Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (393)

Search Parameters:
Keywords = rolling mill

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1777 KiB  
Article
Reduced-Order Model Based on Neural Network of Roll Bending
by Dmytro Svyetlichnyy
Appl. Sci. 2025, 15(15), 8418; https://doi.org/10.3390/app15158418 - 29 Jul 2025
Viewed by 93
Abstract
Effective real-time control systems require fast and accurate models. The roll bending models presented in this paper are proposed for a real-time control system for the design of the rolling schedule. The roll bending, with other factors, defines the shape of the roll [...] Read more.
Effective real-time control systems require fast and accurate models. The roll bending models presented in this paper are proposed for a real-time control system for the design of the rolling schedule. The roll bending, with other factors, defines the shape of the roll surface, its convexity, and finally the shape of the final product of the flat rolling, its convexity, and its flatness. This paper presents accurate finite element (FE) models for a four-high mill. The models serve to obtain accurate solutions to the problem of roll bending, taking into account the rolling force, width of the rolling sheet (strip), initial shape of the roll surface, and the anti-bending force. The results of the FE simulation are used to train three models developed on the basis of the neural network (NN) for the solution of one direct and two inverse tasks. The pre-trained NN model gives accurate results and is faster than the FE model (FEM). The calculation time on a personal computer for one case of 3D FEM is 1 to 2 min, for 2D FEM it is 1 s, and for NN it is less than 1 ms. The results can be immediately used by other models of the real-time control system. A novelty of the research presented in the paper is the creation of complex applications of the FE method and an NN as a reduced-order model (ROM) for prediction of roll bending and calculation of sheet (strip) convexity, rolling, and anti-bending forces to obtain the required convexity. Full article
Show Figures

Figure 1

33 pages, 4531 KiB  
Article
Development of the Theory of Additional Impact on the Deformation Zone from the Side of Rolling Rolls
by Valeriy Chigirinsky, Irina Volokitina, Abdrakhman Naizabekov, Sergey Lezhnev and Sergey Kuzmin
Symmetry 2025, 17(8), 1188; https://doi.org/10.3390/sym17081188 - 25 Jul 2025
Viewed by 144
Abstract
The model explicitly incorporates boundary conditions that account for the complex interplay between sections experiencing varying degrees of reduction. This interaction significantly influences the overall deformation behavior and force loading. The control effect is associated with boundary conditions determined by the unevenness of [...] Read more.
The model explicitly incorporates boundary conditions that account for the complex interplay between sections experiencing varying degrees of reduction. This interaction significantly influences the overall deformation behavior and force loading. The control effect is associated with boundary conditions determined by the unevenness of the compression, which have certain quantitative and qualitative characteristics. These include additional loading, which is less than the main load, which implements the process of plastic deformation, and the ratio of control loads from the entrance and exit of the deformation site. According to this criterion, it follows from experimental data that the controlling effect on the plastic deformation site occurs with a ratio of additional and main loading in the range of 0.2–0.8. The next criterion is the coefficient of support, which determines the area of asymmetry of the force load and is in the range of 2.00–4.155. Furthermore, the criterion of the regulating force ratio at the boundaries of the deformation center forming a longitudinal plastic shear is within the limits of 2.2–2.5 forces and 1.3–1.4 moments of these forces. In this state, stresses and deformations of the plastic medium are able to realize the effects of plastic shaping. The force effect reduces with an increase in the unevenness of the deformation. This is due to a change in height of the longitudinal interaction of the disparate sections of the strip. There is an appearance of a new quality of loading—longitudinal plastic shear along the deformation site. The unbalanced additional force action at the entrance of the deformation source is balanced by the force source of deformation, determined by the appearance of a functional shift in the model of the stress state of the metal. The developed theory, using the generalized method of an argument of functions of a complex variable, allows us to characterize the functional shift in the deformation site using invariant Cauchy–Riemann relations and Laplace differential equations. Furthermore, the model allows for the investigation of material properties such as the yield strength and strain hardening, influencing the size and characteristics of the identified limit state zone. Future research will focus on extending the model to incorporate more complex material behaviors, including viscoelastic effects, and to account for dynamic loading conditions, more accurately reflecting real-world milling processes. The detailed understanding gained from this model offers significant potential for optimizing mill roll designs and processes for enhanced efficiency and reduced energy consumption. Full article
(This article belongs to the Special Issue Symmetry in Finite Element Modeling and Mechanics)
Show Figures

