Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = rose gum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6042 KiB  
Article
Whey Protein–Quercetin–Gellan Gum Complexes Prepared Using pH-Shift Treatment: Structural and Functional Properties
by Na Guo, Xin Zhou, Ganghua Zhou, Yimeng Zhang, Guoqing Yu, Yangliu Liu, Beibei Li, Fangyan Zhang and Guilan Zhu
Foods 2025, 14(15), 2720; https://doi.org/10.3390/foods14152720 - 3 Aug 2025
Viewed by 179
Abstract
The objectives of this study were to prepare whey protein–quercetin–gellan gum conjugates using the pH-shift method and to evaluate the impacts of varying pH values and quercetin concentrations on the interaction mechanisms and functional characteristics of the complexes. Spectroscopic analyses (fluorescence, UV-vis, and [...] Read more.
The objectives of this study were to prepare whey protein–quercetin–gellan gum conjugates using the pH-shift method and to evaluate the impacts of varying pH values and quercetin concentrations on the interaction mechanisms and functional characteristics of the complexes. Spectroscopic analyses (fluorescence, UV-vis, and FT-IR) revealed that new complexes formed under alkaline conditions. Notably, an increasing quercetin concentration led to a reduction in complex particle size and an increase in the zeta potential value, with these effects being more pronounced under alkaline conditions. The particle size was 425.7 nm, and the zeta potential value was −30.00 mV at a quercetin addition concentration of 15 umol/g protein. Additionally, the complexes formed under alkaline conditions exhibited superior foaming capacity, emulsification properties, and significantly enhanced free radical scavenging activity. The complex’s DPPH and ABTS radical scavenging rates rose by 41.57% and 57.69%, respectively. This study provides theoretical foundations and practical insights for developing protein—polyphenol systems, offering significant implications for the application of quercetin functional foods and supplements in the food science and pharmaceutical industries. Full article
(This article belongs to the Special Issue Oil and Protein Engineering and Its Applications in Food Industry)
Show Figures

Figure 1

17 pages, 1274 KiB  
Article
Masticatory Efficacy Following Implant Rehabilitation: Objective Assessment and Patient Perception Through Two-Color Mixing Test and Viewgum® Software
by José María Montoya-Carralero, Arturo Sánchez-Pérez, Alba Sánchez-Olaya, Alfonso Jornet-García and María José Moya-Villaescusa
Prosthesis 2025, 7(4), 70; https://doi.org/10.3390/prosthesis7040070 - 24 Jun 2025
Viewed by 447
Abstract
Background: Dental implants enhance masticatory efficiency in edentulous patients, yet discrepancies exist between objective assessments and patient perceptions. This study evaluated masticatory efficiency before and after implant rehabilitation using the two-color mixing test (Hue-Check Gum®) and Viewgum® software Version 1.4. [...] Read more.
Background: Dental implants enhance masticatory efficiency in edentulous patients, yet discrepancies exist between objective assessments and patient perceptions. This study evaluated masticatory efficiency before and after implant rehabilitation using the two-color mixing test (Hue-Check Gum®) and Viewgum® software Version 1.4. 32-bit, correlating objective data with patient-reported outcomes. Methods: In a prospective study of 30 patients receiving implant-supported prostheses, masticatory efficiency was assessed objectively (VOH values via Viewgum®) and subjectively (10 cm VAS). Statistical analysis included Shapiro–Wilk, paired t-tests (VAS), and Wilcoxon tests (VOH). Correlation and regression analyses examined subjective–objective relationships. Results: Significant improvements occurred post-rehabilitation. VAS scores rose from 3.46 (95% CI: 2.54–4.39) to 7.29 (6.55–8.02; p < 0.001). VOH values decreased from 0.462 (0.426–0.497) to 0.438 (0.403–0.473; p = 0.001), confirming better chewing performance. No correlation was found between VAS and VOH, pre- (p > 0.346) or post-treatment (p > 0.980). Conclusion: Implant rehabilitation improves masticatory function objectively and subjectively. However, the lack of correlation underscores the need for dual assessment in clinical practice. Future studies should explore factors influencing satisfaction and performance to optimize outcomes. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Figure 1

