Study on Energy Efficiency and Maintenance Optimization of Run-Out Table in Hot Rolling Mills Using Long Short-Term Memory-Autoencoders
Abstract
:1. Introduction
1.1. Background of Study
1.1.1. Introduction to Maintenance and Energy Efficiency in Steel Manufacturing
1.1.2. Hot Rolling Plant Process and Run-Out Table (ROT) Failure
1.2. Problem Statement and Research Objectives
1.3. Overall Research Process
2. Literature Review
2.1. Studies on Preventive Maintenance Optimization
2.2. Predictive Maintenance Using AI
2.3. Recent Studies on Fault Prognosis
2.4. Research Trends for Run-Out Tables
2.5. Limitations of Previous Studies
3. Data Preparation
3.1. Data Collection
3.2. Data Preprocessing
4. Modeling and Training for Run-Out Table
4.1. Model Selection
4.2. ROT-PMM
4.3. Model Training and Fine Tuning
5. Test and Validation
5.1. Test Setup
- True Positive (TP): An actual anomaly occurred, and the model correctly predicted it as abnormal.
- False Negative (FN): No actual anomaly occurred, but the model incorrectly predicted it as abnormal.
- False Positive (FP): An actual anomaly occurred, but the model incorrectly predicted it as normal.
- True Negative (TN): No actual anomaly occurred, and the model correctly predicted it as normal.
5.2. Test Results
6. Case Study and System Application
6.1. Case Study
6.2. System Application
7. Economic Benefits Analysis
7.1. Economic Benefits Analysis of ROT-PMM
7.2. Comparative Analysis of Key Operational Indicators Between PM and PdM
8. Conclusions
8.1. Summary and Contribution
8.2. Limitations and Further Study
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AE | autoencoder |
AI | artificial intelligence |
CBM | condition-based maintenance |
CMS | condition monitoring system |
CNN | convolutional neural network |
GAN | generative adversarial network |
GRU | gated recurrent unit |
LSTM | Long Short-Term Memory |
LSTM-AE | Long Short-Term Memory Autoencoder |
ML | machine learning |
MLP | multi-layer perceptron |
MSE | mean squared error |
PC | Process Computer |
PdM | predictive maintenance |
PLC | Programmable Logic Controller |
PM | preventive maintenance |
RNN | recurrent neural network |
ROT | Run-Out Table |
ROT-PMM | Run-Out Table Predictive Maintenance Model |
SDAE | stacked denoising autoencoder |
SVM | support vector machine |
TBM | time-based maintenance |
References
- Ahmad, R.; Kamaruddin, S. An overview of time-based and condition-based maintenance in industrial application. Comput. Ind. Eng. 2012, 63, 135–149. [Google Scholar] [CrossRef]
- Pech, M.; Vrchota, J.; Bednář, J. Predictive maintenance and intelligent sensors in smart factory. Sensors 2021, 21, 1470. [Google Scholar] [CrossRef]
- Achouch, M.; Dimitrova, M.; Ziane, K.; Sattarpanah Karganroudi, S.; Dhouib, R.; Ibrahim, H.; Adda, M. On predictive maintenance in industry 4.0: Overview, models, and challenges. Appl. Sci. 2022, 12, 8081. [Google Scholar] [CrossRef]
- Artesis. How Can Predictive Maintenance Contribute To Energy Efficiency? Available online: https://artesis.com/how-can-predictive-maintenance-contribute-to-energy-efficiency/ (accessed on 14 October 2024).
- Zanoli, S.M.; Pepe, C.; Orlietti, L. Multi-Mode Model Predictive Control Approach for Steel Billets Reheating Furnaces. Sensors 2023, 23, 3966. [Google Scholar] [CrossRef] [PubMed]
- Volta Insite. Steel & Metal Products—Predictive Maintenance. Available online: https://voltainsite.com/steel-metal-products.html (accessed on 20 March 2025).
- Ruiz-Sarmiento, J.-R.; Monroy, J.; Moreno, F.-A.; Galindo, C.; Bonelo, J.-M.; Gonzalez-Jimenez, J. A predictive model for the maintenance of industrial machinery in the context of industry 4.0. Eng. Appl. Artif. Intell. 2020, 87, 103289. [Google Scholar] [CrossRef]
- DAEJI STEEL. Steel Product Production Process. Available online: http://www.daejisteel.com/html/material/sub01.htm (accessed on 20 October 2024).
- POSCO. Introduction to the Steel Manufacturing Process. Available online: http://swpecm.posco.net:7091/ECM/swp_interface.jsp?ACTID=viewlink&OBJECTIO=30393030626634626132623833623136&DOCID=646f6330393030626634623963633039303062&SYSID=45434d (accessed on 11 November 2024).
- Choi, I.; Rossiter, J.; Fleming, P. Looper and tension control in hot rolling mills: A survey. J. Process Control 2007, 17, 509–521. [Google Scholar] [CrossRef]
- POSCO. Analysis of ROT Failure. Available online: http://swpecm.posco.net:7091/ECM/swp_interface.jsp?ACTID=viewlink&OBJECTIO=30393030626634626134303834366132&DOCID=646f6330393030626634626133633039303062&SYSID=45434d (accessed on 14 November 2024).
- Mehamud, I.; Marklund, P.; Björling, M.; Shi, Y. Machine condition monitoring enabled by broad range vibration frequency detecting triboelectric nano-generator (TENG)-based vibration sensors. Nano Energy 2022, 98, 107292. [Google Scholar] [CrossRef]
- ISO 10836; Iron Ores—Method of Sampling and Sample Preparation for Physical Testing. International Organization for Standardization: Geneva, Switzerland, 1994.
