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Abstract: Root growth depends on cell proliferation and cell elongation at the root meristem, which
are controlled by plant hormones and nutrient availability. As a foraging strategy, rice (Oryza sativa L.)
grows longer roots when nitrogen (N) is scarce. However, how the plant steroid hormone brassinos-
teroid (BR) regulates rice root meristem development and responses to N deficiency remains unclear.
Here, we show that BR has a negative effect on meristem size and a dose-dependent effect on cell
elongation in roots of rice seedlings treated with exogenous BR (24-epicastasterone, ECS) and the
BR biosynthesis inhibitor propiconazole (PPZ). A genome-wide transcriptome analysis identified
4110 and 3076 differentially expressed genes in response to ECS and PPZ treatments, respectively.
The gene ontology (GO) analysis shows that terms related to cell proliferation and cell elongation
were enriched among the ECS-repressed genes. Furthermore, microscopic analysis of ECS- and
PPZ-treated roots grown under N-sufficient and N-deficient conditions demonstrates that exogenous
BR or PPZ application could not enhance N deficiency-mediated root elongation promotion as the
treatments could not promote root meristem size and cell elongation simultaneously. Our study
demonstrates that optimal levels of BR in the rice root meristem are crucial for optimal root growth
and the foraging response to N deficiency.
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1. Introduction

Root systems play important roles in water and nutrient acquisition. The develop-
mental plasticity of root system architecture is crucial for crop adaptation to unfavorable
environments, such as drought stress and nutrient deficiency stress. For example, rice
varieties with larger root biomass, a more extensive root distribution, and a longer root
length were found to use nitrogen more efficiently [1]. Understanding the mechanisms that
control root growth is important for crop genetic improvement for sustainable agriculture,
with the goal of reducing fertilizer application while maintaining crop productivity.

Root growth is determined by cell division and elongation at the root tip, where
cells are organized along the longitudinal axis in distinct developmental zones. At the
apical side of the root tip, cells are actively dividing in the meristem zone. As the cells
leave the meristem zone, they enter the elongation zone, where they rapidly elongate and
reach their mature size before entering the maturation zone to undergo differentiation [2].
Optimal root growth thus depends on the root meristem size and the number of dividing
meristematic cells [3]. Several studies have demonstrated that root growth and meristem
size are regulated by several internal and external factors, including plant hormones and
nutrient availability in the soil [4].
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Brassinosteroid (BR) is a class of steroid hormones that regulates various physiological
processes such as hypocotyl cell elongation, photomorphogenesis, and stomatal devel-
opment [5]. BR regulates rice and Arabidopsis root growth in a dose-dependent manner
with low BR concentrations marginally promoting root growth and high BR concentrations
dramatically inhibiting root growth [6,7]. Several BR and their roles in root meristem de-
velopment have been studied using Arabidopsis roots as a model. Enhanced BR signaling
results in premature cell cycle exit, and inhibits root meristem size in Arabidopsis [8]. In
addition, previous transcriptomic analysis showed that BR promoted expression of cell
elongation-related genes expressed in the root transition-elongation zone, but repressed
several genes specifically expressed in the meristem zone [6].

Nitrogen (N) is one of the most important macronutrients for plant growth and
development, and it is frequently a key limiting factor in most agricultural systems. When
grown under N deficiency, plants exhibit root foraging responses with increased root
length, which allows them to explore more soil volumes to improve N uptake ability [9,10].
BR has been shown to regulate root adaptation responses to various nutrient deficiency
including N, phosphorus, iron and boron [11]. Works in Arabidopsis have demonstrated
that a natural allelic variation in a BR signaling component, BSK3, which leads to enhanced
sensitivity of the BR signaling pathway, as well as upregulation of BR biosynthesis in
roots, could promote primary root elongation under mild N deficiency [12,13]. However, it
remains unclear how BR regulates rice root meristem development and its responses to
N deficiency.

