Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (203)

Search Parameters:
Keywords = rolled joint

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4949 KiB  
Article
Motion Coupling at the Cervical Vertebral Joints in the Horse—An Ex Vivo Study Using Bone-Anchored Markers
by Katharina Bosch, Rebeka R. Zsoldos, Astrid Hartig and Theresia Licka
Animals 2025, 15(15), 2259; https://doi.org/10.3390/ani15152259 (registering DOI) - 1 Aug 2025
Abstract
The influence of soft tissue structures, including ligaments spanning one or more intervertebral junctions and the nuchal ligament, on motion of the equine cervical joints remains unclear. The present study addressed this using four post-mortem horse specimens extending from head to withers with [...] Read more.
The influence of soft tissue structures, including ligaments spanning one or more intervertebral junctions and the nuchal ligament, on motion of the equine cervical joints remains unclear. The present study addressed this using four post-mortem horse specimens extending from head to withers with all ligaments intact. Three-dimensional kinematics was obtained from markers on the head and bone-anchored markers on each cervical and the first thoracic vertebra during rotation, lateral bending, flexion and extension of the whole head, and neck segment. Yaw, pitch, and roll angles in 8 cervical joints (total 32) were calculated. Flexion and extension were expressed mainly as pitch in 27 and 22 joints, respectively. Rotation appeared as predominantly roll in 13 joints, whereas lateral bending was represented as predominantly yaw in 1 and as roll or pitch in all other joints. Significant correlations between yaw, pitch, and roll were observed at individual cervical joints in 97% of all measurements, with the atlanto-occipital joint showing complete (100%) correlation. Most non-significant correlations occurred at the C5–C6 joint, while C6–C7 exhibited significantly lower correlation coefficients compared to other levels. The overall movement of the head and neck is not replicated at individual cervical joint levels and should be considered when evaluating equine necks in vivo. Full article
Show Figures

Figure 1

20 pages, 4093 KiB  
Article
A Reduced Order Model of the Thermal Profile of the Rolls for the Real-Time Control System
by Dmytro Svyetlichnyy
Energies 2025, 18(15), 4005; https://doi.org/10.3390/en18154005 - 28 Jul 2025
Viewed by 216
Abstract
Effective real-time control systems require fast and accurate models. The thermal profile models of the rolls presented in this paper are proposed for a real-time control system for the design of the rolling schedule. The thermal profile of the roll defines the shape [...] Read more.
Effective real-time control systems require fast and accurate models. The thermal profile models of the rolls presented in this paper are proposed for a real-time control system for the design of the rolling schedule. The thermal profile of the roll defines the shape of the roll surface, its convexity, and, finally, the shape of the final product of the flat rolling, its convexity, and flatness. This paper presents accurate semi-analytical and finite element (FE) models, which serve to obtain an accurate solution of the joint thermal and mechanical problem, that is, heat transfer and thermal expansion. The results of the FE simulation are used for training the developed thermal model based on the neural network (NN) and for the creation of a dynamic reduced order model (ROM) of the roll surface profile. The pre-trained NN model gives accurate results and is faster than the FE model, but the model is not very useful for fast calculations in a real-time control system, mainly because the temperature distribution inside the rolls is not explicitly used in further calculations. In contrast, the ROM is fast and accurate and provides surface-shaped results that can be immediately used by other models of the real-time control system. The results of the simulation of the real process are also shown. Calculations of the roll campaign (more than 9 h) by the FEM model last several hours, while by the ROM less than 20 s. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