- Tran Anh, D.; Dąbrowski, K.; Skrzypek, K. The Predictive Maintenance Concept in the Maintenance Department of the “Industry 4.0” Production Enterprise. Found. Manag. 2018, 10, 283–292. [Google Scholar] [CrossRef]
- Farooq, U.; Ademola, M.; Shaalan, A. Comparative Analysis of Machine Learning Models for Predictive Maintenance of Ball Bearing Systems. Electronics 2024, 13, 438. [Google Scholar] [CrossRef]
- Krupitzer, C.; Wagenhals, T.; Züfle, M.; Lesch, V.; Schäfer, D.; Mozaffarin, A.; Edinger, J.; Becker, C.; Kounev, S. A survey on predictive maintenance for industry 4.0. arXiv 2020, arXiv:2002.08224. [Google Scholar] [CrossRef]
- Wang, K.-S.; Tsai, Y.-T.; Lin, C.-H. A study of replacement policy for components in a mechanical system. Reliab. Eng. Syst. Saf. 1997, 58, 191–199. [Google Scholar] [CrossRef]
- Satow, T.; Teramoto, K.; Nakagawa, T. Optimal replacement policy for a cumulative damage model with time deterioration. Math. Comput. Model. Dyn. Syst. 2000, 31, 313–319. [Google Scholar] [CrossRef]
- Chan, G.; Asgarpoor, S. Optimum maintenance policy with Markov processes. Electr. Power Syst. Res. 2006, 76, 452–456. [Google Scholar] [CrossRef]
- Crowder, M.; Lawless, J. On a scheme for predictive maintenance. Eur. J. Oper. Res. 2007, 176, 1713–1722. [Google Scholar] [CrossRef]
- Panagiotidou, S.; Tagaras, G. Optimal preventive maintenance for equipment with two quality states and general failure time distributions. Eur. J. Oper. Res. 2007, 180, 329–353. [Google Scholar] [CrossRef]
- Jayaswal, P.; Wadhwani, A.; Mulchandani, K. Machine fault signature analysis. Int. J. Rotating Mach. 2008, 2008, 583982. [Google Scholar] [CrossRef]
- Márquez, F.P.G.; Tobias, A.M.; Pérez, J.M.P.; Papaelias, M. Condition monitoring of wind turbines: Techniques and methods. Renew. Energy 2012, 46, 169–178. [Google Scholar] [CrossRef]
- Bagavathiappan, S.; Lahiri, B.B.; Saravanan, T.; Philip, J.; Jayakumar, T. Infrared thermography for condition monitoring—A review. Infrared Phys. Technol. 2013, 60, 35–55. [Google Scholar] [CrossRef]
- Zhu, X.; Zhong, C.; Zhe, J. Lubricating oil conditioning sensors for online machine health monitoring–A review. Tribol. Int. 2017, 109, 473–484. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, Q.; Wang, H.; Lin, C. Optimal condition-based preventive maintenance policy for balanced systems. Reliab. Eng. Syst. Saf. 2021, 211, 107606. [Google Scholar] [CrossRef]
- Akl, A.M.; El Sawah, S.; Chakrabortty, R.K.; Turan, H.H. A joint optimization of strategic workforce planning and preventive maintenance scheduling: A simulation–Optimization approach. Reliab. Eng. Syst. Saf. 2022, 219, 108175. [Google Scholar] [CrossRef]
- Lolli, F.; Coruzzolo, A.M.; Peron, M.; Sgarbossa, F. Age-based preventive maintenance with multiple printing options. Int. J. Prod. Econ. 2022, 243, 108339. [Google Scholar] [CrossRef]
- Shi, Y.; Lu, Z.; Huang, H.; Liu, Y.; Li, Y.; Zio, E.; Zhou, Y. A new preventive maintenance strategy optimization model considering lifecycle safety. Reliab. Eng. Syst. Saf. 2022, 221, 108325. [Google Scholar] [CrossRef]
- Su, J.; Huang, J.; Adams, S.; Chang, Q.; Beling, P.A. Deep multi-agent reinforcement learning for multi-level preventive maintenance in manufacturing systems. Expert Syst. Appl. 2022, 192, 116323. [Google Scholar] [CrossRef]
- Dui, H.; Xu, H.; Zhang, L.; Wang, J. Cost-based preventive maintenance of industrial robot system. Reliab. Eng. Syst. Saf. 2023, 240, 109595. [Google Scholar] [CrossRef]
- Li, Y.; Xia, T.; Chen, Z.; Pan, E. Multiple degradation-driven preventive maintenance policy for serial-parallel multi-station manufacturing systems. Reliab. Eng. Syst. Saf. 2023, 230, 108905. [Google Scholar] [CrossRef]
- An, Y.; Chen, X.; Gao, K.; Zhang, L.; Li, Y.; Zhao, Z. A hybrid multi-objective evolutionary algorithm for solving an adaptive flexible job-shop rescheduling problem with real-time order acceptance and condition-based preventive maintenance. Expert Syst. Appl. 2023, 212, 118711. [Google Scholar] [CrossRef]
- Wu, C.; Pan, R.; Zhao, X.; Wang, X. Designing preventive maintenance for multi-state systems with performance sharing. Reliab. Eng. Syst. Saf. 2024, 241, 109661. [Google Scholar] [CrossRef]
- Zhang, C.; Fang, Z.; Dong, W. Preventive maintenance strategy for multi-component systems in dynamic risk assessment. Reliab. Eng. Syst. Saf. 2025, 254, 110611. [Google Scholar] [CrossRef]
- Çınar, Z.M.; Abdussalam Nuhu, A.; Zeeshan, Q.; Korhan, O.; Asmael, M.; Safaei, B. Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability 2020, 12, 8211. [Google Scholar] [CrossRef]
- Carvalho, T.P.; Soares, F.A.; Vita, R.; Francisco, R.d.P.; Basto, J.P.; Alcalá, S.G. A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 2019, 137, 106024. [Google Scholar] [CrossRef]