In this study, we examined the effect of 24-epicastasterone (ECS) and propiconazole
(PPZ), a BR biosynthesis inhibitor [14], on root meristem size and cell elongation in rice
seedlings grown under N-sufficient and N-deficient conditions. Furthermore, we per-
formed an RN A-sequencing analysis to identify ECS- and PPZ-responsive genes in the root
under N-sufficient condition. Our results show that supraoptimal BR levels inhibited root
cell proliferation and elongation, as well as expression of genes involved in cell prolifera-
tion and cell elongation and that optimal BR levels were crucial for N deficiency-induced
root growth promotion.

2. Results
2.1. Effect of BR on Root Elongation

To investigate how BR modulates root growth, germinated rice seeds were grown for
5 days (d) in media supplemented with various concentrations of a biologically active BR,
24-epicastasterone (ECS), and/or a BR biosynthesis inhibitor, propiconazole (PPZ). Treat-
ments of ECS at concentrations up to 10 nM did not change primary root length, whereas
50 nM ECS inhibited root length significantly (Figure 1a,b). Increased PPZ concentrations
resulted in more reduction in primary root length (Figure 1c). The inhibitory effect of 4 uM
PPZ on primary root length could be rescued by 1 nM and 10 nM ECS (Figure 1a,b). These
results suggest that the effect of BR on root elongation is dose-dependent.

2.2. Effect of BR on Root Cell Proliferation and Elongation

To understand how BR regulates cell proliferation and elongation in the root apices,
primary root tips of seedlings grown in the presence or absence of PPZ were treated with
ECS for 24 h and observed under microscope. Quantification of cell number and cell
length in the 4th cortical layer of the root meristem showed that PPZ treatment increased
root meristem size and meristem cell number, but reduced cell length (Figure 2a—d). ECS
treatments reduced meristem size and meristem cell number in a dose-dependent manner
under both PPZ and no PPZ conditions. Treatment of 10 nM ECS for 24 h could restore
meristem size, meristem cell number and cell length of PPZ-treated roots to those of
the untreated control (Figure 2b-d). Higher concentrations of ECS strongly reduced
meristem size and meristem cell number but did not further increase meristem cell length
(Figure 2b—d). This result suggests that BR had a negative effect on root meristem size and
meristem cell number and a positive effect on meristem cell elongation.
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Figure 1. Effect of ECS and PPZ treatments on rice root growth. Root phenotypes of rice seedlings
grown for 5 d under different concentrations of ECS or PPZ or combination of ECS and PPZ (4 uM).
(a) Representative images of roots grown under different treatments. Scale bar = 2 cm. (b,c) Quan-
tification of primary root length. Data are means + SD (n = 10 biological replicates). Significant
differences between the treatment and the mock control are indicated by ** for p < 0.001. Significant
differences between PPZ and no PPZ (with the same ECS concentration) are indicated by * and
** for p < 0.05 and 0.001, respectively.

In addition to meristem cell proliferation, cell elongation in the elongation zone, which
determines mature cell length, also contributes to root elongation rate. ECS treatment
significantly reduced mature cell length. PPZ treatment also reduced mature cell length to
59% of the untreated control, which could be partially rescued by 1 nM ECS (Figure 2e).
However, higher concentrations of ECS could not promote cell elongation inhibited by PPZ
(Figure 2e). The results show that BR had a dose-dependent effect on root cell elongation,
with low concentrations promoting cell elongation and high concentrations inhibiting it.