17 pages, 2493 KiB  
Article
Comparative Evaluation of Xanthan Gum, Guar Gum, and Scleroglucan Solutions for Mobility Control: Rheological Behavior, In-Situ Viscosity, and Injectivity in Porous Media
by Jose Maria Herrera Saravia and Rosangela Barros Zanoni Lopes Moreno
Polymers 2025, 17(13), 1742; https://doi.org/10.3390/polym17131742 - 23 Jun 2025
Viewed by 313
Abstract
Water injection is the most widely used secondary recovery method, but its low viscosity limits sweep efficiency in heterogeneous carbonate reservoirs, especially when displacing heavy crude oils. Polymer flooding overcomes this by increasing the viscosity of the injected fluid and improving the mobility [...] Read more.
Water injection is the most widely used secondary recovery method, but its low viscosity limits sweep efficiency in heterogeneous carbonate reservoirs, especially when displacing heavy crude oils. Polymer flooding overcomes this by increasing the viscosity of the injected fluid and improving the mobility ratio. In this work, we compare three biopolymers (i.e., Xanthan Gum, Scleroglucan, and Guar Gum) using a core flood test on Indiana Limestone with 16–19% porosity and 180–220 mD permeability at 60 °C and 30,905 mg/L of salinity. We injected solutions at 100–1500 ppm and 0.5–6 cm3/min to measure the Resistance Factor (RF), Residual Resistance Factor (RRF), in situ viscosity, and relative injectivity. All polymers behaved as pseudoplastic fluids with no shear thickening. The RF rose from ~1.1 in the dilute regime to 5–16 in the semi-dilute regime, and the RRF spanned 1.2–5.8, indicating moderate, reversible permeability impairment. In-site viscosity reached up to eight times that of brine, while relative injectivity remained 0.5. Xanthan Gum delivered the highest viscosity boost and strongest shear thinning, Scleroglucan offered a balance of stable viscosity and a moderate RF, and Guar Gum gave predictable but lower viscosity enhancement. These results establish practical guidelines for selecting polymer types, concentration, and flow rate in reservoir-condition polymer flood designs. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 5605 KiB  
Article
Study on Pathogenesis of Cytospora pyri in Korla Fragrant Pear Trees (Pyrus sinkiangensis)
by Yiwen Zhang, Zhe Wang, Zhen Zhang, Lan Wang and Hongzu Feng
J. Fungi 2025, 11(4), 257; https://doi.org/10.3390/jof11040257 - 27 Mar 2025
Viewed by 463
Abstract
Pear Valsa cankers were found in various Korla fragrant pear orchards in Alaer, Xinjiang. Disease samples underwent tissue isolation, resulting in six isolates. Pathogenicity tests revealed that the XLFL-6 isolate was the most virulent, demonstrating typical Valsa canker symptoms. Research on its biological [...] Read more.
Pear Valsa cankers were found in various Korla fragrant pear orchards in Alaer, Xinjiang. Disease samples underwent tissue isolation, resulting in six isolates. Pathogenicity tests revealed that the XLFL-6 isolate was the most virulent, demonstrating typical Valsa canker symptoms. Research on its biological characteristics indicated that the optimal growth conditions for XLFL-6 were a temperature of 28 °C and a pH of five. Under these conditions, the colonies of XLFL-6 exhibited the largest growth diameter, and adding glucose and peptone separately to the Czapek medium was most conducive to the growth of its mycelium. Based on morphological observations and multigene sequence analyses (ITS+TEF+TUB), the pathogenic fungus was identified as C. pyri. The infection process of C. pyri was elucidated through tissue observations using both light and electron microscopy. The conidia displayed a similar germination pattern on both wounded and intact twigs. However, the infection process was delayed in the case of intact bark. By 8 h post-inoculation, the conidia achieved a germination rate of 15%. Although germination had occurred, the infection process had not yet commenced. In contrast, for wounded bark tissue, it was observed that 24 h post-inoculation, the fungal hyphae from the conidia directly invaded the wounded tissue. These hyphae penetrate the cell walls, proliferate within the host tissue, and spread throughout the phloem and xylem. After 20 d, numerous pycnidia had breached the bark surface, and yellow waxy gums filled with conidia flowed abundantly from the pycnidia ostioles, with the host tissue being nearly totally disintegrated. Regarding enzyme activity, the polygalacturonase (PG) activity, the primary cell wall-degrading enzyme in the treatment group, was seven times greater than that of the control group. The carboxymethyl cellulose (Cx) activity within the treatment group continued to increase. Xylanase activity rose swiftly to its peak between days 1 and 4, then decreased from days 5 to 10, although it remained higher than that of the control group. Overall, this study is the first to provide a detailed report on the characteristics and proliferation of C. pyri and further elucidates its modes and pathways of invasion. Full article
Show Figures

