Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (603)

Search Parameters:
Keywords = road traffic monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1948 KB  
Article
Graph-MambaRoadDet: A Symmetry-Aware Dynamic Graph Framework for Road Damage Detection
by Zichun Tian, Xiaokang Shao and Yuqi Bai
Symmetry 2025, 17(10), 1654; https://doi.org/10.3390/sym17101654 - 5 Oct 2025
Viewed by 287
Abstract
Road-surface distress poses a serious threat to traffic safety and imposes a growing burden on urban maintenance budgets. While modern detectors based on convolutional networks and Vision Transformers achieve strong frame-level performance, they often overlook an essential property of road environments—structural symmetry [...] Read more.
Road-surface distress poses a serious threat to traffic safety and imposes a growing burden on urban maintenance budgets. While modern detectors based on convolutional networks and Vision Transformers achieve strong frame-level performance, they often overlook an essential property of road environments—structural symmetry within road networks and damage patterns. We present Graph-MambaRoadDet (GMRD), a symmetry-aware and lightweight framework that integrates dynamic graph reasoning with state–space modeling for accurate, topology-informed, and real-time road damage detection. Specifically, GMRD employs an EfficientViM-T1 backbone and two DefMamba blocks, whose deformable scanning paths capture sub-pixel crack patterns while preserving geometric symmetry. A superpixel-based graph is constructed by projecting image regions onto OpenStreetMap road segments, encoding both spatial structure and symmetric topological layout. We introduce a Graph-Generating State–Space Model (GG-SSM) that synthesizes sparse sample-specific adjacency in O(M) time, further refined by a fusion module that combines detector self-attention with prior symmetry constraints. A consistency loss promotes smooth predictions across symmetric or adjacent segments. The full INT8 model contains only 1.8 M parameters and 1.5 GFLOPs, sustaining 45 FPS at 7 W on a Jetson Orin Nano—eight times lighter and 1.7× faster than YOLOv8-s. On RDD2022, TD-RD, and RoadBench-100K, GMRD surpasses strong baselines by up to +6.1 mAP50:95 and, on the new RoadGraph-RDD benchmark, achieves +5.3 G-mAP and +0.05 consistency gain. Qualitative results demonstrate robustness under shadows, reflections, back-lighting, and occlusion. By explicitly modeling spatial and topological symmetry, GMRD offers a principled solution for city-scale road infrastructure monitoring under real-time and edge-computing constraints. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

19 pages, 1327 KB  
Article
An IoT Architecture for Sustainable Urban Mobility: Towards Energy-Aware and Low-Emission Smart Cities
by Manuel J. C. S. Reis, Frederico Branco, Nishu Gupta and Carlos Serôdio
Future Internet 2025, 17(10), 457; https://doi.org/10.3390/fi17100457 - 4 Oct 2025
Viewed by 278
Abstract
The rapid growth of urban populations intensifies congestion, air pollution, and energy demand. Green mobility is central to sustainable smart cities, and the Internet of Things (IoT) offers a means to monitor, coordinate, and optimize transport systems in real time. This paper presents [...] Read more.
The rapid growth of urban populations intensifies congestion, air pollution, and energy demand. Green mobility is central to sustainable smart cities, and the Internet of Things (IoT) offers a means to monitor, coordinate, and optimize transport systems in real time. This paper presents an Internet of Things (IoT)-based architecture integrating heterogeneous sensing with edge–cloud orchestration and AI-driven control for green routing and coordinated Electric Vehicle (EV) charging. The framework supports adaptive traffic management, energy-aware charging, and multimodal integration through standards-aware interfaces and auditable Key Performance Indicators (KPIs). We hypothesize that, relative to a static shortest-path baseline, the integrated green routing and EV-charging coordination reduce (H1) mean travel time per trip by ≥7%, (H2) CO2 intensity (g/km) by ≥6%, and (H3) station peak load by ≥20% under moderate-to-high demand conditions. These hypotheses are tested in Simulation of Urban MObility (SUMO) with Handbook Emission Factors for Road Transport (HBEFA) emission classes, using 10 independent random seeds and reporting means with 95% confidence intervals and formal significance testing. The results confirm the hypotheses: average travel time decreases by approximately 9.8%, CO2 intensity by approximately 8%, and peak load by approximately 25% under demand multipliers ≥1.2 and EV shares ≥20%. Gains are attenuated under light demand, where congestion effects are weaker. We further discuss scalability, interoperability, privacy/security, and the simulation-to-deployment gap, and outline priorities for reproducible field pilots. In summary, a pragmatic edge–cloud IoT stack has the potential to lower congestion, reduce per-kilometer emissions, and smooth charging demand, provided it is supported by reliable data integration, resilient edge services, and standards-compliant interoperability, thereby contributing to sustainable urban mobility in line with the objectives of SDG 11 (Sustainable Cities and Communities). Full article
Show Figures