25 pages, 10843 KiB  
Article
Experimental and Numerical Study of a Cone-Top Pile Foundation for Challenging Geotechnical Conditions
by Askar Zhussupbekov, Assel Sarsembayeva, Baurzhan Bazarov and Abdulla Omarov
Appl. Sci. 2025, 15(14), 7893; https://doi.org/10.3390/app15147893 - 15 Jul 2025
Viewed by 233
Abstract
This study investigates the behavior and performance of a newly proposed cone-top pile foundation designed to improve stability in layered, deformable, or strain-sensitive soils. Traditional shallow and uniform conical foundations often suffer from excessive settlement and reduced capacity when subjected to vertical loads [...] Read more.
This study investigates the behavior and performance of a newly proposed cone-top pile foundation designed to improve stability in layered, deformable, or strain-sensitive soils. Traditional shallow and uniform conical foundations often suffer from excessive settlement and reduced capacity when subjected to vertical loads and horizontal soil deformations. To address these limitations, a hybrid foundation was developed that integrates an inverted conical base with a central pile shaft and a rolling joint interface between the foundation and the superstructure. Laboratory model tests, full-scale field loading experiments, and axisymmetric numerical simulations using Plaxis 2D (Version 8.2) were conducted to evaluate the foundation’s bearing capacity, settlement behavior, and load transfer mechanisms. Results showed that the cone-top pile foundation exhibited lower settlements and higher load resistance than columnar foundations under similar loading conditions, particularly in the presence of horizontal tensile strains. The load was effectively distributed through the conical base and transferred into deeper soil layers via the pile shaft, while the rolling joint reduced stress transmission to the structure. The findings support the use of cone-top pile foundations in soft soils, seismic areas and areas affected by underground mining, where conventional designs may be inadequate. This study provides a validated and practical design alternative for challenging geotechnical environments. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

18 pages, 3719 KiB  
Article
Energy-Efficient Bipedal Locomotion Through Parallel Actuation of Hip and Ankle Joints
by Prabhu Manoharan and Karthikeyan Palanisamy
Symmetry 2025, 17(7), 1110; https://doi.org/10.3390/sym17071110 - 10 Jul 2025
Viewed by 320
Abstract
Achieving energy-efficient, human-like gait remains a major challenge in bipedal humanoid robotics, as traditional serial actuation architectures often lead to high instantaneous power peaks and uneven load distribution. This study addresses the lack of research on how mechanical symmetry, achieved through parallel actuation, [...] Read more.
Achieving energy-efficient, human-like gait remains a major challenge in bipedal humanoid robotics, as traditional serial actuation architectures often lead to high instantaneous power peaks and uneven load distribution. This study addresses the lack of research on how mechanical symmetry, achieved through parallel actuation, can improve power management in lower-limb joints. We developed a 14-degree-of-freedom (DOF) hip-sized bipedal robot model and conducted simulations comparing a conventional serial configuration—using single-DOF rotary actuators—with a novel parallel configuration that employs paired linear actuators at the hip pitch, hip roll, ankle pitch, and ankle roll joints. Simulation results over a standardized walking cycle show that the parallel configuration reduces peak hip-pitch power by 80.4% and peak ankle-pitch power by 53.5%. These findings demonstrate that incorporating actuator symmetry through parallel joint design significantly reduces actuator stress, improves load sharing, and enhances overall energy efficiency in bipedal locomotion. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

25 pages, 4232 KiB  
Article
Multimodal Fusion Image Stabilization Algorithm for Bio-Inspired Flapping-Wing Aircraft
by Zhikai Wang, Sen Wang, Yiwen Hu, Yangfan Zhou, Na Li and Xiaofeng Zhang
Biomimetics 2025, 10(7), 448; https://doi.org/10.3390/biomimetics10070448 - 7 Jul 2025
Viewed by 457
Abstract
This paper presents FWStab, a specialized video stabilization dataset tailored for flapping-wing platforms. The dataset encompasses five typical flight scenarios, featuring 48 video clips with intense dynamic jitter. The corresponding Inertial Measurement Unit (IMU) sensor data are synchronously collected, which jointly provide reliable [...] Read more.
This paper presents FWStab, a specialized video stabilization dataset tailored for flapping-wing platforms. The dataset encompasses five typical flight scenarios, featuring 48 video clips with intense dynamic jitter. The corresponding Inertial Measurement Unit (IMU) sensor data are synchronously collected, which jointly provide reliable support for multimodal modeling. Based on this, to address the issue of poor image acquisition quality due to severe vibrations in aerial vehicles, this paper proposes a multi-modal signal fusion video stabilization framework. This framework effectively integrates image features and inertial sensor features to predict smooth and stable camera poses. During the video stabilization process, the true camera motion originally estimated based on sensors is warped to the smooth trajectory predicted by the network, thereby optimizing the inter-frame stability. This approach maintains the global rigidity of scene motion, avoids visual artifacts caused by traditional dense optical flow-based spatiotemporal warping, and rectifies rolling shutter-induced distortions. Furthermore, the network is trained in an unsupervised manner by leveraging a joint loss function that integrates camera pose smoothness and optical flow residuals. When coupled with a multi-stage training strategy, this framework demonstrates remarkable stabilization adaptability across a wide range of scenarios. The entire framework employs Long Short-Term Memory (LSTM) to model the temporal characteristics of camera trajectories, enabling high-precision prediction of smooth trajectories. Full article
Show Figures