Figure 1

34 pages, 5960 KiB  
Article
Motor Temperature Observer for Four-Mass Thermal Model Based Rolling Mills
by Boris M. Loginov, Stanislav S. Voronin, Roman A. Lisovskiy, Vadim R. Khramshin and Liudmila V. Radionova
Sensors 2025, 25(14), 4458; https://doi.org/10.3390/s25144458 - 17 Jul 2025
Viewed by 212
Abstract
Thermal control in rolling mills motors is gaining importance as more and more hard-to-deform steel grades are rolled. The capabilities of diagnostics monitoring also expand as digital IIoT-based technologies are adopted. Electrical drives in modern rolling mills are based on synchronous motors with [...] Read more.
Thermal control in rolling mills motors is gaining importance as more and more hard-to-deform steel grades are rolled. The capabilities of diagnostics monitoring also expand as digital IIoT-based technologies are adopted. Electrical drives in modern rolling mills are based on synchronous motors with frequency regulation. Such motors are expensive, while their reliability impacts the metallurgical plant output. Hence, developing the on-line temperature monitoring systems for such motors is extremely urgent. This paper presents a solution applying to synchronous motors of the upper and lower rolls in the horizontal roll stand of plate mill 5000. The installed capacity of each motor is 12 MW. According to the digitalization tendency, on-line monitoring systems should be based on digital shadows (coordinate observers) that are similar to digital twins, widely introduced at metallurgical plants. Modern reliability requirements set the continuous temperature monitoring for stator and rotor windings and iron core. This article is the first to describe a method for calculating thermal loads based on the data sets created during rolling. The authors have developed a thermal state observer based on four-mass model of motor heating built using the Simscape Thermal Models library domains that is part of the MATLAB Simulink. Virtual adjustment of the observer and of the thermal model was performed using hardware-in-the-loop (HIL) simulation. The authors have validated the results by comparing the observer’s values with the actual values measured at control points. The discrete masses heating was studied during the rolling cycle. The stator and rotor winding temperature was analysed at different periods. The authors have concluded that the motors of the upper and lower rolls are in a satisfactory condition. The results of the study conducted generally develop the idea of using object-oriented digital shadows for the industrial electrical equipment. The authors have introduced technologies that improve the reliability of the rolling mills electrical drives which accounts for the innovative development in metallurgy. The authors have also provided recommendations on expanded industrial applications of the research results. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

13 pages, 3443 KiB  
Article
Influence of Wear-Induced Turning on the Roll’s Fatigue Life
by Francisko Lukša, Željko Domazet, Đorđe Dobrota and Branko Lalić
Metals 2025, 15(7), 730; https://doi.org/10.3390/met15070730 - 29 Jun 2025
Viewed by 259
Abstract
Friction-induced wear during the rolling process needs periodic remachining of caliber roll grooves, which increases operational costs and reduces roll fatigue life. Stress analysis showed that a regular reduction in the initial diameter by up to 3.5% results in a 12.2% increase in [...] Read more.
Friction-induced wear during the rolling process needs periodic remachining of caliber roll grooves, which increases operational costs and reduces roll fatigue life. Stress analysis showed that a regular reduction in the initial diameter by up to 3.5% results in a 12.2% increase in maximum stress amplitude, reducing the estimated fatigue life by a factor of 1.5. Although fatigue life is reduced, the risk of failure under normal operating conditions remains low. Further analysis, considering mill design and roll hardness, demonstrated the feasibility of additional roll diameter reduction, thereby enabling increased production using the same rolls. The findings support further diameter reduction without compromising performance and underscore the importance of integrating such analysis into the roller design process to optimize fatigue life and roll utilization. Full article
(This article belongs to the Special Issue Tribological Property and Failure Analysis of Metallic Materials)
Show Figures