Figure 1

25 pages, 2392 KB  
Article
Pattern-Based Driver Aggressiveness Behavior Assessment Using LSTM-Based Models
by Daniel Patrício, Paulo Loureiro, Sílvio P. Mendes, Anabela Bernardino, Rolando Miragaia and Iryna Husyeva
Future Transp. 2025, 5(4), 135; https://doi.org/10.3390/futuretransp5040135 - 2 Oct 2025
Viewed by 141
Abstract
The increasing concern for road safety has driven the development of advanced driver behavior analysis systems. This study presents a comprehensive review of various techniques to detect unsafe driving behaviors, with a particular emphasis on using smartphone sensors. By leveraging data from accelerometers, [...] Read more.
The increasing concern for road safety has driven the development of advanced driver behavior analysis systems. This study presents a comprehensive review of various techniques to detect unsafe driving behaviors, with a particular emphasis on using smartphone sensors. By leveraging data from accelerometers, gyroscopes, and GPS, these methods allow for the detection of aggressive driving patterns, which may result from factors such as driver distraction or drowsiness. Modern sensor technology plays a crucial role in real-time monitoring and has significant potential to enhance vehicle safety systems. A Long Short-Term Memory (LSTM) network combined with a Conv1D layer was trained to analyze driving patterns using a sliding window technique. As technology continues evolving, its application in driver behavior analysis holds great promise for reducing traffic accidents and improving driving habits. Furthermore, the ability to gather and analyze large amounts of data from drivers in various conditions opens new opportunities for more personalized and adaptive safety solutions. This research offers insights into the future direction of driver monitoring systems and the growing impact of mobile and sensor-based solutions in transportation safety. Full article
Show Figures

Figure 1

39 pages, 1420 KB  
Article
Identifying a Framework for Implementing Vision Zero Approach to Road Safety in Low- and Middle-Income Countries: A Qualitative Perspective
by Mahfooz Ulhaq Bajwa, Wafaa Saleh and Grigorios Fountas
Safety 2025, 11(4), 93; https://doi.org/10.3390/safety11040093 - 2 Oct 2025
Viewed by 385
Abstract
Road traffic fatalities in low- and middle-income countries (LMICs) are continuing to rise, posing significant socio-economic and public health challenges. To prevent these road deaths and avoid the corresponding costs, the World Health Organization (WHO) has recommended implementing the vision zero approach to [...] Read more.
Road traffic fatalities in low- and middle-income countries (LMICs) are continuing to rise, posing significant socio-economic and public health challenges. To prevent these road deaths and avoid the corresponding costs, the World Health Organization (WHO) has recommended implementing the vision zero approach to road safety. Vision Zero aims to eliminate road deaths and reduce serious injuries. It has been adopted by many developed countries, however LMICs have faced difficulties implementing this approach due to a lack of guidance. This study aims to develop a framework for implementing vision zero in LMICs by examining the processes in India and Sweden. A qualitative research approach with a multiple-case study design was utilized, selecting 16 participants through purposive and snowball sampling. Data was collected via semi-structured interviews and analyzed using the Grounded Theory method based on Strauss and Corbin’s approach. The study identified five core implementation steps such as agenda setting, approval, planning, monitoring and evaluation, and continuous improvement. Also, a set of influencing conditions such as preconditions, objectives, strategies, intervening factors and contextual conditions were identified. Furthermore, 38 implementation proposals were suggested in the framework to guide policymakers. The proposed framework provides a road map for LMICs that is intended to act as a guide for policymakers and road safety practitioners to enhance road safety performance in LMICs. Full article
(This article belongs to the Special Issue Traffic Safety Culture)
Show Figures