Figure 1

20 pages, 4280 KiB  
Article
A Spatio-Temporal Joint Diagnosis Framework for Bearing Faults via Graph Convolution and Attention-Enhanced Bidirectional Gated Networks
by Zhiguo Xiao, Xinyao Cao, Huihui Hao, Siwen Liang, Junli Liu and Dongni Li
Sensors 2025, 25(13), 3908; https://doi.org/10.3390/s25133908 - 23 Jun 2025
Viewed by 330
Abstract
In recent years, Academia and industry have conducted extensive and in-depth research on bearing-fault-diagnosis technology. However, the current modeling of time–space coupling characteristics in rolling bearing fault diagnosis remains inadequate, and the integration of multi-modal correlations requires further improvement. To address these challenges, [...] Read more.
In recent years, Academia and industry have conducted extensive and in-depth research on bearing-fault-diagnosis technology. However, the current modeling of time–space coupling characteristics in rolling bearing fault diagnosis remains inadequate, and the integration of multi-modal correlations requires further improvement. To address these challenges, this paper proposes a joint diagnosis framework integrating graph convolutional networks (GCNs) with attention-enhanced bidirectional gated recurrent units (BiGRUs). The proposed framework first constructs an improved K-nearest neighbor-based spatio-temporal graph to enhance multidimensional spatial–temporal feature modeling through GCN-based spatial feature extraction. Subsequently, we design an end-to-end spatio-temporal joint learning architecture by implementing a global attention-enhanced BiGRU temporal modeling module. This architecture achieves the deep fusion of spatio-temporal features through the graph-structural transformation of vibration signals and a feature cascading strategy, thereby improving overall model performance. The experiment demonstrated a classification accuracy of 97.08% on three public datasets including CWRU, verifying that this method decouples bearing signals through dynamic spatial topological modeling, effectively combines multi-scale spatiotemporal features for representation, and accurately captures the impact characteristics of bearing faults. Full article
Show Figures