- Orru, P.F.; Zoccheddu, A.; Sassu, L.; Mattia, C.; Cozza, R.; Arena, S. Machine Learning Approach Using MLP and SVM Algorithms for the Fault Prediction of a Centrifugal Pump in the Oil and Gas Industry. Sustainability 2020, 12, 4776. [Google Scholar] [CrossRef]
- Hsu, J.-Y.; Wang, Y.-F.; Lin, K.-C.; Chen, M.-Y.; Hsu, J.H.-Y. Wind turbine fault diagnosis and predictive maintenance through statistical process control and machine learning. IEEE Access 2020, 8, 23427–23439. [Google Scholar] [CrossRef]
- Cheliotis, M.; Lazakis, I.; Theotokatos, G. Machine learning and data-driven fault detection for ship systems operations. Ocean Eng. 2020, 216, 107968. [Google Scholar] [CrossRef]
- Serradilla, O.; Zugasti, E.; Ramirez de Okariz, J.; Rodriguez, J.; Zurutuza, U. Adaptable and explainable predictive maintenance: Semi-supervised deep learning for anomaly detection and diagnosis in press machine data. Appl. Sci. 2021, 11, 7376. [Google Scholar] [CrossRef]
- Khalid, S.; Hwang, H.; Kim, H.S. Real-world data-driven machine-learning-based optimal sensor selection approach for equipment fault detection in a thermal power plant. Mathematics 2021, 9, 2814. [Google Scholar] [CrossRef]
- Shi, L.; Zhu, Y.; Zhang, Y.; Su, Z. Fault diagnosis of signal equipment on the lanzhou-xinjiang high-speed railway using machine learning for natural language processing. Complexity 2021, 2021, 9126745. [Google Scholar] [CrossRef]
- Oh, M.-J.; Choi, E.-S.; Roh, K.-W.; Kim, J.-S.; Cho, W.-S. A Study on the design of supervised and unsupervised learning models for fault and anomaly detection in manufacturing facilities. J. Big Data 2021, 6, 23–35. [Google Scholar] [CrossRef]
- Ghazali, N.; Seman, F.; Isa, K.; Ramli, K.; Abidin, Z.; Mustam, S.; Haek, M.; Abidin, A.; Asrokin, A. Twisted pair cable fault diagnosis via random forest machine learning. Comput. Mater. Contin. 2022, 71, 5427–5440. [Google Scholar] [CrossRef]
- Choi, S.-W.; Seo, B.-G.; Lee, E.-B. Machine Learning-Based Tap Temperature Prediction and Control for Optimized Power Consumption in Stainless Electric Arc Furnaces (EAF) of Steel Plants. Sustainability 2023, 15, 6393. [Google Scholar] [CrossRef]
- Choi, J.-S.; Choi, S.-W.; Lee, E.-B. Modeling of Predictive Maintenance Systems for Laser-Welders in Continuous Galvanizing Lines Based on Machine Learning with Welder Control Data. Sustainability 2023, 15, 7676. [Google Scholar] [CrossRef]
- Hadi, R.H.; Hady, H.N.; Hasan, A.M.; Al-Jodah, A.; Humaidi, A.J. Improved Fault Classification for Predictive Maintenance in Industrial IoT Based on AutoML: A Case Study of Ball-Bearing Faults. Processes 2023, 11, 1507. [Google Scholar] [CrossRef]
- Chandu, H.S. Enhancing Manufacturing Efficiency: Predictive Maintenance Models Utilizing IoT Sensor Data. Int. J. Sci. Res. Technol. (IJSART) 2024, 10, 58–66. [Google Scholar]
- Bampoula, X.; Nikolakis, N.; Alexopoulos, K. Condition Monitoring and Predictive Maintenance of Assets in Manufacturing Using LSTM-Autoencoders and Transformer Encoders. Sensors 2024, 24, 3215. [Google Scholar] [CrossRef]
- Faizanbasha, A.; Rizwan, U. Optimizing burn-in and predictive maintenance for enhanced reliability in manufacturing systems: A two-unit series system approach. J. Manuf. Syst. 2025, 78, 244–270. [Google Scholar] [CrossRef]
- Chapelin, J.; Voisin, A.; Rose, B.; Iung, B.; Steck, L.; Chaves, L.; Lauer, M.; Jotz, O. Data-driven drift detection and diagnosis framework for predictive maintenance of heterogeneous production processes: Application to a multiple tapping process. Eng. Appl. Artif. Intell. 2025, 139, 109552. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, Y.; Wang, D. A Real-Time Lightweight Perceptron for Cloud–Edge Collaborative Predictive Maintenance of Online Service Systems. IEEE Internet Things J. 2025, 1, 12640–12657. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Z.; Li, H.; Yang, Y.; Huang, C.-G.; Yazdi, M.; Kang, H.S. A hybrid prognosis scheme for rolling bearings based on a novel health indicator and nonlinear Wiener process. Reliab. Eng. Syst. Saf. 2024, 245, 110014. [Google Scholar] [CrossRef]
- Yang, X.; He, Y.; Liao, R.; Cai, Y.; Dai, W. Mission reliability-centered opportunistic maintenance approach for multistate manufacturing systems. Reliab. Eng. Syst. Saf. 2024, 241, 109693. [Google Scholar] [CrossRef]
- Huai, W.; Gao, M.; Liu, S.; Sheng, L. Fault prognosis for linear stochastic systems with intermittent fault and strong noise via health indicator extraction approach. Qual. Reliab. Eng. Int. 2024, 40, 2456–2472. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, L.; Zheng, Y.; Jiang, Z.; Zheng, J.; Wu, C. Online industrial fault prognosis in dynamic environments via task-free continual learning. Neurocomputing 2024, 598, 127930. [Google Scholar] [CrossRef]