Figure 1

20 pages, 2023 KiB  
Article
Flame Retardance and Antistatic Polybutylene Succinate/Polybutylene Adipate-Co-Terephthalate/Magnesium Composite
by Pornchai Rachtanapun, Jonghwan Suhr, Eunyoung Oh, Nanthicha Thajai, Thidarat Kanthiya, Krittameth Kiattipornpithak, Kannikar Kaewapai, Siriphan Photphroet, Patnarin Worajittiphon, Nuttapol Tanadchangsaeng, Pitiwat Wattanachai, Kittisak Jantanasakulwong and Choncharoen Sawangrat
Polymers 2025, 17(12), 1675; https://doi.org/10.3390/polym17121675 - 17 Jun 2025
Viewed by 729
Abstract
Antistatic and anti-flame biodegradable polymer composites were developed by melt-blending polybutylene succinate (PBS) with epoxy resin, polybutylene adipate-co-terephthalate (PBAT), and MgO particles. The composite films were prepared using a two-roll mill and an extrusion-blown film machine. Plasma and sparking techniques were used to [...] Read more.
Antistatic and anti-flame biodegradable polymer composites were developed by melt-blending polybutylene succinate (PBS) with epoxy resin, polybutylene adipate-co-terephthalate (PBAT), and MgO particles. The composite films were prepared using a two-roll mill and an extrusion-blown film machine. Plasma and sparking techniques were used to improve the antistatic properties of the composites. The PBS/E1/PBAT/MgO 15% composite exhibited an improvement in V-1 rating of flame retardancy, indicating an enhancement in the flame retardancy of biodegradable composite films. The tensile strength of the PBS/PBAT blend increased from 19 MPa to 25 MPa with the addition of 1% epoxy due to the epoxy reaction increasing compatibility between PBS and PBAT. The PBS/E1/PBAT and PBS/E1/PBAT blends with MgO 0, 0.5, and 1% showed increases in the contact angle to 80.9°, 83.0°, and 85.7°, respectively, because the epoxy improved the reaction between PBS and PBAT via the MgO catalyst effect. Fourier-transform infrared spectroscopy confirmed the reaction between the epoxy groups of the epoxy resin and the carboxyl end groups of PBS and PBAT by new peaks at 1246 and 1249 cm−1. Plasma technology (sputtering) presents better antistatic properties than the sparking process because of the high consistency of the metal nanoparticles on the surface. This composite can be applied for electronic devices as sustainable packaging. Full article
(This article belongs to the Special Issue Modeling of Polymer Composites and Nanocomposites)
Show Figures

Figure 1

31 pages, 11869 KiB  
Article
Improving Efficiency of Rolling Mill Stand Electric Drives Through Load Alignment
by Stanislav S. Voronin, Andrey A. Radionov, Alexander S. Karandaev, Roman A. Lisovsky, Boris M. Loginov, Mark A. Zinchenko, Vadim R. Khramshin and Ivan N. Erdakov
Energies 2025, 18(12), 3175; https://doi.org/10.3390/en18123175 - 17 Jun 2025
Cited by 1 | Viewed by 326
Abstract
The problem of reducing electric power consumption is critical to ferrous metallurgy as it is a very energy-intensive industry. Significant energy savings can be achieved by increasing the efficiency of high-power electric drives of rolling mills. Experiments with the 5000 plate mill showed [...] Read more.
The problem of reducing electric power consumption is critical to ferrous metallurgy as it is a very energy-intensive industry. Significant energy savings can be achieved by increasing the efficiency of high-power electric drives of rolling mills. Experiments with the 5000 plate mill showed that the deterioration of energy efficiency can be caused by the misalignment of loads between the upper and lower roller main electric drive motors (upper main drive/UMD and lower main drive/LMD, respectively) caused by the misalignment of roller motor speeds. Experiments showed that when the speed misalignment reaches 5%, the motor torques differ by two times. Various UMD and LMD speeds can be set to bend the front end of the workpiece (form a “ski”). The installed load division controller (LDC) option fails to provide load alignment due to a low response rate and late startup. This article’s contribution consists of the development of a forced UMD and LMD speed and torque alignment method. To implement this method, a load-division controller with a switching structure has been developed. The authors also developed an efficiency and electric loss monitor and provided an experimental assessment of electric losses per one-pass and per sheet batch rolling cycle. The prospects of this research include the optimization of high-speed and high-load electric drive modes to reduce the energy costs of rolling and the development of an LDC based on fuzzy logic algorithms. Full article
Show Figures