2.3. Transcriptome Profiling of ECS- and PPZ-Treated Rice Roots

To understand how high and low (physiological) concentrations of BR regulate root
elongation at transcriptional levels, we performed transcriptomic analysis of roots treated
with a high concentration of ECS for 24 h (+ECS), or grown in media supplemented with
PPZ (+PPZ) or without PPZ (mock). Expression profiles of ECS- and PPZ-treated samples
were compared with the mock control (+ECS vs. mock and +PPZ vs. mock) to identify
ECS- and PPZ-responsive genes, respectively. Genes that were significantly differentially
expressed by more than 1.5 folds (|logsfold change | > 0.58 and adjusted p-value < 0.05)
were included in the differentially expressed gene (DEG) list for further analysis. ECS
treatment induced 696 genes and repressed 3414 genes, whereas PPZ treatment induced
991 genes and repressed 2085 genes (Figure 3a, Table S1). Venn diagram and heatmap
clustering of DEGs show that about one-third of the PPZ-induced genes were also repressed
by ECS, while there was little overlap between PPZ-repressed genes and ECS-induced or
ECS-repressed genes.
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Figure 2. Effect of ECS and PPZ treatments on rice root meristem and cell elongation in primary
root tips. Seedlings were grown in the absence and presence of PPZ for 5 d, and then treated with
ECS for 24 h. (a) Confocal microscopy images of rice root meristems treated with mock, PPZ (4 uM)
or ECS (10 nM). Scale bar = 100 um. Arrowheads mark the end of the meristem zone; the PPZ-
treated root had large meristem that the end of the meristem zone was not present in the image.
(b—d) Quantifications of root meristem size (b), meristem cell number (c) and average meristem
cell length (d) were determined from cortical cells in the 4th cortical layer by measuring from the
QC to the first elongated cell. Mature cell length (e) was determined from the average length of
five adjacent mature cortical cells. Data are means & SD (1 > 6 biological replicates). Significant
differences between the treatment and the mock control are indicated by * and ** for p < 0.05 and 0.001,
respectively. Significant differences between PPZ and no PPZ (with the same ECS concentration) are
indicated by * and ** for p < 0.05 and 0.001, respectively.
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Figure 3. Transcriptomic analysis of differentially expressed genes in ECS- and PPZ-treated rice roots.
(a) Venn diagram showing the overlap between the lists of significant ECS-induced, ECS-repressed,
PPZ-induced and PPZ-repressed genes (| fold change | > 1.5; adjusted p-value < 0.05). The numbers
of DEGs are shown in parentheses. (b) Hierarchically clustered heatmap displaying the log, FC
values of all significant genes in the ECS vs. mock or PPZ vs. mock comparisons. (¢) GO biological
process term enrichment analysis of the ECS and PPZ DEG lists.

Gene ontology (GO) enrichment analysis identified significantly enriched GO terms
(biological process) among the ECS-repressed DEGs related to cell proliferation and cell
elongation including ‘cell proliferation’, ‘histone phosphorylation’, “‘microtubule-based
movement’, ‘plant-type cell wall organization’, ‘cell wall biogenesis” and “unidimensional
cell growth’ (Figure 3c). The terms ‘lignin biosynthetic process’, “xylem development” and
‘root cap development” were also enriched among the ECS-repressed DEGs, whereas the
terms ‘lateral root development” and ‘response to growth hormone” were enriched among
the ECS-induced DEGs. The terms “plastid organization” and ‘response to nitrate” were
enriched among the PPZ-repressed DEGs.
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BR biosynthetic genes (OsBRD1, OsBRD2, OsD2, OsD11 and OsDWF4) were repressed
by ECS and induced by PPZ, whereas BR catabolic genes (OsCYP73A2, OsCYP73A4 and
OsCYP73A6) were induced by ECS and repressed by PPZ (Figure 4a). In addition, ECS
repressed and PPZ induced expression of BR receptor genes (OsBRI1, OsBRL2 and OsBRL3)
and BZR family transcription factors (OsBZR1, OsBZR2 and OsBZR4), with the exception of
OsBZR4, which was induced by ECS (Figure 4a). The expression of these BR biosynthetic,
catabolic and signaling genes, which showed negative feedback regulation by the BR
signaling pathway [15], corroborated that BR signaling was activated in the ECS-treated
roots and inhibited in the PPZ-treated roots.
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Figure 4. Expression of genes involved in BR biosynthesis and signaling, ethylene biosynthesis, cell proliferation and cell
elongation. Heatmaps represent log2FC values of genes in the ECS vs. mock or PPZ vs. mock comparisons. Black dots
indicate statistical significance of differential expression (adjusted p-value < 0.05). (a) BR biosynthetic and signaling genes,
(b) OsPLT genes, (c) ethylene biosynthesis genes, (d,e) cell wall loosening and remodeling genes OsXTHs (d) and OsEXPs
(e), (£,g) aquaporin genes OsPIPs (f) and OsTIPs (g). Only genes that showed statistical significance in at least one of the
ECS or PPZ comparisons were included in this figure.

