Simulation Study on Rotary Air Preheater Considering the Influences of Steam Soot Blowing
by Youfu Chen, Yaou Wang, Bo Chen, Hongda Zhu and Lingling Zhao
Energies 2024, 17(18), 4618; https://doi.org/10.3390/en17184618 - 14 Sep 2024
Cited by 1 | Viewed by 1060
Abstract
The ash deposition is a general problem that needs to be solved effectively for the rotary air preheater of the coal-fired boiler. Taking the rotary air preheater of a 600 MW power station as the object, the mesh model of the flue gas [...] Read more.
The ash deposition is a general problem that needs to be solved effectively for the rotary air preheater of the coal-fired boiler. Taking the rotary air preheater of a 600 MW power station as the object, the mesh model of the flue gas side of the air preheater, considering the influences of steam soot blowing, is established using the Gambit 2.4.6 software. Based on the SIMPLE algorithm, the velocity field and the temperature field in the air preheater under varied working conditions are simulated using the software of Ansys Fluent 2021R1, and the influences of the boiler load, the operation parameters of the steam soot blower, and the running and outage of the soot blower on the flue gas velocity distribution in the depth direction of the corrugated plates, the soot-blowing coverage area, the inlet flue gas velocity, and the inlet flue gas temperature of the corrugated plates are analyzed. Under the base working condition, the flue gas velocity on the axis of the steam nozzle first decreases rapidly with increasing the corrugated plate depth (Z < 1.0 m), and then it decreases slowly with an almost equal slope. The longitudinal flue gas velocity has a positive correlation with the boiler load. The longitudinal flue gas velocity obviously decreases when the boiler load is decreased, and its reduction increases as the corrugated plate depth increases. It is one reason that the ash deposition is prone to occur on the cold end surface of corrugated plates under the condition of low boiler load. The longitudinal flue gas velocity increases with the soot-blowing steam velocity increasing when the corrugated plate depth is less than 1.5 m, but after that, it is almost not affected by the change in soot-blowing steam velocity. The soot-blowing coverage area has a negative correlation with the boiler load but a slight positive correlation with the steam velocity of the soot blower on the whole. The inlet flue gas velocity of the corrugated plates has a positive correlation with the boiler load and the inlet steam velocity of the soot blower. The average inlet flue gas velocity decreases by 21.7% when the boiler load is reduced by 50%. For every 5 m/s variation in the inlet steam velocity, the inlet flue gas velocity changes by about 10–14% whether the steam soot blower is put into operation or not, which has an obvious effect on the inlet gas velocity of the corrugated plates. The inlet flue gas temperature of the corrugated plates is, respectively, positively correlated with the boiler load and the inlet steam temperature of the soot blower. When the boiler load is reduced from 100% BMCR to 50% BMCR, the average inlet flue gas temperature of the corrugated plates is reduced by 44.2 K; however, when the soot-blowing steam temperature varies by 20 K, the average inlet flue gas temperature of the corrugated plates varies by only about 1.8 K. It means that it is difficult to enhance the cold end flue gas temperature of the corrugated plates only by raising the soot-blowing steam temperature at low boiler load. Adding a soot blower using high-temperature steam or hot air at the outlet of the corrugated plates may be an option to solve the ash deposition of the corrugated plates. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

20 pages, 4364 KiB  
Article
A Novel Numerical Simulation Study of Air Leakage in Rotary Air Preheaters Based on Rotor Thermal Deformation
by Yangfan Li, Hongqi Wei, Chenghao Fan and Weiwei Shi
Processes 2024, 12(3), 505; https://doi.org/10.3390/pr12030505 - 29 Feb 2024
Viewed by 1779
Abstract
Thermal deformation of the rotor is a critical factor leading to radial air leakage in rotary air preheaters. However, previous studies have not comprehensively established the correlation between rotor thermal deformation during thermal operation and radial air leakage. This study addresses this gap [...] Read more.
Thermal deformation of the rotor is a critical factor leading to radial air leakage in rotary air preheaters. However, previous studies have not comprehensively established the correlation between rotor thermal deformation during thermal operation and radial air leakage. This study addresses this gap by introducing a novel model for calculating radial air leakage, incorporating the thermal deformation of the rotor. To achieve this, we selected a three-section rotary air preheater from a 330 MW coal-fired unit boiler for investigation. This research begins by constructing a heat transfer–structure coupled numerical simulation model using Fluent and ANSYS Workbench. This model is employed to analyze the thermal deformation of the rotor under varying unit power generation loads. This paper meticulously examines the thermal deformation patterns of the rotor in diverse circumstances, explores their impact on air leakages, and provides a comprehensive analysis of air leakage fluctuations in different ducts. The influence of rotor thermal deformation on the local radial leak characteristics is ultimately established. The results indicate that incorporating the impact of preheater thermal deformation into the examination of preheater air leakage enhances the model’s capacity to accurately simulate values of leakage distribution at various cell clearances. This research concludes by offering recommendations for effectively managing hot end radial air leakage in preheater systems, providing valuable insights for the design and adjustment of sealing systems. Full article
Show Figures