Figure 1

35 pages, 4434 KiB  
Article
MDO of Robotic Landing Gear Systems: A Hybrid Belt-Driven Compliant Mechanism for VTOL Drones Application
by Masoud Kabganian and Seyed M. Hashemi
Drones 2025, 9(6), 434; https://doi.org/10.3390/drones9060434 - 14 Jun 2025
Viewed by 494
Abstract
This paper addresses inherent limitations in unmanned aerial vehicle (UAV) undercarriages hindering vertical takeoff and landing (VTOL) capabilities on uneven slopes and obstacles. Robotic landing gear (RLG) designs have been proposed to address these limitations; however, existing designs are typically limited to ground [...] Read more.
This paper addresses inherent limitations in unmanned aerial vehicle (UAV) undercarriages hindering vertical takeoff and landing (VTOL) capabilities on uneven slopes and obstacles. Robotic landing gear (RLG) designs have been proposed to address these limitations; however, existing designs are typically limited to ground slopes of 6–15°, beyond which rollover would happen. Moreover, articulated RLG concepts come with added complexity and weight penalties due to multiple drivetrain components. Previous research has highlighted that even a minor 3-degree slope change can increase the dynamic rollover risks by 40%. Therefore, the design optimization of robotic landing gear for enhanced VTOL capabilities requires a multidisciplinary framework that integrates static analysis, dynamic simulation, and control strategies for operations on complex terrain. This paper presents a novel, hybrid, compliant, belt-driven, three-legged RLG system, supported by a multidisciplinary design optimization (MDO) methodology, aimed at achieving enhanced VTOL capabilities on uneven surfaces and moving platforms like ship decks. The proposed system design utilizes compliant mechanisms featuring a series of three-flexure hinges (3SFH), to reduce the number of articulated drivetrain components and actuators. This results in a lower system weight, improved energy efficiency, and enhanced durability, compared to earlier fully actuated, articulated, four-legged, two-jointed designs. Additionally, the compliant belt-driven actuation mitigates issues such as backlash, wear, and high maintenance, while enabling smoother torque transfer and improved vibration damping relative to earlier three-legged cable-driven four-bar link RLG systems. The use of lightweight yet strong materials—aluminum and titanium—enables the legs to bend 19 and 26.57°, respectively, without failure. An animated simulation of full-contact landing tests, performed using a proportional-derivative (PD) controller and ship deck motion input, validate the performance of the design. Simulations are performed for a VTOL UAV, with two flexible legs made of aluminum, incorporating circular flexure hinges, and a passive third one positioned at the tail. The simulation results confirm stable landings with a 2 s settling time and only 2.29° of overshoot, well within the FAA-recommended maximum roll angle of 2.9°. Compared to the single-revolute (1R) model, the implementation of the optimal 3R Pseudo-Rigid-Body Model (PRBM) further improves accuracy by achieving a maximum tip deflection error of only 1.2%. It is anticipated that the proposed hybrid design would also offer improved durability and ease of maintenance, thereby enhancing functionality and safety in comparison with existing robotic landing gear systems. Full article
Show Figures

Figure 1

13 pages, 476 KiB  
Systematic Review
Effects of Vibration Foam Rolling on Pain, Fatigue, and Range of Motion in Individuals with Muscle Fatigue: A Systematic Review
by Seju Park and Byeonggeun Kim
Healthcare 2025, 13(12), 1391; https://doi.org/10.3390/healthcare13121391 - 11 Jun 2025
Viewed by 1418
Abstract
Background/Objectives: Vibration foam rolling (VFR) has emerged as a popular intervention in sports and rehabilitation settings to enhance recovery and flexibility. This systematic review aimed to evaluate the effects of VFR on pain, fatigue, and range of motion (ROM) in individuals experiencing exercise-induced [...] Read more.
Background/Objectives: Vibration foam rolling (VFR) has emerged as a popular intervention in sports and rehabilitation settings to enhance recovery and flexibility. This systematic review aimed to evaluate the effects of VFR on pain, fatigue, and range of motion (ROM) in individuals experiencing exercise-induced muscle fatigue and to assess its clinical applicability. Methods: A systematic literature search was conducted across five databases: PubMed, Cochrane Library, Embase, Web of Science, and CINAHL. Studies were included if they involved participants with muscle fatigue, applied VFR as an intervention, and measured outcomes related to pain, fatigue, or ROM. Methodological quality was assessed using the Joanna Briggs Institute critical appraisal tools. Results: Eight studies published between 2019 and 2024 met the inclusion criteria. VFR showed beneficial effects in reducing delayed onset muscle soreness, improving pressure pain threshold, and lowering subjective fatigue. Several studies also reported increased ROM in specific joints, including the hip and knee. However, findings across studies were inconsistent, particularly in physiological markers such as muscle oxygen saturation and blood flow parameters, where statistically significant differences were not always observed. Conclusions: VFR may offer potential benefits for pain relief, fatigue recovery, and ROM improvement in fatigued individuals. Nonetheless, its effects remain difficult to isolate from those of mechanical pressure and friction associated with foam rolling. Future studies with standardized intervention protocols and long-term follow-up are needed to clarify the independent role of vibration in recovery outcomes. Full article
(This article belongs to the Special Issue Physical Fitness—Effects on Muscle Function and Sports Performance)
Show Figures