The PLETHORA (PLT) family transcription factors are known to be master regulators
of root meristem size [16]. Among 10 OsPLT genes identified in rice, OsPLT1-6, which are
expressed in rice roots [17], were all repressed by ECS (Figure 4b). This result suggests that
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ECS inhibited root meristem size partly by repressing OsPLT expression. ECS also repressed
several microtubule-related genes, which are involved in cell division [18]. These included
9 out of 12 tubulin genes, 27 out of 52 kinesin genes and 5 out of 11 microtubule-associated
protein 65 (MAP65) genes identified in rice (Table S2).

Ethylene is another plant hormone that has been known to inhibit root elongation [19].
Ethylene biosynthesis is catalyzed by the enzymes S-adenosylmethionine (SAM) synthase,
1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS), and ACC oxidase (ACO) [20].
We found that OsACO1 and OsACO2 were among the four strongest ECS-induced genes
(logofold change = 2.60 and 2.23, respectively; Table S1), while OsACO4, OsACO5 and
OsACO6 were significantly repressed by PPZ (Figure 3c), suggesting that ECS treatments
may potentially increase ethylene contents by upregulating OsACO expression. However,
genes encoding OsSAMS1/2 and OsACS2/3/5 were repressed by ECS and/or PPZ.

Expansins (EXP) and xyloglucan endotransglucosylase/hydrolase (XTH) play im-
portant roles in cell wall loosening and remodeling, thus mediating root cell elongation.
We found that ECS treatment repressed 18 OsEXPAs, 6 OsEXPBs and 14 OsXTHs. PPZ
treatment repressed 4 OsEXPAs and 1 OsXTH, but induced 3 OsEXPAs, 3 OsEXPBs and
1 OsXTH (Figure 4d,e). In addition, ECS and PPZ repressed expression of aquaporins,
including plasma membrane intrinsic proteins (PIPs) and tonoplast intrinsic proteins (TIPs),
which are important regulators of osmotic water transport, cell turgor pressure and cell
elongation [21]. ECS significantly repressed eight OsPIPs and four OsTIPs, while PPZ
repressed five OsPIPs and one OsTIP. Only OsTIP4;1 was significantly induced by ECS
(Figure 4f,g). These results suggest that a high concentration of BR inhibited root cell
elongation by downregulating expression of most cell wall-loosening and remodeling
enzymes and aquaporins. However, limited cell elongation caused by PPZ treatment is
most likely due to reduced expression of aquaporins and certain expansins. The negative
effect of high concentrations of ECS on cell proliferation and cell elongation-related genes
suggests that optimal BR level in the root is critical for optimal root elongation.

2.4. Effect of BR on N Deficiency-Induced Root Elongation

To study how increased or decreased BR levels affect low N-mediated root elongation
promotion, germinated seeds were grown in N-sufficient conditions (normal N) for 5 d and
then transferred to either normal N or low N conditions, which were supplemented with
10 nM ECS or 4 uM PPZ or mock. After 7 d of treatment, crown roots were used to measure
growth and root meristems because the primary root of monocots dies as the plants age and
had stopped growing in our experiment. Under low-N conditions, mock- and PPZ-treated
roots had longer crown roots than normal N-treated roots, while ECS-treated roots had
shorter roots (Figure 5a,b). Low N increased root meristem size, meristem cell number
and mature cell length while decreasing meristem cell length (Figure 5c-f). PPZ-treated
roots had a larger meristem size than mock-treated roots, and low N did not increase it any
further (Figure 5¢). PPZ treatment, on the other hand, reduced the promoting effect of low
N on mature cell length (Figure 5f), suggesting that endogenous BR is involved in root cell
elongation in response to N deficiency.

