Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = root meristem size control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2185 KB  
Review
Proline and ROS: A Unified Mechanism in Plant Development and Stress Response?
by Marco Renzetti, Dietmar Funck and Maurizio Trovato
Plants 2025, 14(1), 2; https://doi.org/10.3390/plants14010002 - 24 Dec 2024
Cited by 43 | Viewed by 7154
Abstract
The proteinogenic amino acid proline plays crucial roles in both plant development and stress responses, far exceeding its role in protein synthesis. However, the molecular mechanisms and the relative importance of these additional functions of proline remain under study. It is well documented [...] Read more.
The proteinogenic amino acid proline plays crucial roles in both plant development and stress responses, far exceeding its role in protein synthesis. However, the molecular mechanisms and the relative importance of these additional functions of proline remain under study. It is well documented that both stress responses and developmental processes are associated with proline accumulation. Under stress conditions, proline is believed to confer stress tolerance, while under physiological conditions, it assists in developmental processes, particularly during the reproductive phase. Due to proline’s properties as a compatible osmolyte and potential reactive oxygen species (ROS) scavenger, most of its beneficial effects have historically been attributed to the physicochemical consequences of its accumulation in plants. However, emerging evidence points to proline metabolism as the primary driver of these beneficial effects. Recent reports have shown that proline metabolism, in addition to supporting reproductive development, can modulate root meristem size by controlling ROS accumulation and distribution in the root meristem. The dynamic interplay between proline and ROS highlights a sophisticated regulatory network essential for plant resilience and survival. This fine-tuning mechanism, enabled by the pro-oxidant and antioxidant properties of compartmentalized proline metabolism, can modulate redox balance and ROS homeostasis, potentially explaining many of the multiple roles attributed to proline. This review uniquely integrates recent findings on the dual role of proline in both ROS scavenging and signaling, provides an updated overview of the most recent research published to date, and proposes a unified mechanism that could account for many of the multiple roles assigned to proline in plant development and stress defense. By focusing on the interplay between proline and ROS, we aim to provide a comprehensive understanding of this proposed mechanism and highlight the potential applications in improving crop resilience to environmental stress. Additionally, we address current gaps in understanding and suggest future research directions to further elucidate the complex roles of proline in plant biology. Full article
(This article belongs to the Special Issue Multifunctional Mediators in Plant Development and Stress Response)
Show Figures

Figure 1

21 pages, 7388 KB  
Article
Understanding the Saffron Corm Development—Insights into Histological and Metabolic Aspects
by Claudia Pallotti, Begoña Renau-Morata, Loriana Cardone, Sergio G. Nebauer, Mireia Albiñana Palacios, Alba Rivas-Sendra, José M. Seguí-Simarro and Rosa V. Molina
Plants 2024, 13(8), 1125; https://doi.org/10.3390/plants13081125 - 17 Apr 2024
Cited by 6 | Viewed by 4213
Abstract
The reproduction of Crocus sativus L., a sterile triploid plant, is carried out exclusively through corms, whose size determines the saffron yield. The development of daughter corms (DC) is supported by photoassimilates supplied by the leaves as well as by the mother corms [...] Read more.
The reproduction of Crocus sativus L., a sterile triploid plant, is carried out exclusively through corms, whose size determines the saffron yield. The development of daughter corms (DC) is supported by photoassimilates supplied by the leaves as well as by the mother corms (MC). While biomass partitioning during DC development is well studied, growth dynamics in terms of cell number and size, the involved meristems, as well as carbohydrate partition and allocation, are not yet fully understood. We conducted a comprehensive study into saffron corm growth dynamics at the macroscopic and microscopic levels. Variations in carbohydrate content and enzymatic activities related to sucrose metabolism in sources and sinks were measured. Two key meristems were identified. One is involved in vascular connections between DC and MC. The other is a thickening meristem responsible for DC enlargement. This research explains how the previously described phases of corm growth correlate with variations in cell division, enlargement dynamics, and carbohydrate partitioning among organs. Results also elucidated that the end of DC growth relates to a significant drop in MC root biomass, limiting the water supply for the DC growth, and establishing the onset of leaf wilting. The lack of starch accumulation in aged leaf cells is noteworthy, as is the accumulation of lipids. We hypothesize a signaling role of sugars in DC growth initiation, stop, and leaf aging. Finally, we established a predominant role of sucrose synthase as a sucrolytic enzyme in the maintenance of the high flux of carbon for starch synthesis in DC. Together, the obtained results pave the way for the definition of strategies leading to better control of saffron corm development. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