Figure 1

26 pages, 5508 KiB  
Article
Enhanced Prediction of the Remaining Useful Life of Rolling Bearings Under Cross-Working Conditions via an Initial Degradation Detection-Enabled Joint Transfer Metric Network
by Lingfeng Qi, Jiafang Pan, Tianping Huang, Zhenfeng Zhou and Faguo Huang
Appl. Sci. 2025, 15(12), 6401; https://doi.org/10.3390/app15126401 - 6 Jun 2025
Viewed by 383
Abstract
Remaining useful life (RUL) prediction of rolling bearings is of significance for improving the reliability and durability of rotating machinery. Aiming at the problem of suboptimal RUL prediction precision under cross-working conditions due to distribution discrepancies between training and testing data, enhanced cross-working [...] Read more.
Remaining useful life (RUL) prediction of rolling bearings is of significance for improving the reliability and durability of rotating machinery. Aiming at the problem of suboptimal RUL prediction precision under cross-working conditions due to distribution discrepancies between training and testing data, enhanced cross-working condition RUL prediction for rolling bearings via an initial degradation detection-enabled joint transfer metric network is proposed. Specifically, the health indicator, called reconstruction along projection pathway (RAPP), is calculated for initial degradation detection (IDD), in which RAPP is obtained from a novel deep adversarial convolution autoencoder network (DACAEN) and compares discrepancies between the input and the reconstruction by DACAEN, not only in the input space, but also in the hidden spaces, and then RUL prediction is triggered after IDD via RAPP. After that, a joint transfer metric network is proposed for cross-working condition RUL prediction. Joint domain adaptation loss, which combines representation subspace distance and variance discrepancy representation, is designed to act on the final layer of the mapping regression network to decrease data distribution discrepancies and ultimately obtain cross-domain invariant features. The experimental results from the PHM2012 dataset show that the proposed method has higher prediction accuracy and better generalization ability than typical and advanced transfer RUL prediction methods under cross-working conditions, with improvements of 0.047, 0.053, and 0.058 in the MSE, RMSE, and Score. Full article
(This article belongs to the Special Issue Advanced Technologies for Industry 4.0 and Industry 5.0)
Show Figures

Figure 1

15 pages, 12526 KiB  
Article
Research on Registration Methods for Coupled Errors in Maneuvering Platforms
by Qiang Li, Ruidong Liu, Yalei Liu and Zhenzhong Wei
Entropy 2025, 27(6), 607; https://doi.org/10.3390/e27060607 - 6 Jun 2025
Viewed by 329
Abstract
The performance limitations of single-sensor systems in target tracking have led to the widespread adoption of multi-sensor fusion, which improves accuracy through information complementarity and redundancy. However, on mobile platforms, dynamic changes in sensor attitude and position introduce coupled measurement and attitude errors, [...] Read more.
The performance limitations of single-sensor systems in target tracking have led to the widespread adoption of multi-sensor fusion, which improves accuracy through information complementarity and redundancy. However, on mobile platforms, dynamic changes in sensor attitude and position introduce coupled measurement and attitude errors, making accurate sensor registration particularly challenging. Most existing methods either treat these errors independently or rely on simplified assumptions, which limit their effectiveness in dynamic environments. To address this, we propose a novel joint error estimation and registration method based on a pseudo-Kalman filter (PKF). The PKF constructs pseudo-measurements by subtracting outputs from multiple sensors, projecting them into a bias space that is independent of the target’s state. A decoupling mechanism is introduced to distinguish between measurement and attitude error components, enabling accurate joint estimation in real time. In the shipborne environment, simulation experiments on pitch, yaw, and roll motions were conducted using two sensors. This method was compared with least squares (LS), maximum likelihood (ML), and the standard method based on PKF. The results show that the method based on PKF has a lower root mean square error (RMSE), a faster convergence speed, and better estimation accuracy and robustness. The proposed approach provides a practical and scalable solution for sensor registration in dynamic environments, particularly in maritime or aerial applications where coupled errors are prevalent. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