Figure 1

16 pages, 4132 KiB  
Article
Analysis of the Rolling Process of Alloy 6082 on a Three-High Skew Rolling Mill
by Rail Sovetbayev, Yerik Nugman, Yerzhan Shayakhmetov, Yermek Abilmazhinov, Anna Kawalek and Kirill Ozhmegov
Materials 2025, 18(11), 2618; https://doi.org/10.3390/ma18112618 - 3 Jun 2025
Viewed by 469
Abstract
Modern requirements for aluminum alloys used in mechanical engineering and aviation include increased strength characteristics and refined microstructure. One of the promising methods for improving the properties of aluminum alloys is rolling on a three-high skew rolling mill, which provides intense plastic deformation [...] Read more.
Modern requirements for aluminum alloys used in mechanical engineering and aviation include increased strength characteristics and refined microstructure. One of the promising methods for improving the properties of aluminum alloys is rolling on a three-high skew rolling mill, which provides intense plastic deformation and a fine-grained structure. This study describes the results of numerical modeling of the rolling process of aluminum alloy 6082 rods in a three-high skew-type mill. Numerical modeling of alloy 6082 was conducted using the ForgeNxT 2.1 software designed to simulate metal-forming processes, including rolling. The rheological behavior of the material under study was investigated by compression tests using a Gleeble 3800 plastometer (“DSI”, Austin, TX, USA), which enabled the determination of the main parameters of material flow under specified conditions. The process of rolling bars of alloy 6082 on a three-high skew mill was numerically analyzed in the temperature range of 350–400 °C. This allowed for the study of the distribution of stresses, temperatures, and strain rates from the rolling mode. A physical experiment was conducted to validate the results of numerical modeling. The obtained results enabled the identification of rolling modes that promote microstructure refinement and enhance the mechanical properties of the alloy. Full article
Show Figures

Figure 1

27 pages, 37149 KiB  
Article
Ultra-Low-Temperature Tensile Fracture Mechanism of 500 MPa Duplex Steel Bar
by Zhenghong Ma, Jun Cao, Huanhuan Zhang, Shubiao Yin, Bingguo Liu and Zhibo Zhang
Materials 2025, 18(10), 2288; https://doi.org/10.3390/ma18102288 - 14 May 2025
Viewed by 411
Abstract
In the field of low-temperature-resistant steel bars in the liquefied natural gas (LNG) ultra-low-temperature environment, matching the strength and toughness of the material has become a key technical difficulty. In this paper, a duplex low-temperature-resistant steel bar was developed and designed, which adopts [...] Read more.
In the field of low-temperature-resistant steel bars in the liquefied natural gas (LNG) ultra-low-temperature environment, matching the strength and toughness of the material has become a key technical difficulty. In this paper, a duplex low-temperature-resistant steel bar was developed and designed, which adopts a continuous water-penetrating rolling process and a self-tempering process to effectively control the microstructure proportion of it at room temperature and effectively cope with ultra-low-temperature tensile failure at −163 °C. We studied the failure mechanism of 500 MPa steel grade low-temperature-resistant steel bars at tensile temperatures from 25 °C to −163 °C. We define a mixed microstructure of ferrite and pearlite (F + P) as the core of the material and tempered martensitic (TM) as the border of the material. It was found that the core and border microstructure had different response characteristics at different tensile temperatures. It is proved that, through the duplex microstructure design, it can meet the design requirements for the 500 MPa steel grade of low-temperature-resistant steel bars. By clarifying the effects of microstructure deformation, dislocation distribution, precipitated phase, and inclusions on the low-temperature resistance of steel bars under low-temperature tensile fracture, the deformation models of core and border microstructure under different tensile temperatures were constructed, and the methods for optimizing the production process of subsequent steel mills were given. After the optimization, the low-temperature toughness of the 500 MPa steel grade steel bar will be further guaranteed. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