- Kim, M.; Seong, H.; Kim, D. Deep Learning-Based Prognostics and Health Management Model for Pilot-Operated Cryogenic Safety Valves. Sensors 2024, 24, 1814. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Jiang, W.; Shi, L.; Zhang, L. Rolling bearing remaining useful life prediction using deep learning based on high-quality representation. Sci. Rep. 2025, 15, 8228. [Google Scholar] [CrossRef]
- Li, H.J.; Li, L.G.; Li, Y.L.; Wang, G.D. Online Monitor and Control of Cooling Temperature on Run-out Table of Hot Strip Mill. Steel Res. Int. 2015, 86, 1225–1233. [Google Scholar] [CrossRef]
- Sugihara, H.; Ueoka, S.; Hino, Y.; Kijima, H.; Nakata, N. Quantitative Evaluation of Stability of Water Flow Injected from Pipe Laminar Nozzle. ISIJ Int. 2015, 55, 235–240. [Google Scholar] [CrossRef]
- Woo, Y.Y.; Han, S.W.; Cho, J.R.; Moon, Y.H. Air jet impingement to reduce hot strip wave on a run-out table. Mech. Ind. 2018, 19, 601. [Google Scholar] [CrossRef]
- Aoe, S.; Ohara, Y.; Miyake, M.; Kabeya, K. Simulation of Unstable Strip Running on Hot Run-Out-Table. ISIJ Int. 2019, 59, 496–503. [Google Scholar] [CrossRef]
- Luk’yanov, S.I.; Shvidchenko, N.V.; Krasilnikov, S.S.; Pishnograev, R.S.; Shvidchenko, D.V.; Konovalov, M.V. Optimizing speed of a run-out table of the hot strip mill. Int. J. Adv. Manuf. Technol. 2019, 105, 1675–1684. [Google Scholar] [CrossRef]
- Tatebe, K.; Shioiri, Y.; Fujita, S.; Fujimoto, H. Development of a Method for Evaluating Heat Transfer Characteristics of a Circular Water Jet Impinging on a Moving Flat Plate. Tetsu-To-Hagane/J. Iron Steel Inst. Jpn. 2022, 108, 823–834. [Google Scholar] [CrossRef]
- Wu, H.; Sun, J.; Peng, W.; Zhang, D. Residual stress control of hot-rolled strips during run-out table cooling. Int. J. Adv. Manuf. Technol. 2023, 125, 3205–3227. [Google Scholar] [CrossRef]
- Yazdani, S.; Tavakoli, M.R.; Niroomand, M.R.; Forouzan, M.R. Cooling pattern on the run-out table of a hot rolling mill for an HSLA steel: A finite element analysis. Int. J. Adv. Manuf. Technol. 2024, 132, 2381–2393. [Google Scholar] [CrossRef]
- Jena, M.; Mishra, P.C.; Sahoo, S.S. Comparative performance of jet and spray impingement cooling in steel strip run-out table: Experimental results. Aust. J. Mech. Eng. 2024, 22, 109–122. [Google Scholar] [CrossRef]
- Iba. Iba Software & Hardware. Available online: https://www.iba-ag.com/en/iba-system (accessed on 18 December 2024).
- García, S.; Ramírez-Gallego, S.; Luengo, J.; Benítez, J.M.; Herrera, F. Big data preprocessing: Methods and prospects. Big Data Anal. 2016, 1, 9. [Google Scholar] [CrossRef]
- Mehala, N.; Dahiya, R. Motor current signature analysis and its applications in induction motor fault diagnosis. Int. J. Syst. Appl. Eng. Dev. 2007, 2, 29–35. [Google Scholar]
- Lee, H.; Yun, S. Strategies for imputing missing values and removing outliers in the dataset for machine learning-based construction cost prediction. Buildings 2024, 14, 933. [Google Scholar] [CrossRef]
- Hermansa, M.; Kozielski, M.; Michalak, M.; Szczyrba, K.; Wróbel, Ł.; Sikora, M. Sensor-Based Predictive Maintenance with Reduction of False Alarms—A Case Study in Heavy Industry. Sensors 2022, 22, 226. [Google Scholar] [CrossRef] [PubMed]
- Cofre-Martel, S.; Lopez Droguett, E.; Modarres, M. Big Machinery Data Preprocessing Methodology for Data-Driven Models in Prognostics and Health Management. Sensors 2021, 21, 6841. [Google Scholar] [CrossRef]
- Dash, C.S.K.; Behera, A.K.; Dehuri, S.; Ghosh, A. An outliers detection and elimination framework in classification task of data mining. Decis. Anal. J. 2023, 6, 100164. [Google Scholar] [CrossRef]
- Yaro, A.S.; Maly, F.; Prazak, P. Outlier Detection in Time-Series Receive Signal Strength Observation Using Z-Score Method with S n Scale Estimator for Indoor Localization. Appl. Sci. 2023, 13, 3900. [Google Scholar] [CrossRef]
- Ahsan, M.M.; Mahmud, M.P.; Saha, P.K.; Gupta, K.D.; Siddique, Z. Effect of data scaling methods on machine learning algorithms and model performance. Technologies 2021, 9, 52. [Google Scholar] [CrossRef]
- Maleki, S.; Maleki, S.; Jennings, N.R. Unsupervised anomaly detection with LSTM autoencoders using statistical data-filtering. Appl. Soft Comput. 2021, 108, 107443. [Google Scholar] [CrossRef]
- Al-amri, R.; Murugesan, R.K.; Man, M.; Abdulateef, A.F.; Al-Sharafi, M.A.; Alkahtani, A.A. A review of machine learning and deep learning techniques for anomaly detection in IoT data. Appl. Sci. 2021, 11, 5320. [Google Scholar] [CrossRef]