31 pages, 7884 KiB  
Article
Magnetic Pulse Welding of Dissimilar Materials: Weldability Window for AA6082-T6/HC420LA Stacks
by Mario A. Renderos Cartagena, Edurne Iriondo Plaza, Amaia Torregaray Larruscain, Marie B. Touzet-Cortina and Franck A. Girot Mata
Metals 2025, 15(6), 619; https://doi.org/10.3390/met15060619 - 30 May 2025
Viewed by 652
Abstract
Magnetic pulse welding (MPW) is a promising solid-state joining process that utilizes electromagnetic forces to create high-speed, impact-like collisions between two metal components. This welding technique is widely known for its ability to join dissimilar metals, including aluminum, steel, and copper, without the [...] Read more.
Magnetic pulse welding (MPW) is a promising solid-state joining process that utilizes electromagnetic forces to create high-speed, impact-like collisions between two metal components. This welding technique is widely known for its ability to join dissimilar metals, including aluminum, steel, and copper, without the need for additional filler materials or fluxes. MPW offers several advantages, such as minimal heat input, no distortion or warping, and excellent joint strength and integrity. The process is highly efficient, with welding times typically ranging from microseconds to milliseconds, making it suitable for high-volume production applications in sectors including automotive, aerospace, electronics, and various other industries where strong and reliable joints are required. It provides a cost-effective solution for joining lightweight materials, reducing weight and improving fuel efficiency in transportation systems. This contribution concerns an application for the automotive sector (body-in-white) and specifically examines the welding of AA6082-T6 aluminum alloy with HC420LA cold-rolled micro-alloyed steel. One of the main aspects for MPW optimization is the determination of the process window that does not depend on the equipment used but rather on the parameters associated with the physical mechanisms of the process. It was demonstrated that process windows based on contact angle versus output voltage diagrams can be of interest for production use for a given component (shock absorbers, suspension struts, chassis components, instrument panel beams, next-generation crash boxes, etc.). The process window based on impact pressures versus impact velocity for different impact angles, in addition to not depending on the equipment, allows highlighting other factors such as the pressure welding threshold for different temperatures in the impact zone, critical transition speeds for straight or wavy interface formation, and the jetting/no jetting effect transition. Experimental results demonstrated that optimal welding conditions are achieved with impact velocities between 900 and 1200 m/s, impact pressures of 3000–4000 MPa, and impact angles ranging from 18–35°. These conditions correspond to optimal technological parameters including gaps of 1.5–2 mm and output voltages between 7.5 and 8.5 kV. Successful welds require mean energy values above 20 kJ and weld specific energy values exceeding 150 kJ/m2. The study establishes critical failure thresholds: welds consistently failed when gap distances exceeded 3 mm, output voltage dropped below 5.5 kV, or impact pressures fell below 2000 MPa. To determine these impact parameters, relationships based on Buckingham’s π theorem provide a viable solution closely aligned with experimental reality. Additionally, shear tests were conducted to determine weld cohesion, enabling the integration of mechanical resistance isovalues into the process window. The findings reveal an inverse relationship between impact angle and weld specific energy, with higher impact velocities producing thicker intermetallic compounds (IMCs), emphasizing the need for careful parameter optimization to balance weld strength and IMC formation. Full article
(This article belongs to the Topic Welding Experiment and Simulation)
Show Figures

Figure 1

19 pages, 15506 KiB  
Article
The Analysis of Plastic Forming in the Rolling Process of Difficult-to-Deform Ti + Ni Layered Composites
by Dariusz Rydz, Sebastian Mróz, Piotr Szota, Grzegorz Stradomski, Tomasz Garstka and Tomasz Cyryl Dyl
Materials 2025, 18(9), 1926; https://doi.org/10.3390/ma18091926 - 24 Apr 2025
Viewed by 408
Abstract
The article presents the results of experimental studies on the symmetrical and asymmetrical rolling process of composite laminate sheets consisting of difficult-to-deform Ti and Ni materials. Composite sheets joined by explosive welding were used for the tests. The aim of the research was [...] Read more.
The article presents the results of experimental studies on the symmetrical and asymmetrical rolling process of composite laminate sheets consisting of difficult-to-deform Ti and Ni materials. Composite sheets joined by explosive welding were used for the tests. The aim of the research was to determine the impact of plastic shaping conditions in the rolling process on the quality and selected functional properties of the materials constituting the layered composite. The rolling process was carried out cold on a duo laboratory rolling mill with a roll diameter of 300 mm. During the rolling process, the influence of the rolling process conditions on the distribution of metal pressure forces on the rolls was determined, as well as the shear strength and microstructural studies of the joint area of the layered composites. As part of the conducted considerations, residual stress tests were carried out using the Barkhausen noise method. The scientific aim of the presented work was to determine the optimal conditions for the plastic processing of multi-layer Ti-Ni sheets. The results presented in the work allowed for determining the most favorable conditions for the rolling process. Full article
(This article belongs to the Special Issue Achievements in Foundry Materials and Technologies)
Show Figures