Interestingly, ECS-treated roots were more strongly inhibited under low N compared
to normal N conditions. In ECS-treated roots, low N treatment reduced meristem size
and meristem cell number but allowed promotion of mature cell length (Figure 5c,d,f).
Measurement of cell length in the 4th cortical layer along the longitudinal root axis demon-
strates the point of transition into the elongation zone, where cells rapidly increase their
length. Figure 5g shows that ECS treatment caused premature cell cycle exit and that low
N + ECS treatment enhanced cell elongation of the elongating cells, consistent with the
further reduction in root meristem size (Figure 5c,d) and root length (Figure 5b).
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Figure 5. Effect of ECS and PPZ treatments on root growth responses to N deficiency. Germinated seeds were grown
in normal N for 5 d and then transferred to either normal N or low N conditions containing 10 nM ECS or 4 uM PPZ
or mock for 7 d. (a) Representative images of roots grown under different treatments. Scale bar = 2 cm. (b) Crown root

length was calculated from the average of the three longest crown roots. Data are means £ SD (1 = 10 biological replicates).

(c—g) Quantifications of root meristem size (c), meristem cell number (d) and average meristem cell length (e) in the crown

roots were determined from cortical cells in the 4th cortical layer by measuring from the QC to the first elongated cell.

Mature cell length (f) was determined from the average length of five adjacent mature cortical cells. (g) Average cortical cell

length along the longitudinal root axis from the QC illustrated the number of cells in the meristem, the onset of rapid cell

elongation and the effect of low N on promoting cell elongation under mock and ECS treatments but not PPZ treatment.

Data are means + SD (1 > 6 biological replicates). Significant differences are indicated by * for p < 0.05.

3. Discussion

Root length is a critical factor for crop productivity, as deeper roots can potentially
increase soil exploration for water and nutrient uptake [22]. Optimal root growth depends
on the size of root meristem, which is controlled by the balance between cell proliferation
and cell elongation along the root developmental zones [23]. Here, we demonstrated that
BR has a negative effect on meristem size and a dose-dependent effect on cell elongation
in rice roots. Transcriptome analysis showed consistently that a high concentration of BR
downregulated cell proliferation- and cell elongation-related genes. We then demonstrated
that exogenous BR or PPZ application could not enhance root elongation promotion by
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N deficiency as the treatments could not simultaneously promote root meristem size and
mature cell length.

3.1. Effect of BR and PPZ on Rice Root Meristem Cell Proliferation and Cell Elongation

BR has been shown to negatively regulate Arabidopsis root meristem size by pro-
moting cell elongation and accelerating cell cycle exit [8]. As shown here, PPZ-treated
roots exhibited reduced cell elongation and a large meristem size, likely due to a delay
in cell cycle exit. Our results reveal that low concentrations of ECS could promote root
cell elongation of the PPZ-treated meristematic and mature cells (Figure 2d,e), consistent
with the well-known function of BR in promoting cell elongation in various plant species
and tissues [24]. However, high concentrations of ECS significantly reduced mature cell
length in rice roots. These observations together suggest that endogenous BR content in the
elongation zone is closed to saturated for promoting cell elongation, whereas endogenous
BR content in the meristem zone is supraoptimal for cell proliferation such that blocking
BR biosynthesis led to increased root meristem size. The inhibitory effect of BR on rice root
elongation reported here is consistent with previous findings. Upregulation of BR biosyn-
thesis in rice roots by ammonium (NHy4*)-induced miR444-OsBRD1 signaling cascade is
responsible for NH,*-dependent root elongation inhibition [25].