- Li, P.; Pei, Y.; Li, J. A comprehensive survey on design and application of autoencoder in deep learning. Appl. Soft Comput. 2023, 138, 110176. [Google Scholar] [CrossRef]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Wen, L.; Su, S.; Li, X.; Ding, W.; Feng, K. GRU-AE-wiener: A generative adversarial network assisted hybrid gated recurrent unit with Wiener model for bearing remaining useful life estimation. Mech. Syst. Signal Process. 2024, 220, 111663. [Google Scholar] [CrossRef]
- Mak, H.W.L.; Han, R.; Yin, H.H. Application of variational autoEncoder (VAE) model and image processing approaches in game design. Sensors 2023, 23, 3457. [Google Scholar] [CrossRef]
- Boppana, T.K.; Bagade, P. GAN-AE: An unsupervised intrusion detection system for MQTT networks. Eng. Appl. Artif. Intell. 2023, 119, 105805. [Google Scholar] [CrossRef]
- Vos, K.; Peng, Z.; Jenkins, C.; Shahriar, M.R.; Borghesani, P.; Wang, W. Vibration-based anomaly detection using LSTM/SVM approaches. Mech. Syst. Signal Process. 2022, 169, 108752. [Google Scholar] [CrossRef]
- Priya Varshini, A.; Anitha Kumari, K. Predictive analytics approaches for software effort estimation: A review. Indian J. Sci. Technol. 2020, 13, 2094–2103. [Google Scholar] [CrossRef]
- Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020, 415, 295–316. [Google Scholar] [CrossRef]
- Kil, R.M.; Park, S.H.; Kim, S. Optimum window size for time series prediction. In Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. ‘Magnificent Milestones and Emerging Opportunities in Medical Engineering’ (Cat. No. 97CH36136), Chicago, IL, USA, 30 October–2 November 1997; pp. 1421–1424. [Google Scholar]
- Rafique, F.; Fu, L.; Mai, R. LSTM autoencoders based unsupervised machine learning for transmission line protection. Electr. Power Syst. Res. 2023, 221, 109432. [Google Scholar] [CrossRef]
- Choi, D.; Shallue, C.J.; Nado, Z.; Lee, J.; Maddison, C.J.; Dahl, G.E. On empirical comparisons of optimizers for deep learning. arXiv 2019, arXiv:1910.05446. [Google Scholar] [CrossRef]
- Zuo, X.; Chen, Z.; Yao, H.; Cao, Y.; Gu, Q. Understanding Train-Validation Split in Meta-Learning with Neural Networks. In Proceedings of the The Eleventh International Conference on Learning Representations (ICLR 2023), Kigali, Rwanda, 1–5 May 2023; pp. 1–56. [Google Scholar]
- AI Wiki. Epochs, Batch Size, & Iterations. Available online: https://machine-learning.paperspace.com/wiki/epoch (accessed on 6 December 2024).
- Choi, S.-W.; Lee, E.-B.; Kim, J.-H. The Engineering Machine-Learning Automation Platform (EMAP): A Big-Data-Driven AI Tool for Contractors’ Sustainable Management Solutions for Plant Projects. Sustainability 2021, 13, 10384. [Google Scholar] [CrossRef]
- Orka, N.A.; Awal, M.A.; Liò, P.; Pogrebna, G.; Ross, A.G.; Moni, M.A. Quantum deep learning in neuroinformatics: A systematic review. Artif. Intell. Rev. 2025, 58, 134. [Google Scholar] [CrossRef]
- Chen, X.; Van Hillegersberg, J.; Topan, E.; Smith, S.; Roberts, M. Application of data-driven models to predictive maintenance: Bearing wear prediction at TATA steel. Expert Syst. Appl. 2021, 186, 115699. [Google Scholar] [CrossRef]
- Nunes, P.; Santos, J.; Rocha, E. Challenges in predictive maintenance—A review. CIRP J. Manuf. Sci. Technol. 2023, 40, 53–67. [Google Scholar] [CrossRef]
Failure Type | Failure Image | Failure Frequency | Downtime |
---|---|---|---|
Roller bearing damage | 4 cases/year | 6 h/year | |
Motor insulation failure | 3 cases/year | 3 h/year | |
Coupling breakage | 1 case/year | 1 h/year | |
Etc. (power, drive) | - | 1 case/year | 2 h/year |
Components of Rot | State | Replacement Cycle | Note |
---|---|---|---|
Roller | new | 5 year | - |
1 reuse | 5 year | Bearing replacement repair | |
2 reuse | 5 year | ||
Motor | new | 5 year | - |
1 reuse | 3 year | Motor winding | |
2 reuse | 2 year | ||
Coupling | new | 5 year | - |
Category | Methods and Development | Year | Authors |
---|---|---|---|
Preventive maintenance | Methodology for Establishing Replacement Schedule through Hierarchical Structure Construction | 1997 | Wang et al. [17] |
Development of a Mathematical Cumulative Damage Model Based on Impact Values on Facilities | 2000 | Satow et al. [18] | |
Optimal Maintenance Interval Determination Method based on Markov Decision Process | 2006 | Chan and Asgarpoor [19] | |
Economic Evaluation of Replacement Timing based on Deterioration Life Distribution | 2007 | Crowder and Lawless [20] | |
Methodology for Deriving Optimal Solutions Considering Failure Rate, Profit, and Failure Probability | 2007 | Panagiotidou and Tagaras [21] | |
Analysis of Rolling Bearing Fault Diagnosis Techniques through Vibration Analysis | 2008 | Jayaswal et al. [22] | |
Condition Monitoring of Wind Turbines through Vibration, Acoustic, Lubrication, and Temperature Analysis | 2012 | Márquez et al. [23] | |