Figure 1

15 pages, 271 KiB  
Article
Improvement of Bioactive Components and Technological Quality of Gluten-Free Pasta with Utilization of Different Carrot Powders, Guar Gum and Pregelatinization Application
by Hilal Arslan Bayrakcı and Nermin Bilgiçli
Foods 2024, 13(24), 4101; https://doi.org/10.3390/foods13244101 - 18 Dec 2024
Cited by 1 | Viewed by 818
Abstract
In this study, carrot (orange and black) powder substitution (0–15%) and different dough applications (guar gum (GG) addition, pregelatinization (PG) and a PG + GG combination) were researched in gluten-free pasta preparation to improve the bioactive components and technological properties. Some quality attributes [...] Read more.
In this study, carrot (orange and black) powder substitution (0–15%) and different dough applications (guar gum (GG) addition, pregelatinization (PG) and a PG + GG combination) were researched in gluten-free pasta preparation to improve the bioactive components and technological properties. Some quality attributes and bioactive components of the pasta were determined. Black carrot powder substitution into the pasta revealed rich functional properties with higher total dietary fiber (TDF), Ca, K, Mg, P and total phenolic content (TPC) than orange carrot powder. An increased carrot powder addition ratio in the gluten-free pasta formulation resulted in enrichment in ash, mineral, β-carotene, total anthocyanin, TDF, antioxidant activity and TPC. The amounts of β-carotene and anthocyanin in the pasta samples rose to 4.42 mg/100 g and 26.08 mg CGE/100 g with the addition of 15% orange and black carrot powders, respectively. Increasing cooking loss due to high utilization ratios of carrot powder was eliminated by PG and PG + GG applications, and technologic quality was improved, especially with the PG + GG combination. Full article
(This article belongs to the Section Grain)
21 pages, 4606 KiB  
Article
Pickering Emulsion Stabilized by Different Concentrations of Whey Protein–Cress Seed Gum Nanoparticles
by Maryam Davtalab, Sara Naji-Tabasi, Mostafa Shahidi-Noghabi, Artur J. Martins, Ana I. Bourbon and Miguel A. Cerqueira
Foods 2024, 13(23), 3777; https://doi.org/10.3390/foods13233777 - 25 Nov 2024
Cited by 4 | Viewed by 2330
Abstract
Nanoparticles based on food-grade materials are promising materials to develop Pickering emulsions for food applications. Initially, this study focuses on the development of nanoparticles through the utilization of a soluble complex of whey protein concentrate (WPC) and cress seed gum (CSG), which were [...] Read more.
Nanoparticles based on food-grade materials are promising materials to develop Pickering emulsions for food applications. Initially, this study focuses on the development of nanoparticles through the utilization of a soluble complex of whey protein concentrate (WPC) and cress seed gum (CSG), which were modified by calcium chloride (CaCl2) as a cross-linker. The response surface methodology was used to investigate the impact of different concentrations of WPC (1–4% w/v), CSG (0–1% w/v), and CaCl2 (1–3 mM) on particle size, polydispersity index (PDI), and Zeta potential. The optimum conditions for the production of CSG–WPC nanoparticles (WPC–CSG NPs) were 0.31% (w/v) CSG, 1.75% (w/v) WPC, and 1.69 mM CaCl2, resulting in nanoparticles with average size of 236 nm and Zeta potential of −22 mV. Subsequently, oil-in-water (O/W) Pickering emulsions were produced with different concentrations of WPC–CSG NPs in optimum conditions. The contact angles of the WPC–CSG NPs were 41.44° and 61.13° at concentrations of 0.5% and 1%, respectively, showing that NPs are suitable for stabilizing O/W Pickering emulsions. Pickering emulsion viscosity rose from 80 to 500 mPa when nanoparticle concentration increased from 0.5% to 1%. Results also showed that WPC–CSG NPs enable stable O/W Pickering emulsions during storage and thermal treatment, confirming that protein–polysaccharide NPs can provide a sufficient steric hindrance. Full article
Show Figures