3.2. Transcriptional Regulation of Cell Proliferation- and Cell Elongation-Related Genes

Transcriptome analysis showed that ECS significantly repressed OsPLT1-6 expression,
consistent with the strong reduction of meristem size in the ECS-treated roots. Moreover,
ECS also repressed expression of several tubulin, kinesin and microtubule-associated
proteins, many of which have known function in cell proliferation and elongation [18].
These ECS-repressed kinesin genes included NACK-type kinesin-like protein (OsNACK),
Gibberellin-deficient dwarf 1 (OsGDD1), and Stemless Dwarf 1 (OsSTD1), in which mu-
tations led to impaired cell division and elongation [26-28]. In Arabidopsis, the BR-
activated transcription factors BZR1 and BES1 have been shown to bind the promoter of
the microtubule-associated protein CLASP gene and repress its expression, resulting in a
drastic shift in microtubule organization and a reduction in root meristem cell number [29].

Ethylene has been shown to inhibit primary root elongation in rice by inhibiting
root cell proliferation and elongation [30]. Although our results show that the upstream
ethylene biosynthesis genes OsSAMS and OsACS were repressed by ECS, ECS strongly
increased transcript of OsACO1 and OsACO?2 (Figure 4c), which catalyze the final step of
ethylene production. Thus, BR may increase ethylene levels, which could contribute to
ethylene-mediated root elongation inhibition. Consistently, BR has been shown to increase
ethylene production in etiolated rice seedlings through post-transcriptional regulation
of ACS proteins [20]. Further research using ethylene signaling mutants or inhibitors of
ethylene action is needed to confirm the crosstalk between BR and ethylene in inhibiting
rice root elongation.

Inhibition of cell elongation by PPZ treatment was due to reduced expression of most
aquaporins and some expansins. On the other hand, inhibition of cell elongation by ECS
was due to reduced expression of the majority of aquaporins and cell wall-loosening and
remodeling (EXP and XTH) proteins. EXP, XTH and aquaporin genes have been shown
to be highly expressed in the elongation zone of Arabidopsis roots, and were induced by
BR and repressed by auxin [6]. The contrast transcriptional regulation by BR in rice roots,
as shown in this study, may be due to complex interaction of BR with other signals that
control cell elongation, such as ethylene and gibberellin (GA) [7,30]. Previous research
has shown that elevated BR levels or BR signaling inhibit organ growth by promoting
expression of the GA- inactivation enzyme GAZ20x-3, which reduces bioactive GA levels
and cell elongation in rice roots and leaf sheath [7,31].

Taken together, our findings demonstrate the negative effect of high concentrations of
BR on cell proliferation and cell elongation-related genes and suggest that optimal BR level
in the root is critical for optimal root elongation. A recent study has demonstrated that
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optimal BR levels are required for root growth, as well as mineral nutrient homeostasis in
soybean [32].

3.3. Involvement of BR in Low N-Induced Root Elongation

Root growth plasticity in response to nutrient availability is modulated by various
phytohormones. Our results showed that N deficiency increased root meristem size,
meristem cell number and mature cell length (Figure 5c,d,f), consistent with a previous
report [30]. A low concentration of BR treatment (10 nM ECS) inhibited low N-induced
root growth, as it reduced root meristem size and meristem cell number but did not block
low N-induced cell elongation. On the other hand, PPZ treatment reduced low N-induced
root growth, as it reduced low N-induced cell elongation and did not further increase root
meristem size and meristem cell number compared to the PPZ-treated roots in normal
N condition.