Analysis of Principles and Application Cases of Non-contact Infrared Thermal Camera Technology for Detecting Abnormal Temperatures in Devices | 2013 | Bagavathiappan et al. [24] | |
Analysis of Latest Online Sensor Technologies for Measuring Lubricant Characteristics | 2017 | Zhu et al. [25] | |
Optimal Condition-based Preventive Maintenance Policy for Balanced Systems | 2021 | Wang et al. [26] | |
A Joint Optimization of Strategic Workforce Planning and Preventive Maintenance Scheduling: A Simulation–Optimization Approach | 2022 | Akl et al. [27] | |
Age-based Preventive Maintenance with Multiple Printing Options | 2022 | Lolli et al. [28] | |
A New Preventive Maintenance Strategy Optimization Model considering Lifecycle Safety | 2022 | Shi et al. [29] | |
Deep Multi-agent Reinforcement Learning for Multi-level Preventive Maintenance in Manufacturing Systems | 2022 | Su et al. [30] | |
Cost-based Preventive Maintenance of Industrial Robot System | 2023 | Dui et al. [31] | |
Multiple Degradation-driven Preventive Maintenance Policy for Serial-parallel Multi-station Manufacturing Systems | 2023 | Li et al. [32] | |
A Hybrid Multi-Objective Evolutionary Algorithm for Solving an Adaptive Flexible Job-Shop Rescheduling Problem with Real-time Order Acceptance and Condition-Based Preventive Maintenance | 2023 | An et al. [33] | |
Designing Preventive Maintenance for Multi-state Systems with Performance Sharing | 2024 | Wu et al. [34] | |
Preventive Maintenance Strategy for Multi-component Systems in Dynamic Risk Assessment | 2025 | Zhang et al. [35] | |
Predictive maintenance | Fault Prediction Model for Pumps based on SVM and MLP Algorithms using Temperature, Pressure, and Vibration Data | 2020 | Orru et al. [38] |
Decision Tree and Random Forest Models for Predicting Anomalous Conditions in Wind Turbines | 2020 | Hsu et al. [39] | |
Regression Model for Detecting Defects in Ship Engines | 2020 | Cheliotis et al. [40] | |
Anomaly Detection Model for Press Machines using CNN and Autoencoder Algorithms | 2021 | Serradilla et al. [41] | |
Bearing Fault Detection in Pump Motor using SVM, k-NN, and Naive Bayes | 2021 | Khalid et al. [42] | |
Fault Detection in Railway Signaling Equipment using NLP and SVM | 2021 | Shi et al. [43] | |
A Study on the design of supervised and unsupervised learning models for fault and anomaly detection in manufacturing facilities | 2021 | Oh et al. [44] | |
Fault Detection of Copper Cable using Random Forest and Digital Twin | 2022 | Ghazali et al. [45] | |
Prediction Model for Tap Temperature using Support Vector Regression Algorithm | 2023 | Choi et al. [46] | |
Failure Prediction Model for Laser Welder using LSTM-AE Algorithm | 2023 | Choi et al. [47] | |
Improved Fault Classification for PdM in Industrial IoT Based on AutoML | 2023 | Hadi et al. [48] | |
Predictive Maintenance Models Utilizing IoT Sensor Data | 2024 | Chandu [49] | |
Condition Monitoring and Predictive Maintenance of Assets in Manufacturing Using LSTM-Autoencoders and Transformer Encoders | 2024 | Bampoula et al. [50] | |
Optimizing Burn-in and Predictive Maintenance for Enhanced Reliability in Manufacturing Systems | 2025 | Faizanbasha and Rizwan [51] | |
Data-driven Drift Detection and Diagnosis Framework for Predictive Maintenance of Heterogeneous Production Processes | 2025 | Chapelin et al. [52] | |
A Real-Time Lightweight Perceptron for Cloud–Edge Collaborative Predictive Maintenance of Online Service Systems | 2025 | Zhang et al. [53] | |
Fault prognosis | A Hybrid Prognosis Scheme for Rolling Bearings Based on a Novel Health Indicator and Nonlinear Wiener Process | 2024 | Guo et al. [54] |
Mission Reliability-Centered Opportunistic Maintenance Approach for Multistate Manufacturing Systems | 2024 | Yang et al. [55] | |
Fault Prognosis for Linear Stochastic Systems with Intermittent Fault and Strong Noise via Health Indicator Extraction Approach | 2024 | Huai et al. [56] | |
Online Industrial Fault Prognosis in Dynamic Environments via Task-Free Continual Learning | 2024 | Liu et al. [57] | |
Deep Learning-Based Prognostics and Health Management Model for Pilot-Operated Cryogenic Safety Valves | 2024 | Kim et al. [58] | |
Rolling Bearing Remaining Useful Life Prediction Using Deep Learning Based on High-Quality Representation | 2025 | Wang et al. [59] | |
Research topics for ROT | Temperature Monitoring Technology for Cooling based on Fourier’s Heat Equation | 2015 | Li et al. [60] |
Proposal of an Index for Quantitative Evaluation of Layer Stability under Various Conditions | 2015 | Sugihara et al. [61] | |
Air Jet Collision System for Decreasing Strip Waves | 2018 | Woo et al. [62] | |
Numerical Simulation based on Multi-Body Dynamics | 2019 | Aoe et al. [63] | |