Figure 1

22 pages, 7121 KiB  
Article
Impact of Thinning on the Yield and Quality of Eucalyptus grandis Wood at Harvest Time in Uruguay
by Fernando Resquin, Karen Baez, Sofia de Freitas, Diego Passarella, Ana Paula Coelho-Duarte and Cecilia Rachid-Casnati
Forests 2024, 15(5), 810; https://doi.org/10.3390/f15050810 - 4 May 2024
Cited by 1 | Viewed by 1901
Abstract
Understanding how thinning strategies impact wood quality and quantity for different purposes is of interest, given that plantation management is often based on parameters that require validation under varying growth conditions. Planted forests for solid purposes in the northern region of Urugay, western [...] Read more.
Understanding how thinning strategies impact wood quality and quantity for different purposes is of interest, given that plantation management is often based on parameters that require validation under varying growth conditions. Planted forests for solid purposes in the northern region of Urugay, western Argentina and South of Brazil are usually managed in initial stockings ranging from 800 to 1200 trees·ha−1 depending on the use of clones or seeds. Subsequent thinnings are applied (at plantation ages varying from 3 to 11 years) up to final stockings of around 200 trees·ha−1. This study evaluated contrasting thinning regimes applied early in the crop cycle, with an initial tree density of 840 trees·ha−1. Two thinning treatments were applied at 1.5 and 7.3 years, reducing tree densities to 700–400 and 400–100 trees·ha−1, respectively. Growth analyses were conducted from 1.5 to 20.8 years, considering total height, diameter at breast height, individual volume, total and commercial volume per hectare, mean annual increase, and current annual increase. At the final harvest, contrasting tree densities of 100, 250, and 400 trees·ha−1 were sampled to assess wood density and mechanical properties (bending and compression on small-scale clear samples). Individual growth and wood properties were related to a Stand Density Index to understand the effect of competition on these values. The results identified thinning regimes that resulted in the most significant individual and per-hectare growth (both in thinning and clear felling) and the optimal harvest time under specific growth conditions. We assessed the proportions of commercial logs for sawmill and pulp uses, providing valuable inputs for subsequent economic analyses of thinning regimes aiming for the most convenient combination of wood products. Wood’s physical and mechanical properties were relatively little affected by contrasting levels of competition between trees; therefore, the choice of silvicultural system will depend on production and economic criteria. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

11 pages, 5754 KiB  
Article
Modeling of Severe Plastic Deformation by HSHPT of As-Cast Ti-Nb-Zr-Ta-Fe-O Gum Alloy for Orthopedic Implant
by Dan Cătălin Bîrsan, Carmela Gurău, Florin-Bogdan Marin, Cristian Stefănescu and Gheorghe Gurău
Materials 2023, 16(8), 3188; https://doi.org/10.3390/ma16083188 - 18 Apr 2023
Cited by 2 | Viewed by 1466
Abstract
The High Speed High Pressure Torsion (HSHPT) is the severe plastic deformation method (SPD) designed for the grain refinement of hard-to-deform alloys, and it is able to produce large, rotationally complex shells. In this paper, the new bulk nanostructured Ti-Nb-Zr-Ta-Fe-O Gum metal was [...] Read more.
The High Speed High Pressure Torsion (HSHPT) is the severe plastic deformation method (SPD) designed for the grain refinement of hard-to-deform alloys, and it is able to produce large, rotationally complex shells. In this paper, the new bulk nanostructured Ti-Nb-Zr-Ta-Fe-O Gum metal was investigated using HSHPT. The biomaterial in the as-cast state was simultaneously compressed up to 1 GPa and torsion was applied with friction at a temperature that rose as a pulse in less than 15 s. The interaction between the compression, the torsion, and the intense friction that generates heat requires accurate 3D finite element simulation. Simufact Forming was employed to simulate severe plastic deformation of a shell blank for orthopedic implants using the advancing Patran Tetra elements and adaptable global meshing. The simulation was conducted by applying to the lower anvil a displacement of 4.2 mm in the z-direction and applying a rotational speed of 900 rpm to the upper anvil. The calculations show that the HSHPT accumulated a large plastic deformation strain in a very short time, leading to the desired shape and grain refinement. Full article
Show Figures

Figure 1

Back to TopTop