Graphical abstract

17 pages, 2562 KiB  
Article
Laboratory Study on Adhesive Ash Deposition Characteristics of Ammonium Bisulfate in Conditions Simulating an Air Preheater for Hard Coal Combustion
by Xiaoqiang Chen, Xinye Ji, Jinjin Feng, Lijun Heng and Lingling Zhao
Energies 2023, 16(18), 6513; https://doi.org/10.3390/en16186513 - 9 Sep 2023
Cited by 4 | Viewed by 1505
Abstract
The ash blockage of the rotary air preheater is a serious problem of the coal-fired boiler that urgently needs to be solved, which is caused by the adhesive deposition of ammonium bisulfate (ABS) and the fly ash. A comprehensive experimental study was performed [...] Read more.
The ash blockage of the rotary air preheater is a serious problem of the coal-fired boiler that urgently needs to be solved, which is caused by the adhesive deposition of ammonium bisulfate (ABS) and the fly ash. A comprehensive experimental study was performed to investigate the adhesive ash deposition characteristics based on an experimental platform established. The influences of the gas temperature, the gas velocity, the mass ratio of the ABS to the fly ash (R), and the ash particle size on the ash deposition characteristics were mainly analyzed and discussed under different conditions. The experimental results indicate that the liquid ABS is the root cause of the ash particles adhering to the heat transfer elements of the air preheater. The experimental results indicate that when the gas temperature is in the range of 420–493 K, the ABS ash deposition intensity and the ABS adhesion rate both increase with the increase in the gas temperature. When it is 493 K, the ABS adhesion rates of the corrugated plate and the positioning plate both reach maximum values, which are 31.7% and 27.9%, respectively. With the decrease in gas velocity, the total ash deposition intensity, the ABS ash deposition intensity, the ABS adhesion rate, and the growth rate of the ABS adhesion all increase. The content of ABS in the fly ash is also an important factor. When R rises, the ash deposition intensity and the ABS adhesion rate increase significantly. The particle size of the fly ash has little influence on the total ash deposition intensity, but has a great influence on the ABS ash deposition intensity and the ABS adhesion rate. With the increase in the particle size in the range of 30.8–100 μm, the ABS ash deposition intensity decreases by nearly 50%, and the ABS adhesion rates of plates A and B decrease by about 43.9% and 49.6%, respectively. According to the study results, some effective measures can be taken to solve the ash blocking problem of the rotary air preheater, including using the steam air heater, optimizing the operation parameters of the soot blower, and inhibiting ABS formation. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