Although results of ECS treatment under normal N condition suggest that endoge-
nous BR level in the roots was optimal and likely saturated for root cell elongation, N
deficiency could further promote root cell elongation. It is possible that N deficiency
promoted root cell elongation by increasing very low levels of BR in the elongation zone or
through non-BR-mediated processes. For instance, a recent work showed that N deficiency
reduced cytokinin contents in rice primary roots, resulting in increased root meristem cell
proliferation and cell elongation [17]. Further research is needed to quantify endogenous
BR levels in the root tips to determine whether N deficiency alters BR contents in the root
meristem zone and elongation zone, resulting in increased cell proliferation and elongation.

Patterning of hormonal signals along root developmental axis is critical for optimal
root growth and development. Local BR biosynthesis has been shown to peak in the
elongation zone [33], coinciding with the optimal onset of cell elongation in the transition
zone located between the meristem and elongation zone. As a result, exogenous BR or
PPZ treatment may not promote optimal root elongation due to unbalanced activity in the
meristem and elongation zone.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

Seeds of rice (Oryza sativa L.) cv. Look Daeng Pattani, kindly provided by the Pathum
Thani rice research center, were used in this study. Seeds were surface-sterilized and
germinated in distilled water for 2 d in the dark, before transferring to Yoshida’s nutrient
solution (1.427 mM NH4NO;3, 0.323 mM NaH;POy, 0.512 mM K;504, 0.998 mM CaCl,,
1.643 mM MgSO4, 0.009 mM MHCIZ, 0.075 H.M (NH4)6M07024, 0.019 mM H3BO3, 0.152 LLM
ZnSOy, 0.155 uM CuSOy4 and 0.036 mM Fe-EDTA) [34]. The concentrations of N supply
in normal N and low N conditions were 1.427 mM and 0 mM NH4NOj3, respectively. The
nutrient solutions were adjusted to pH 5.8 and renewed every 2 d. The seedlings were
grown in a growth room at 30 °C with a 12 h/12 h light-dark cycle.

To investigate the effect of PPZ and BR on primary root elongation, germinated rice
seeds were grown for 5 d in normal N solution supplemented with various concentrations
of PPZ (0, 2,4, 8 and 16 uM PPZ) or ECS (0, 0.1, 1, 10 and 50 nM ECS) or the combination
of 4 uM PPZ and ECS (0, 0.1, 1 and 10 nM ECS). To investigate the effect of PPZ and BR on
primary root meristem and transcriptomes, germinated rice seeds were grown for 5 d in
normal N media supplemented with or without 4 uM PPZ and then treated with various
concentrations of ECS (0, 1, 10, 100 nM and 1 and 10 uM) for 24 h. Only PPZ (4 uM), ECS
(10 uM) and mock samples were included in the transcriptomic experiment.

For N deficiency experiments, germinated seeds were grown in normal N solution for
5 d and then transferred to either normal N or low N conditions, which were supplemented
with 10 nM ECS or 4 uM PPZ or mock, and continued to grow for 7 d. Root samples were
harvested for quantification of crown root length, which was calculated from the average
of the three longest crown roots, and crown root meristem.
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4.2. Chemical Treatment

This study used 24-epicastasterone (ECS), which is a precursor of castasterone, an end
product of BR biosynthesis pathway in rice [35], and has been shown to be biologically
active but less so than brassinolide [36]. ECS (Yuanye Biology, Shanghai, China), was
dissolved in 80% ethanol. Propiconazole (Syngenta, Shanghai, China) was prepared by
dissolving in distilled water. For mock treatment, medium with ethanol at the same final
concentration as that for ECS treatments was used.