13 pages, 18477 KB  
Article
NAC1 Maintains Root Meristem Activity by Repressing the Transcription of E2Fa in Arabidopsis
by Chuantian Xie and Zhaojun Ding
Int. J. Mol. Sci. 2022, 23(20), 12258; https://doi.org/10.3390/ijms232012258 - 14 Oct 2022
Cited by 16 | Viewed by 3626
Abstract
Root meristem is a reserve of undifferentiated cells which guide root development. To maintain root meristem identity and therefore continuous root growth, the rate of cell differentiation must coordinate with the rate of generation of new cells. The E2 promoter-binding factor a ( [...] Read more.
Root meristem is a reserve of undifferentiated cells which guide root development. To maintain root meristem identity and therefore continuous root growth, the rate of cell differentiation must coordinate with the rate of generation of new cells. The E2 promoter-binding factor a (E2Fa) has been shown to regulate root growth through controlling G1/S cell cycle transitions in Arabidopsis thaliana. Here, we found that NAC1, a member of the NAM/ATAF/CUC family of transcription factors, regulated root growth by directly repressing the transcription of E2Fa. Loss of NAC1 triggers an up-regulation of the E2Fa expression and causes a reduced meristem size and short-root phenotype, which are largely rescued by mutation of E2Fa. Further analysis showed that NAC1 was shown to regulate root meristem by controlling endopolyploidy levels in an E2Fa-dependent manner. This study provides evidence to show that NAC1 maintains root meristem size and root growth by directly repressing the transcription of E2Fa in Arabidopsis. Full article
(This article belongs to the Special Issue Single Cell Multiomics in Plants)
Show Figures

Figure 1

23 pages, 4310 KB  
Article
Interplay between Proline Metabolism and ROS in the Fine Tuning of Root-Meristem Size in Arabidopsis
by Sara Bauduin, Martina Latini, Irene Belleggia, Marta Migliore, Marco Biancucci, Roberto Mattioli, Antonio Francioso, Luciana Mosca, Dietmar Funck and Maurizio Trovato
Plants 2022, 11(11), 1512; https://doi.org/10.3390/plants11111512 - 5 Jun 2022
Cited by 28 | Viewed by 4428
Abstract
We previously reported that proline modulates root meristem size in Arabidopsis by controlling the ratio between cell division and cell differentiation. Here, we show that proline metabolism affects the levels of superoxide anion (O2•−) and hydrogen peroxide (H2O [...] Read more.
We previously reported that proline modulates root meristem size in Arabidopsis by controlling the ratio between cell division and cell differentiation. Here, we show that proline metabolism affects the levels of superoxide anion (O2•−) and hydrogen peroxide (H2O2), which, in turn, modulate root meristem size and root elongation. We found that hydrogen peroxide plays a major role in proline-mediated root elongation, and its effects largely overlap those induced by proline, influencing root meristem size, root elongation, and cell cycle. Though a combination of genetic and pharmacological evidence, we showed that the short-root phenotype of the proline-deficient p5cs1 p5cs2/P5CS2, an Arabidopsis mutant homozygous for p5cs1 and heterozygous for p5cs2, is caused by H2O2 accumulation and is fully rescued by an effective H2O2 scavenger. Furthermore, by studying Arabidopsis mutants devoid of ProDH activity, we disclosed the essential role of this enzyme in the modulation of root meristem size as the main enzyme responsible for H2O2 production during proline degradation. Proline itself, on the contrary, may not be able to directly control the levels of H2O2, although it seems able to enhance the enzymatic activity of catalase (CAT) and ascorbate peroxidase (APX), the two most effective scavengers of H2O2 in plant cells. We propose a model in which proline metabolism participates in a delicate antioxidant network to balance H2O2 formation and degradation and fine-tune root meristem size in Arabidopsis. Full article
(This article belongs to the Collection Feature Papers in Plant Development and Morphogenesis)
Show Figures

Graphical abstract

14 pages, 3760 KB  
Article
Supraoptimal Brassinosteroid Levels Inhibit Root Growth by Reducing Root Meristem and Cell Elongation in Rice
by Kewalee Jantapo, Watcharapong Wimonchaijit, Wenfei Wang and Juthamas Chaiwanon
Plants 2021, 10(9), 1962; https://doi.org/10.3390/plants10091962 - 20 Sep 2021
Cited by 11 | Viewed by 3501
Abstract
Root growth depends on cell proliferation and cell elongation at the root meristem, which are controlled by plant hormones and nutrient availability. As a foraging strategy, rice (Oryza sativa L.) grows longer roots when nitrogen (N) is scarce. However, how the plant [...] Read more.
Root growth depends on cell proliferation and cell elongation at the root meristem, which are controlled by plant hormones and nutrient availability. As a foraging strategy, rice (Oryza sativa L.) grows longer roots when nitrogen (N) is scarce. However, how the plant steroid hormone brassinosteroid (BR) regulates rice root meristem development and responses to N deficiency remains unclear. Here, we show that BR has a negative effect on meristem size and a dose-dependent effect on cell elongation in roots of rice seedlings treated with exogenous BR (24-epicastasterone, ECS) and the BR biosynthesis inhibitor propiconazole (PPZ). A genome-wide transcriptome analysis identified 4110 and 3076 differentially expressed genes in response to ECS and PPZ treatments, respectively. The gene ontology (GO) analysis shows that terms related to cell proliferation and cell elongation were enriched among the ECS-repressed genes. Furthermore, microscopic analysis of ECS- and PPZ-treated roots grown under N-sufficient and N-deficient conditions demonstrates that exogenous BR or PPZ application could not enhance N deficiency-mediated root elongation promotion as the treatments could not promote root meristem size and cell elongation simultaneously. Our study demonstrates that optimal levels of BR in the rice root meristem are crucial for optimal root growth and the foraging response to N deficiency. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