40 pages, 6523 KiB  
Article
Study on Energy Efficiency and Maintenance Optimization of Run-Out Table in Hot Rolling Mills Using Long Short-Term Memory-Autoencoders
by Ju-Woong Yun, So-Won Choi and Eul-Bum Lee
Energies 2025, 18(9), 2295; https://doi.org/10.3390/en18092295 - 30 Apr 2025
Viewed by 960
Abstract
The steel industry, as a large-scale equipment-intensive sector, emphasizes the importance of maintaining and managing equipment without failure. In line with the recent Fourth Industrial Revolution, there is a growing shift from preventive to predictive maintenance (PdM) strategies for cost-effective equipment management. This [...] Read more.
The steel industry, as a large-scale equipment-intensive sector, emphasizes the importance of maintaining and managing equipment without failure. In line with the recent Fourth Industrial Revolution, there is a growing shift from preventive to predictive maintenance (PdM) strategies for cost-effective equipment management. This study aims to develop a PdM model for the Run-Out Table (ROT) equipment in hot rolling mills of steel plants, utilizing artificial intelligence (AI) technology, and to propose methods for contributing to energy efficiency through this model. Considering the operational data characteristics of the ROT equipment, an autoencoder (AE), capable of detecting anomalies using only normal data, was selected as the base model. Furthermore, Long Short-Term Memory (LSTM) networks were chosen to address the time-series nature of the data. By integrating the technical advantages of these two algorithms, a predictive maintenance model based on the LSTM-AE algorithm, named the Run-Out Table Predictive Maintenance Model (ROT-PMM), was developed. Additionally, the concept of an anomaly ratio was applied to identify equipment anomalies for each coil production. The performance evaluation of the ROT-PMM demonstrated an F1-score of 91%. This study differentiates itself by developing an optimized model that considers the specific environment and large-scale equipment operation of steel plants, and by enhancing its applicability through performance verification using actual failure data. Furthermore, it emphasizes the importance of PdM strategies in contributing to energy efficiency. It is expected that this research will contribute to increased energy efficiency and productivity in industrial settings, including the steel industry. Full article
Show Figures

Figure 1

19 pages, 15506 KiB  
Article
The Analysis of Plastic Forming in the Rolling Process of Difficult-to-Deform Ti + Ni Layered Composites
by Dariusz Rydz, Sebastian Mróz, Piotr Szota, Grzegorz Stradomski, Tomasz Garstka and Tomasz Cyryl Dyl
Materials 2025, 18(9), 1926; https://doi.org/10.3390/ma18091926 - 24 Apr 2025
Viewed by 408
Abstract
The article presents the results of experimental studies on the symmetrical and asymmetrical rolling process of composite laminate sheets consisting of difficult-to-deform Ti and Ni materials. Composite sheets joined by explosive welding were used for the tests. The aim of the research was [...] Read more.
The article presents the results of experimental studies on the symmetrical and asymmetrical rolling process of composite laminate sheets consisting of difficult-to-deform Ti and Ni materials. Composite sheets joined by explosive welding were used for the tests. The aim of the research was to determine the impact of plastic shaping conditions in the rolling process on the quality and selected functional properties of the materials constituting the layered composite. The rolling process was carried out cold on a duo laboratory rolling mill with a roll diameter of 300 mm. During the rolling process, the influence of the rolling process conditions on the distribution of metal pressure forces on the rolls was determined, as well as the shear strength and microstructural studies of the joint area of the layered composites. As part of the conducted considerations, residual stress tests were carried out using the Barkhausen noise method. The scientific aim of the presented work was to determine the optimal conditions for the plastic processing of multi-layer Ti-Ni sheets. The results presented in the work allowed for determining the most favorable conditions for the rolling process. Full article
(This article belongs to the Special Issue Achievements in Foundry Materials and Technologies)
Show Figures

Graphical abstract

20 pages, 6847 KiB  
Article
Thermodynamic and Technological Compatibility of Polyvinyl Chloride, Thermoplastic Polyurethane, and Bio-Plasticizer Blends
by Yitbarek Firew Minale, Ivan Gajdoš, Pavol Štefčák, Ľudmila Dulebová, Tomasz Jachowicz, Tamás Szabó, Andrea Ádámné Major and Kálmán Marossy
Polymers 2025, 17(9), 1149; https://doi.org/10.3390/polym17091149 - 23 Apr 2025
Viewed by 721
Abstract
Polymer blending enhances material properties by combining different polymers, which requires careful consideration of both thermodynamic and technological compatibility. This study investigates the compatibility of polyvinyl chloride (PVC), thermoplastic polyurethane (TPU), and a bio-plasticizer in blends produced via roll milling at various mixing [...] Read more.
Polymer blending enhances material properties by combining different polymers, which requires careful consideration of both thermodynamic and technological compatibility. This study investigates the compatibility of polyvinyl chloride (PVC), thermoplastic polyurethane (TPU), and a bio-plasticizer in blends produced via roll milling at various mixing ratios. Compatibility and morphology were analyzed using thermally stimulated discharge (TSD), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM), while mechanical and thermal properties were assessed by mechanical testing and thermogravimetric analysis (TGA). The PVC/TPU (100/30) blend exhibited superior phase compatibility over PVC/TPU (100/50), as indicated by a single relaxation peak in TSD and DMA, along with a more homogeneous morphology and enhanced tensile properties. The PVC/TPU/bio-plasticizer (100/20/50) blend showed a well-balanced mechanical performance and improved phase homogeneity. The TSD peak maxima trends for the TPU/bio-plasticizer blend highlighted the bio-plasticizer’s dual role in enhancing flexibility at low concentrations while restricting molecular mobility at higher concentrations. TGA revealed TPU’s positive effect on PVC’s degradation profile, while the bio-plasticizer reduced thermal stability. These findings demonstrate that blending PVC, TPU, and bio-plasticizer creates compatible materials with enhanced and diverse properties, making them suitable for industrial applications. Full article
Show Figures