Graphical abstract

31 pages, 25096 KiB  
Article
Study of the Structure and Mechanical Properties of Ti-38Zr-11Nb Alloy
by Konstantin V. Sergienko, Sergei V. Konushkin, Yaroslava A. Morozova, Mikhail A. Kaplan, Artem D. Gorbenko, Boris A. Rumyantsev, Mikhail E. Prutskov, Evgeny E. Baranov, Elena O. Nasakina, Tatiana M. Sevostyanova, Sofia A. Mikhlik, Andrey P. Chizhikov, Lyudmila A. Shatova, Aleksandr V. Simakin, Ilya V. Baimler, Maria A. Sudarchikova, Mikhail L. Kheifetz, Alexey G. Kolmakov and Mikhail A. Sevostyanov
J. Funct. Biomater. 2025, 16(4), 126; https://doi.org/10.3390/jfb16040126 - 2 Apr 2025
Viewed by 661
Abstract
Hip joint implants are among the most prevalent types of medical implants utilized for the replacement of damaged joints. The utilization of modern implant materials, such as cobalt–chromium alloys, stainless steel, titanium, and other titanium alloys, is accompanied by challenges, including the toxicity [...] Read more.
Hip joint implants are among the most prevalent types of medical implants utilized for the replacement of damaged joints. The utilization of modern implant materials, such as cobalt–chromium alloys, stainless steel, titanium, and other titanium alloys, is accompanied by challenges, including the toxicity of certain elements (e.g., aluminum, vanadium, nickel) and excessive Young’s modulus, which adversely impact biomechanical compatibility. A mismatch between the stiffness of the implant material and the bone tissue, known as stress shielding, can lead to adverse outcomes such as bone resorption and implant loosening. Recent studies have shifted the focus to β-titanium alloys due to their exceptional biocompatibility, corrosion resistance, and low Young’s modulus, which is close to the Young’s modulus of bone tissue (10–30 GPa). In this study, the microstructure, mechanical properties, and phase stability of the Ti-38Zr-11Nb alloy were investigated. Energy dispersion spectrometry was employed to confirm the homogeneous distribution of Ti, Zr, and Nb in the alloy. A subsequent microstructural analysis revealed the presence of elongated β-grains subsequent to rolling and quenching. Furthermore, grinding contributed to the process of recrystallization and the formation of subgrains. X-ray diffraction analysis confirmed the presence of a stable β-phase under any heat treatment conditions, which can be explained by the use of Nb as a β-stabilizer and Zr as a neutral element with a weak β-stabilizing effect in the presence of other β-stabilizers. Furthermore, the modulus of elasticity, as determined by tensile testing, exhibited a decline from 85 GPa to 81 GPa after annealing. Mechanical tests demonstrated a substantial enhancement in tensile strength (from 529 MPa to 628 MPa) concurrent with a 32% reduction in elongation to fracture of the samples. These alterations are attributed to microstructural transformations, including the formation of subgrains and the rearrangement of dislocations. This study’s findings suggest that the Ti-38Zr-11Nb alloy has potential as a material of choice due to its lower Young’s modulus compared to traditional materials and its stable β-phase, which enhances the implant’s durability and reduces the risk of brittle phases forming over time. This study demonstrates that the corrosion resistance of titanium grade 2 and Ti-38Zr-11Nb is comparable. The material in question exhibited no evidence of cytotoxic activity in the context of mammalian cells. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