22 pages, 8483 KB  
Article
Bootstrapping and Pinning down the Root Meristem; the Auxin–PLT–ARR Network Unites Robustness and Sensitivity in Meristem Growth Control
by Jacob P. Rutten and Kirsten H. Ten Tusscher
Int. J. Mol. Sci. 2021, 22(9), 4731; https://doi.org/10.3390/ijms22094731 - 29 Apr 2021
Cited by 5 | Viewed by 2899
Abstract
After germination, the meristem of the embryonic plant root becomes activated, expands in size and subsequently stabilizes to support post-embryonic root growth. The plant hormones auxin and cytokinin, together with master transcription factors of the PLETHORA (PLT) family have been shown to form [...] Read more.
After germination, the meristem of the embryonic plant root becomes activated, expands in size and subsequently stabilizes to support post-embryonic root growth. The plant hormones auxin and cytokinin, together with master transcription factors of the PLETHORA (PLT) family have been shown to form a regulatory network that governs the patterning of this root meristem. Still, which functional constraints contributed to shaping the dynamics and architecture of this network, has largely remained unanswered. Using a combination of modeling approaches we reveal how the interplay between auxin and PLTs enables meristem activation in response to above-threshold stimulation, while its embedding in a PIN-mediated auxin reflux loop ensures localized PLT transcription and thereby, a finite meristem size. We furthermore demonstrate how this constrained PLT transcriptional domain enables independent control of meristem size and division rates, further supporting a division of labor between auxin and PLT. We subsequently reveal how the weaker auxin antagonism of the earlier active Arabidopsis response regulator 12 (ARR12) may arise from the absence of a DELLA protein interaction domain. Our model indicates that this reduced strength is essential to prevent collapse in the early stages of meristem expansion while at later stages the enhanced strength of Arabidopsis response regulator 1 (ARR1) is required for sufficient meristem size control. Summarizing, our work indicates that functional constraints significantly contribute to shaping the auxin–cytokinin–PLT regulatory network. Full article
Show Figures

Figure 1

9 pages, 12531 KB  
Article
Cytokinin-Dependent Control of GH3 Group II Family Genes in the Arabidopsis Root
by Emanuela Pierdonati, Simon Josef Unterholzner, Elena Salvi, Noemi Svolacchia, Gaia Bertolotti, Raffaele Dello Ioio, Sabrina Sabatini and Riccardo Di Mambro
Plants 2019, 8(4), 94; https://doi.org/10.3390/plants8040094 - 8 Apr 2019
Cited by 41 | Viewed by 6285
Abstract
The Arabidopsis root is a dynamic system where the interaction between different plant hormones controls root meristem activity and, thus, organ growth. In the root, a characteristic graded distribution of the hormone auxin provides positional information, coordinating the proliferating and differentiating cell status. [...] Read more.
The Arabidopsis root is a dynamic system where the interaction between different plant hormones controls root meristem activity and, thus, organ growth. In the root, a characteristic graded distribution of the hormone auxin provides positional information, coordinating the proliferating and differentiating cell status. The hormone cytokinin shapes this gradient by positioning an auxin minimum in the last meristematic cells. This auxin minimum triggers a cell developmental switch necessary to start the differentiation program, thus, regulating the root meristem size. To position the auxin minimum, cytokinin promotes the expression of the IAA-amido synthase group II gene GH3.17, which conjugates auxin with amino acids, in the most external layer of the root, the lateral root cap tissue. Since additional GH3 genes are expressed in the root, we questioned whether cytokinin to position the auxin minimum also operates via different GH3 genes. Here, we show that cytokinin regulates meristem size by activating the expression of GH3.5 and GH3.6 genes, in addition to GH3.17. Thus, cytokinin activity provides a robust control of auxin activity in the entire organ necessary to regulate root growth. Full article
Show Figures

Figure 1

27 pages, 3636 KB  
Review
Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective
by Adam Barrada, Marie-Hélène Montané, Christophe Robaglia and Benoît Menand
Int. J. Mol. Sci. 2015, 16(8), 19671-19697; https://doi.org/10.3390/ijms160819671 - 19 Aug 2015
Cited by 45 | Viewed by 14482
Abstract
Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation [...] Read more.
Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin) kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth. Full article
(This article belongs to the Special Issue Molecular Machinery of Cell Growth Regulation)
Show Figures

Graphical abstract

Back to TopTop