Proposal of a Method for Adjusting Drive Process Requirements to Minimize Maintenance Costs for Equipment | 2019 | Luk’yanov et al. [64] | |
Thermal Flux Evaluation Method based on Heat Conduction Equation and Experimental Measurements | 2022 | Tatebe et al. [65] | |
Residual Stress Control of Hot-Rolled Strips during Run-Out Table Cooling | 2023 | Wu et al. [66] | |
Cooling Pattern on the Run-Out Table of a Hot Rolling Mill for an HSLA Steel | 2024 | Yazdani et al. [67] | |
Comparative Performance of Jet and Spray Impingement Cooling in Steel Strip Run-Out Table | 2024 | Jena et al. [68] |
Item | Description |
---|---|
Data acquisition environment | Sensor data from the on-site ROT equipment and process data from the PLC were transmitted to and stored on a DAQ (Data Acquisition) system. |
Sampling interval | 100 ms (0.1 s) |
Sampling rate | 3660 data points per second |
Number of variables collected | 431 variables |
Collection period | 20 March 2023–19 April 2023 (31 consecutive days) |
Daily data volume | 3660 × 86,400 s = 316,224,000 data points |
Total data volume | 316,224,000 × 31 days = 9,802,944,000 data points |
Estimated data size | ≈70 MB per hour |
≈1.7 GB per day | |
≈40.3 GB per month |
Category | Type | No. of Item | Remark |
---|---|---|---|
Time information | Date | 1 | - |
Time | 2 | - | |
Production information | Coil no. | 1 | set value |
Steel grade | 1 | set value | |
Thickness | 1 | set value | |
Width | 1 | set value | |
Weight | 1 | set value | |
Equipment operation information | Motor current | 366 | process value |
Rot speed | 1 | set value | |
Dcctl_mode | 1 | process value | |
Dcpolisher | 1 | process value | |
Inverter | 24 | set value | |
Rotspd | 25 | set value | |
Ai_flag | 1 | process value | |
F7 state | 1 | process value | |
DC state | 3 | process value | |
Total | 16 | 431 |
Aspect | ROT Data Characteristics | Recommended Algorithm/Property |
---|---|---|
Availability of Labels | Absent | Unsupervised learning required |
Data Structure | Time-series, high-frequency | LSTM-based architecture |
Operating Environment | High temperature, moisture, mechanical impacts | Algorithmic robustness to harsh industrial conditions |
Operational Requirement | Concurrent analysis of 366 motors | Scalability for large-scale parallel processing |
Real-time Deployment | Mandatory | Reconstruction-error-based anomaly detection |
Cause of Failure | Abnormal Phenomenon | Configuration | |
---|---|---|---|
Mechanic | roller bearing | overload current | |
coupling | low current, fluctuation | ||
base bolt | vibration | ||
Electrical | motor bearing | overload current, fluctuation | |
motor insulation failure | insulation resistance degradation | ||
motor cable insulation failure |
Stage | Target for Elimination/Explanation | Eliminated Data Points | Total Data Points | Ratio (%) |
---|---|---|---|---|
0. Raw Data | 3660 points per second collected over 31 days | 0 | 9,802,944,000 | 0.00 |
1. Missing/Negative Values | Null and negative values due to communication errors | 1,960,589 | 9,800,983,411 | 0.02 |
2. Failure Buffer Interval | ±1 h window before and after coupling failure on 6 January 2023 | 26,352,000 | 9,774,631,411 | 0.27 |
3. Head/Tail Shock | Head/tail intervals during Finishing Mill ↔ Down Coiler transitions (10 s per coil) | 79,422,000 | 9,695,209,411 | 0.81 |
4. IQR Outliers | Values below Q1–1.5 × IQR or above or Q3 + 1.5 × IQR | 68,620,608 | 9,626,588,803 | 0.70 |
Total Data Points Elimination | (Sum of stages 1–4) | 176,355,197 | 9,626,588,803 | 1.80 |
Remained Normal Data | – | 9,626,588,803 | 98.20 | |
Normalization (Standard Scaler) | Standard Scaler applied (mean = 0, variance = 1) | 9,626,588,803 | ||
Train/Test Split | 80:20 ratio split of remained data | 9,626,588,803 | ||
Train Set | Allocated 80% ratio for train | 7,701,271,042 | 80.00 | |
Test Set | Allocated 20% ratio for test | 1,925,317,761 | 20.00 |
Category | Label | Data | Techniques | Remark |
---|---|---|---|---|
Supervised anomaly detection | Used | Normal/Abnormal | CNN, KNN, Naive Bayses, SVM | High accuracy, a limitation in field application due to labeling |
Semi-supervised anomaly detection | Used | Normal | AE, CNN, KNN, RNN, GAN, CNN-SVM | Moderate accuracy, necessary to judge normal and abnormal (ambiguous) |
Unsupervised anomaly detection | Unused | Normal | AE, RNN, LSTM, GAN, AAE | Moderate accuracy, high field applicability due to labeling-free |
Category | Algorithm | Temporal Learning Capability | Label Dependency | Anomaly Detection Accuracy | Noise Robustness | Computational Complexity | Remarks |
---|---|---|---|---|---|---|---|
Unsupervised | LSTM-AE | Very High | None | Very High | High | High | Effective for long-term dependencies; reconstruction-based anomaly detection |