Figure 1

18 pages, 4036 KiB  
Article
Development of Oil-Free Lubricants for Cold Rolling of Low-Carbon Steel
by Leon Jacobs, Delphine Rèche, Andreas Bán, Valentina Colla, Orlando Toscanelli, Martin Raulf, Martin Schlupp, Bas Smeulders, Mike Cook and Wim Filemon
Processes 2025, 13(4), 1234; https://doi.org/10.3390/pr13041234 - 18 Apr 2025
Viewed by 548
Abstract
Oil-in-water emulsions (O/W emulsions) are generally used to lubricate the cold rolling process of low-carbon steel. In addition to the obvious advantages of efficient lubrication and cooling of the process, there are also some disadvantages, mainly related to emulsion bath maintenance, subsequent production [...] Read more.
Oil-in-water emulsions (O/W emulsions) are generally used to lubricate the cold rolling process of low-carbon steel. In addition to the obvious advantages of efficient lubrication and cooling of the process, there are also some disadvantages, mainly related to emulsion bath maintenance, subsequent production steps and waste disposal. In some application areas, Oil-Free Lubricants (OFL’s) have been shown to be at least equally effective in decreasing friction and wear as conventional oil-based lubricants, while resulting in benefits related to waste disposal. In 2023, a project named “Transfer of aqueous oil free lubricants into steel cold rolling practice” (acronym ‘RollOilFreeII’) began, with it receiving funding from the Research Fund for Coal and Steel (RFCS). This project aims at an industrial application of Oil-Free Lubricants in the steel cold rolling process. The project builds on the work of the ‘RollOilFree’ project (also carried out in the RFCS-framework). This article briefly recapitulates the findings in the RollOilFree project and describes the objectives, benefits, activities and first results of the RollOilFreeII project. Notably, a pilot mill trial at high speed has been carried out, showing a good performance of the investigated OFLs. Back-calculated friction values were equal to, or even slightly lower than, reference O/W emulsions. The strip cleanliness with OFLs is much better than it is with the reference O/W emulsions. Only for a very thin product, as is the case in tinplate rolling, does the direct application of a conventional O/W dispersion (a high-particle-sized O/W emulsion) give a better performance than the investigated OFLs. Further development of OFLs should focus on this aspect. Full article
Show Figures

Figure 1

15 pages, 3236 KiB  
Article
Optimization and Finite Element Simulation of Wear Prediction Model for Hot Rolling Rolls
by Xiaodong Zhang, Zizheng Li, Boda Zhang, Jiayin Wang, Sahal Ahmed Elmi and Zhenhua Bai
Metals 2025, 15(4), 456; https://doi.org/10.3390/met15040456 - 18 Apr 2025
Cited by 2 | Viewed by 616
Abstract
Roll wear significantly affects production efficiency and product quality in hot-rolled strip steel manufacturing by reducing roll lifespan and impeding the control of strip shape. This study addresses these challenges through a comprehensive analysis of the roll wear mechanism and the integration of [...] Read more.
Roll wear significantly affects production efficiency and product quality in hot-rolled strip steel manufacturing by reducing roll lifespan and impeding the control of strip shape. This study addresses these challenges through a comprehensive analysis of the roll wear mechanism and the integration of an elastic deformation model. We propose an optimized wear prediction model for work and backup rolls in a hot continuous rolling finishing mill, dynamically accounting for variations in strip specifications and cumulative wear effects. A three-dimensional elastic–plastic thermo-mechanical coupled finite element model was established using MARC 2020 software, with experimental calibration of wear coefficients under specific production conditions. The developed dynamic simulation software achieved high-precision wear prediction, validated by field measurements. The optimized model reduced prediction deviations for work and backup rolls to 0.012 and 0.004, respectively, improving accuracy by 5.3% and 3.25% for uniform and mixed strip specifications. This research provides a robust theoretical framework and practical tool for precision roll wear management in industrial hot rolling processes. Full article
(This article belongs to the Special Issue Advances in Metal Rolling Processes)
Show Figures