Figure 1

23 pages, 5501 KB  
Article
Development of a Road Surface Conditions Prediction Model for Snow Removal Decision-Making
by Gyeonghoon Ma, Min-Cheol Park, Junchul Kim, Han Jin Oh and Jin-Hoon Jeong
Sustainability 2025, 17(19), 8794; https://doi.org/10.3390/su17198794 - 30 Sep 2025
Viewed by 293
Abstract
Snowfall and road surface freezing cause traffic disruptions and skidding accidents. When widespread extreme cold events or sudden heavy snowfalls occur, the continuous monitoring and management of extensive road networks until the restoration of traffic operations is constrained by the limited personnel and [...] Read more.
Snowfall and road surface freezing cause traffic disruptions and skidding accidents. When widespread extreme cold events or sudden heavy snowfalls occur, the continuous monitoring and management of extensive road networks until the restoration of traffic operations is constrained by the limited personnel and resources available to road authorities. Consequently, road surface condition prediction models have become increasingly necessary to enable timely and sustainable decision-making. This study proposes a road surface condition prediction model based on CCTV images collected from roadside cameras. Three databases were constructed based on different definitions of moisture-related surface classes, and models with the same architecture were trained and evaluated. The results showed that the best performance was achieved when ice and snow were combined into a single class rather than treated separately. The proposed model was designed with a simplified structure to ensure applicability in practical operations requiring computational efficiency. Compared with transfer learning using deeper and more complex pre-trained models, the proposed model achieved comparable prediction accuracy while requiring less training time and computational resources. These findings demonstrate the reliability and practical utility of the developed model, indicating that its application can support sustainable snow removal decision-making across extensive road networks. Full article
(This article belongs to the Special Issue Disaster Risk Reduction and Sustainability)
Show Figures

Figure 1

22 pages, 8401 KB  
Article
Multi-Camera Machine Vision for Detecting and Analyzing Vehicle–Pedestrian Conflicts at Signalized Intersections: Deep Neural-Based Pose Estimation Algorithms
by Ahmed Mohamed and Mohamed M. Ahmed
Appl. Sci. 2025, 15(19), 10413; https://doi.org/10.3390/app151910413 - 25 Sep 2025
Viewed by 453
Abstract
Over the past decade, researchers have advanced traffic monitoring using surveillance cameras, unmanned aerial vehicles (UAVs), loop detectors, LiDAR, microwave sensors, and sensor fusion. These technologies effectively detect and track vehicles, enabling robust safety assessments. However, pedestrian detection remains challenging due to diverse [...] Read more.
Over the past decade, researchers have advanced traffic monitoring using surveillance cameras, unmanned aerial vehicles (UAVs), loop detectors, LiDAR, microwave sensors, and sensor fusion. These technologies effectively detect and track vehicles, enabling robust safety assessments. However, pedestrian detection remains challenging due to diverse motion patterns, varying clothing colors, occlusions, and positional differences. This study introduces an innovative approach that integrates multiple surveillance cameras at signalized intersections, regardless of their types or resolutions. Two distinct convolutional neural network (CNN)-based detection algorithms accurately track road users across multiple views. The resulting trajectories undergo analysis, smoothing, and integration, enabling detailed traffic scene reconstruction and precise identification of vehicle–pedestrian conflicts. The proposed framework achieved 97.73% detection precision and an average intersection over union (IoU) of 0.912 for pedestrians, compared to 68.36% and 0.743 with a single camera. For vehicles, it achieved 98.2% detection precision and an average IoU of 0.955, versus 58.78% and 0.516 with a single camera. These findings highlight significant improvements in detecting and analyzing traffic conflicts, enhancing the identification and mitigation of potential hazards. Full article
Show Figures