Unsupervised | GRU-AE | High | None | Moderate | Moderate | Moderate | Faster training than LSTM, but lower detection accuracy |
Unsupervised | RNN-AE | Moderate | None | Low | Low | Moderate | Struggles with long-sequence memory (vanishing gradient issue) |
Unsupervised | VAE | Low | None | Moderate | Low | High | Probabilistic; limited for temporal anomaly detection |
Generative Learning | GAN-AE | Moderate | None | Moderate to High | Low | Very High | Unstable training dynamics |
Supervised | SVM | None | Required | High (with labels) | Low | Low | Not suitable for unlabeled or streaming industrial data |
Hyper-Parameters | Values |
---|---|
Window size | 5 |
Hidden layer | 8 |
Unit | 512/258/128/64 |
Optimizer | adam |
Loss Function | Mean Squared Error |
Train/Validation Split | 8:2 ratio |
Epochs | 1,000,000 |
Batch Size | 1000 |
Window Size | Data Shape | Train Loss | Validation Loss |
---|---|---|---|
5 | 52,088, 5, 366 | 0.0910 | 0.0946 |
10 | 52,084, 10, 366 | 0.1024 | 0.1073 |
20 | 52,076, 20, 366 | 0.1148 | 0.1152 |
30 | 52,068, 30, 366 | 0.9792 | 0.9675 |
Model | Window Size | Hidden Layer | Unit | Train Data All Motor Normal | Test Data 3ea Motor Abnormal | Model Detection Result | Verification | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Train Loss | Valid Loss | R.E. | R.E. | ||||||||||
M0901 | M1814 | M2111 | M0901 | M1814 | M2111 | ||||||||
1 | 5 | 4 | 64/32 | 0.0976 | 0.0867 | 0.1359 | 0.1009 | 0.0754 | 1.7292 | 74.9149 | 10.2821 | 2 | 1ea miss |
2 | 5 | 4 | 128/64 | 0.0822 | 0.0733 | 0.1165 | 0.0807 | 0.070 | 1.7442 | 62.2548 | 9.7480 | 2 | 1ea miss |
3 | 5 | 4 | 256/128 | 0.0719 | 0.0642 | 0.0839 | 0.0703 | 0.0674 | 0.4982 | 51.5812 | 9.058 | 2 | 1ea miss |
4 | 5 | 4 | 512/128 | 0.0688 | 0.0647 | 0.8143 | 0.0657 | 0.0655 | 0.4233 | 51.6788 | 8.8823 | 5 | 1ea miss 3ea error |
5 | 5 | 6 | 128/64/32 | 0.0875 | 0.0826 | 0.1233 | 0.0880 | 0.0711 | 1.7001 | 74.9955 | 11.5548 | 2 | 1ea miss |
6 | 5 | 6 | 256/128/64 | 0.0770 | 0.0722 | 0.1037 | 0.0736 | 0.0680 | 1.2695 | 66.3028 | 9.9898 | 2 | 1ea miss |
7 | 5 | 6 | 512/256/128 | 0.0677 | 0.0664 | 0.0821 | 0.0645 | 0.0647 | 0.7577 | 55.6140 | 9.7044 | 3 | 1ea miss 1ea error |
8 | 5 | 8 | 512/256/128/64 | 0.0724 | 0.0787 | 0.1001 | 0.0666 | 0.0656 | 0.6403 | 72.9670 | 10.6373 | 3 | correct |
Predicted | |||
---|---|---|---|
True | False | ||
Actual | True | True Positive (TP) | False Positive (FP) |
False | False Negative (FN) | True Negative (TN) |
Anomaly Ratio (%) | Classification Elements of Confusion Matrix | Performance Evaluation (%) | ||||||
---|---|---|---|---|---|---|---|---|
TP | FN | FP | TN | Accuracy | Precision | Recall | F1 Score | |
27 | 259 | 41 | 12 | 288 | 91 | 96 | 86 | 91 |
Category | Data | Remark |
---|---|---|
ROT Failure | 2.4 cases/year 2.3 h/year | Number of failures and downtime per mill |
TBM Cost | USD 551 K/year | The use of parts on a TBM cycle is assumed |
Category | Economic effect | Remark |
---|---|---|
Opportunity Cost | USD 1 26 K/year | 2.3 h/year × 762 ton/h × USD 15/ton |
Maintenance Cost | USD 51 K/year | USD 551K/year–USD 500 K/year (10% saving) |
Metric | Preventive Maintenance (PM) | Predictive Maintenance (PdM) |
---|---|---|
Failure Rate (per year) | 9 failures/year | 2–3 failures/year |
Maintenance Cost | USD 551 K/year | USD 474 K/year (↓14%) |
Downtime Hours | 11.8 h/year | 2.3 h/year (↓80%) |
Spare Part Usage | Full cycle, every 5 years | Extended by ~20% via condition monitoring |
Energy Efficiency Impact | Overloads frequent due to wear | Reduced by early anomaly detection |
Resource Utilization Efficiency | Moderate | High (maintenance on demand) |
Adaptability to Real-Time Conditions | Absent | Full integration via LSTM-AE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, J.-W.; Choi, S.-W.; Lee, E.-B. Study on Energy Efficiency and Maintenance Optimization of Run-Out Table in Hot Rolling Mills Using Long Short-Term Memory-Autoencoders. Energies 2025, 18, 2295. https://doi.org/10.3390/en18092295
Yun J-W, Choi S-W, Lee E-B. Study on Energy Efficiency and Maintenance Optimization of Run-Out Table in Hot Rolling Mills Using Long Short-Term Memory-Autoencoders. Energies. 2025; 18(9):2295. https://doi.org/10.3390/en18092295
Chicago/Turabian StyleYun, Ju-Woong, So-Won Choi, and Eul-Bum Lee. 2025. "Study on Energy Efficiency and Maintenance Optimization of Run-Out Table in Hot Rolling Mills Using Long Short-Term Memory-Autoencoders" Energies 18, no. 9: 2295. https://doi.org/10.3390/en18092295
APA StyleYun, J.-W., Choi, S.-W., & Lee, E.-B. (2025). Study on Energy Efficiency and Maintenance Optimization of Run-Out Table in Hot Rolling Mills Using Long Short-Term Memory-Autoencoders. Energies, 18(9), 2295. https://doi.org/10.3390/en18092295