Figure 1

41 pages, 3220 KiB  
Review
Recent Innovations in Computer and Automation Engineering for Performance Improvement in the Steel Industry Production Chain: A Review
by Crescenzo Pepe, Giorgia Farella, Giovanni Bartucci and Silvia Maria Zanoli
Energies 2025, 18(8), 1981; https://doi.org/10.3390/en18081981 - 12 Apr 2025
Viewed by 1170
Abstract
The steel industry is a hard-to-abate sector; it involves many energy-intensive and complex processes. Continuous performance improvement is a fundamental requirement. Efficiency enhancement of the involved sub-processes can serve as the basis of an effective roadmap for the industry’s decarbonization. Efficiency and performance [...] Read more.
The steel industry is a hard-to-abate sector; it involves many energy-intensive and complex processes. Continuous performance improvement is a fundamental requirement. Efficiency enhancement of the involved sub-processes can serve as the basis of an effective roadmap for the industry’s decarbonization. Efficiency and performance can be investigated in terms of whole plants, parts of a plant, individual machines, or individual devices; in addition, efficiency and performance can be associated with different topics, e.g., energy, CO2 emissions, sustainability, and product quality. In this context, computer and automation engineering innovations could have a massive impact due to both their specificity and their potential to contaminate other crucial disciplines in the field. This review paper aims to research and provide an update on state-of-the-art innovations (e.g., emerging technologies and best practices) for performance improvement in the steel industry production chain, focusing on Industry 4.0, digitalization, data, and key performance indicators. In addition, emphasis is placed on the reheating furnaces employed in hot rolling mills, due to their significant role in decarbonization and the creation of sustainability pathways. Full article
(This article belongs to the Special Issue Decarbonization and Sustainability in Industrial and Tertiary Sectors)
Show Figures

Figure 1

21 pages, 917 KiB  
Article
Grain Type Impacts Feed Intake, Milk Production and Body Temperature of Dairy Cows Exposed to an Acute Heat Event in Early Lactation
by S. Richard O. Williams, Matthew I. Knight, Tori C. Milner, Josie B. Garner, Peter J. Moate, Khageswor Giri, Murray C. Hannah, Joe L. Jacobs, William J. Wales and Leah C. Marett
Animals 2025, 15(7), 1045; https://doi.org/10.3390/ani15071045 - 4 Apr 2025
Viewed by 690
Abstract
The frequency, duration and intensity of heat events in Australia are forecast to increase. Different grain types result in different heat loads on animals, so grain selection could reduce the impact of heat exposure. Thirty-two multiparous Holstein cows at 86 days in milk [...] Read more.
The frequency, duration and intensity of heat events in Australia are forecast to increase. Different grain types result in different heat loads on animals, so grain selection could reduce the impact of heat exposure. Thirty-two multiparous Holstein cows at 86 days in milk were offered a basal forage diet plus one of four supplements: (1) BLY, rolled barley; (2) CAN, canola meal and rolled wheat; (3) CRN, disk-milled corn; or (4) WHT, rolled wheat. Cows were exposed to a 2-day heat wave in controlled-climate chambers. Overall, cows offered CAN had the lowest dry matter intake (DMI; 16.2 vs. 17.7 kg) but produced more energy-corrected milk (ECM; 34.9 vs. 29.6 kg) when compared with the other treatments. The results were similar during heat exposure. Cows fed CRN and CAN had the greatest body temperature (38.9 °C), and cows fed BLY had the lowest (38.4 °C). Despite this, cows fed BLY had the greatest reduction in DMI from the pre-challenge to the heat-challenge periods (−2.8 vs. −0.4 kg DM/d). There appears to be a small advantage to offering cows a concentrate with a greater protein concentration compared to one that has a greater concentration of fat or starch. The choice of grain to include in a dairy cow’s ration during summers with acute heat events may simply be an economic one. Full article
Show Figures

Figure 1

Back to TopTop