15 pages, 1589 KiB  
Article
Modelling a Turbulent Non-Premixed Combustion in a Full-Scale Rotary Cement Kiln Using reactingFoam
by Domenico Lahaye, Franjo Juretić and Marco Talice
Energies 2022, 15(24), 9618; https://doi.org/10.3390/en15249618 - 19 Dec 2022
Cited by 2 | Viewed by 2715
Abstract
No alternatives are currently available to operate industrial furnaces, except for hydrocarbon fuels. Plant managers, therefore, face at least two challenges. First, environmental legislation demands emission reduction. Second, changes in the origin of the fuel might cause unforeseen changes in the heat release. [...] Read more.
No alternatives are currently available to operate industrial furnaces, except for hydrocarbon fuels. Plant managers, therefore, face at least two challenges. First, environmental legislation demands emission reduction. Second, changes in the origin of the fuel might cause unforeseen changes in the heat release. This paper develops the hypothesis for the detailed control of the combustion process using computational fluid dynamic models. A full-scale mock-up of a rotary cement kiln is selected as a case study. The kiln is fired by the non-premixed combustion of Dutch natural gas. The gas is injected at Mach 0.6 via a multi-nozzle burner located at the outlet of an axially mounted fuel pipe. The preheated combustion air is fed in (co-flow) through a rectangular inlet situated above the attachment of the fuel pipe. The multi-jet nozzle burner enhances the entrainment of the air in the fuel jet. A diffusion flame is formed by thin reaction zones where the fuel and oxidizer meet. The heat formed is transported through the freeboard, mainly via radiation in a participating medium. This turbulent combustion process is modeled using unsteady Favre-averaged compressible Navier–Stokes equations. The standard k-ϵ equations and standard wall functions close the turbulent flow description. The eddy dissipation concept model is used to describe the combustion process. Here, only the presence of methane in the composition of the fuel is accounted for. Furthermore, the single-step reaction mechanism is chosen. The heat released radiates throughout the freeboard space. This process is described using a P1-radiation model with a constant thermal absorption coefficient. The flow, combustion, and radiative heat transfer are solved numerically using the OpenFoam simulation software. The equations for flow, combustion, and radiant heat transfer are discretized on a mesh locally refined near the burner outlet and solved numerically using the OpenFoam simulation software. The main results are as follows. The meticulously crafted mesh combined with the outlet condition that avoids pressure reflections cause the solver to converge in a stable manner. Predictions for velocity, pressure, temperature, and species distribution are now closer to manufacturing conditions. Computed temperate and species values are key to deducing the flame length and shape. The radiative heat flux to the wall peaks at the tip of the flame. This should allow us to measure the flame length indirectly from exterior wall temperature values. The amount of thermal nitric oxide formed in the flame is quantified. The main implication of this study is that the numerical model developed in this paper reveals valuable information on the combustion process in the kiln that otherwise would not be available. This information can be used to increase fuel efficiency, reduce spurious peak temperatures, and reduce pollutant emissions. The impact of the unsteady nature of the flow on the chemical species concentration and temperature distribution is illustrated in an accompanying video. Full article
(This article belongs to the Special Issue Experiments and Simulations of Combustion Process)
Show Figures

Graphical abstract

14 pages, 2981 KiB  
Article
Experimental and Numerical Investigations on the Local Direct Leakage Process of Rotary Regenerative Air Preheater
by Hua Zhu, Dechao Li, Henglin Pu, Limin Wang, Yang He, Yufan Bu and Defu Che
Appl. Sci. 2020, 10(4), 1523; https://doi.org/10.3390/app10041523 - 23 Feb 2020
Cited by 7 | Viewed by 3654
Abstract
An inherent defect of the operating rotary air preheaters (RAPH) is known as leakage, which seriously hinders the efficient and safe operation of RAPH. It is significant for the estimation of the direct leakage to determine the effects of different structure parameters of [...] Read more.
An inherent defect of the operating rotary air preheaters (RAPH) is known as leakage, which seriously hinders the efficient and safe operation of RAPH. It is significant for the estimation of the direct leakage to determine the effects of different structure parameters of sealing sheets and different operation parameters of a RAPH. A direct leakage set-up was built and a three-dimensional numerical model was established to explore the local direct air leaking process of rotary regenerative air preheater and study the effects of geometrical and operational parameters on the leakage. The numerical simulation using the transition k-kl-ω turbulence model was verified by the experimental results. The results show that the local direct air leakage mainly depends on the total pressure difference between the two sides of the seal instead of the one-side pressure. The air leakage can be significantly reduced by narrowing the leakage gap. The increase in the number of sealing sheets can reduce the air leakage own to the increase in the leakage resistance. The increase in the spacing between the adjacent sealing sheets can enlarge the recirculation zone and increase the energy loss of mainstream, greatly reducing the local direct air leakage. Due to the different size recirculation zone formation and streamline curvature induced by sealing sheet, the effect of bending angle on the direct air leakage varies. To obtain lower leakage rate, it is recommended for the rotor of tri-sectional air preheater to pass through flue gas section, secondary-air section, and primary-air section in sequence. Full article
Show Figures

Figure 1

Back to TopTop