18 pages, 4836 KiB  
Article
Research on Heave Compensation Systems and Control Methods for Deep-Sea Mining
by Yajuan Kang, Hongtao Fang, Changwei Wang and Shaojun Liu
J. Mar. Sci. Eng. 2025, 13(4), 652; https://doi.org/10.3390/jmse13040652 - 25 Mar 2025
Viewed by 699
Abstract
The development of heave compensation systems in marine engineering and deep-sea mining applications is analyzed, and their functional requirements and key features are summarized. Based on this analysis, a system is proposed that uses flexible joints to compensate for pitch and roll motion, [...] Read more.
The development of heave compensation systems in marine engineering and deep-sea mining applications is analyzed, and their functional requirements and key features are summarized. Based on this analysis, a system is proposed that uses flexible joints to compensate for pitch and roll motion, along with a single-chamber valve-controlled compensation cylinder with a high-pressure accumulator to compensate for heave motion. An active heave compensation system based on this design is studied using a fuzzy PID control method. A dynamic model of the system is then established for this control system. Numerical simulations are carried out to evaluate the control process and performance under different sea conditions. The results show that the proposed heave compensation system offers distinct advantages such as a simple and compact structure, minimal deck space requirements on the mining vessel, and large compensation angles for both pitch and roll. Furthermore, the use of a fuzzy PID control method for heave compensation achieves a relatively good compensation effect, and can be adapted to varying sea conditions. Full article
(This article belongs to the Special Issue Deep-Sea Mineral Resource Development Technology and Equipment)
Show Figures

Figure 1

14 pages, 269 KiB  
Article
Joint Angular Kinematics and Gross Motor Function in Typically Developing Healthy Children
by Monday Omoniyi Moses, Ngozi Florence Onuegbu, Prince De-Gualle Deku, Mary Abena Nyarko, Lydia Boampong Owusu, Abigael Omowumi Emikpe, Emmanuel Babatunde John, Rahul Soangra, Abiboye Cheduko Yifieyeh and Nicholas Akinwale Titiloye
Children 2025, 12(3), 280; https://doi.org/10.3390/children12030280 - 25 Feb 2025
Viewed by 796
Abstract
Objective: The aim of this study was to establish the interactions between joint angular kinematics and gross motor function in typically developing healthy Ghanaian children. Methods: A descriptive cross-sectional study design was employed. A total of 150 (69 (46.0%), 3.25 ± 0.08-year-old boys [...] Read more.
Objective: The aim of this study was to establish the interactions between joint angular kinematics and gross motor function in typically developing healthy Ghanaian children. Methods: A descriptive cross-sectional study design was employed. A total of 150 (69 (46.0%), 3.25 ± 0.08-year-old boys and 81 (54.0%), 3.25 ± 0.06-year-old girls) 2–4-year-old children were recruited. Joint angular kinematic variables [left hip flexion (LHF), left hip extension (LHE), right hip flexion (RHF), left knee flexion (LKF), right hip extension (RHE), left knee extension (LKE), right knee flexion (RKF), left ankle dorsi-flexion (LADF), right knee extension (RKE), right ankle plantar flexion (RAPF), left ankle plantar flexion (LAPF), and right ankle dorsi-flexion (RADF)] and gross motor function (lying and rolling, sitting, crawling and kneeling, standing, and walking, running, and jumping) were measured with standard scales. Results: The correlations between lying and rolling vs. RHE (r = 0.221; p-value < 0.01), LKE (r = −0.267; p-value < 0.01), LAPF (r = 0.264; p-value < 0.01), and RADF (r = 0.240; p-value < 0.01); crawling and kneeling vs. LKE (r = 0.196; p-value < 0.05) and RADF (r = 0.188; p-value < 0.05); and walking, running, and jumping vs. LKE (r = −0.214; p-value < 0.01) and RADF (r = −0.207; p-value < 0.05) were significant. Conclusions: There was a negative correlation between joint angular kinematics and total gross motor function in this sampled population. Typically, developing healthy children should be exposed to a range of motion, flexibility, and active transportation programs for optimal active lifestyles and improvements in gross motor skills. Full article
(This article belongs to the Section Pediatric Neurology & Neurodevelopmental Disorders)
Back to TopTop