4.3. Quantitative Analysis of Root Phenotypes

Root systems were harvested and scanned using a flatbed scanner (EPSON Perfection
V850 Pro, Japan), and root length was measured using Image] software (https://imagej.
nih.gov/ij/). For root meristem quantification, root tips were cut and incubated in a
basic solution (7% NaOH in 60% ethanol) for 2 d. Then, the roots were mounted in a
solution (50% glycerol in 10% ethanol) [37], and imaged with a microscope (Olympus BX43,
Japan). For confocal images of root meristem, the root tips were fixed in fixative (50%
methanol and 10% acetic acid) at 4 °C for at least 12 h and then stained using modified
pseudo-Schiff propidium iodide (mPS-PI) staining [38]. Briefly, the tissue was incubated
in 1% periodic acid, rinsed with water, and then incubated in Schiff reagent (100 mM
sodium metabisulphite and 0.15 N HCI) with propidium iodide. The stained samples were
mounted on microscope slides with a chloral hydrate solution and visualized on a Zeiss
confocal microscope (Carl Zeiss, Oberkochen, Germany).

Root meristem size was determined by measuring the length from the quiescent center
(QC) to the first elongated cell in the fourth cortical layer. Meristem cell number and
meristem cell length were determined from the number of cells and the average length of
all cells in the fourth cortical layer of the root meristem, respectively. Mature cell length was
quantified from the average length of five adjacent mature cells in the fourth cortical layer
of the root maturation zone, where cells have recently reached their final size within the
treatment period. The meristem size and cell length were measured using Image] software.

4.4. RNA Extraction, cDNA Library Construction and RNA-Seq

For each treatment, three biological replicates (6 plants/ replicate) were included.
Total RNA was extracted from root tissues using PureLink RNA Mini Kit based on the man-
ufacturer’s instructions (Invitrogen, Carlsbad, CA, USA) and genomic DNA were removed
using DNase I (Thermo Fisher Scientific, Waltham, MA, USA). The quality of the total
RNA was assessed by the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,
USA), and all samples had an RNA integrity number (RIN) greater than 8.9. Purification
of mRNA, library construction and sequencing were performed at Apical Scientific Sdn.
Bhd. (Selangor, Malaysia) using an Illumina NovaSeq 6000 sequencer according to the
manufacturer’s instructions (Illumina, San Diego, CA, USA) for 2 x 150 bp paired-end
reads. The RNA-seq raw data were deposited in the Sequence Read Archive of the National
Center for Biotechnology Information under accession number PRINA753856.

4.5. Data Processing and Bioinformatics Analysis

After pre-processing and filtering low-quality reads, more than 90% of reads could be
mapped to the RAPDB reference genome (IRGSP 1.0.21) using HISAT [39] and StringTie [40]
pipeline. Comparison of expression profiles was performed using DESeq2 [41]. The
significant cutoff for differentially expressed genes was set at adjusted p-value < 0.05 and

| fold change | > 1.5 (equivalent to | shrunken log,fold change | > 0.58).

Gene ontology (GO) enrichment analysis was performed using Plant Regulomics [42]
with default parameters set and a threshold false discovery rate (FDR) < 0.02 and plotted by
REVIGO [43]. Hierarchical clustering and heatmap analysis were performed using ‘hclust’
and ‘heatmap.2’ packages in R (version 3.5.3). Venn diagram was plotted using DeepVenn
(https:/ /www.deepvenn.com). Heatmaps showing expression levels of selected genes
were plotted using ClustVis web tools [44].
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4.6. Statistical Analysis

For quantitation of root length and root meristem, at least ten and six biological
replicates were analyzed, respectively. Means and standard deviation (SD) were calculated
and analyzed by Student’s t-test using IBM SPSS statistics 20.

5. Conclusions

Our results show that supraoptimal BR inhibited root meristem size and cell elonga-
tion, while PPZ treatment increased root meristem size but also inhibited cell elongation.
Transcriptome analysis reveals that ECS and PPZ treatments regulated several genes in-
volved in cell proliferation and cell elongation. Furthermore, the responses of ECS- and
PPZ-treated roots under N deficiency show that neither an excess nor an absence of BR
could promote the root foraging response. Our findings highlight the crucial roles of
optimal BR levels in the rice root meristem for maintaining the balance of cell proliferation
and cell elongation to promote root growth.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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