Figure 1

16 pages, 2981 KB  
Article
CNN-Based Road Event Detection Using Multiaxial Vibration and Acceleration Signals
by Abiel Aguilar-González and Alejandro Medina Santiago
Appl. Sci. 2025, 15(18), 10203; https://doi.org/10.3390/app151810203 - 19 Sep 2025
Viewed by 540
Abstract
Road event detection plays a key role in tasks such as monitoring, anomaly identification, and urban traffic optimization. Conventional methods often rely on feature extraction and classification or classical machine learning models, which may struggle when processing high-frequency signals in real time. In [...] Read more.
Road event detection plays a key role in tasks such as monitoring, anomaly identification, and urban traffic optimization. Conventional methods often rely on feature extraction and classification or classical machine learning models, which may struggle when processing high-frequency signals in real time. In this work, we propose a CNN-based classification approach designed to handle multi-axial acceleration and vibration signals captured from road scenarios. Instead of relying on static feature sets, our method leverages a convolutional neural network architecture capable of automatically learning discriminative patterns from raw sensor data. We structure the time-series input into temporal windows and use it to train models that can identify different event categories, including “Speed Bumps”, “Potholes”, and “Sudden Braking” events. The experimental results show that our approach achieves an accuracy of 93.51%, with a precision of 93.56% and a recall of 93.51%. Further, the average AUC score of 0.9855 confirms the strong discriminative power of our proposal. In contrast to rule-based methods, which require frequent tuning to adapt to new datasets, our approach generalizes better across different road conditions and offers a practical alternative for real-time deployment in dynamic environments, outperforming rule-based approaches by over 10% in F1-score, while preserving deployment efficiency on embedded hardware. Full article
Show Figures

Figure 1

23 pages, 5880 KB  
Article
Offline Knowledge Base and Attention-Driven Semantic Communication for Image-Based Applications in ITS Scenarios
by Yan Xiao, Xiumei Fan, Zhixin Xie and Yuanbo Lu
Big Data Cogn. Comput. 2025, 9(9), 240; https://doi.org/10.3390/bdcc9090240 - 18 Sep 2025
Viewed by 411
Abstract
Communications in intelligent transportation systems (ITS) face explosive data growth from applications such as autonomous driving, remote diagnostics, and real-time monitoring, imposing severe challenges on limited spectrum, bandwidth, and latency. Reliable semantic image reconstruction under noisy channel conditions is critical for ITS perception [...] Read more.
Communications in intelligent transportation systems (ITS) face explosive data growth from applications such as autonomous driving, remote diagnostics, and real-time monitoring, imposing severe challenges on limited spectrum, bandwidth, and latency. Reliable semantic image reconstruction under noisy channel conditions is critical for ITS perception tasks, since noise directly impacts the recognition of both static infrastructure and dynamic obstacles. Unlike traditional approaches that aim to transmit all image data with equal fidelity, effective ITS communication requires prioritizing task-relevant dynamic elements such as vehicles and pedestrians while filtering out largely static background features such as buildings, road signs, and vegetation. To address this, we propose an Offline Knowledge Base and Attention-Driven Semantic Communication (OKBASC) framework for image-based applications in ITS scenarios. The proposed framework performs offline semantic segmentation to build a compact knowledge base of semantic masks, focusing on dynamic task-relevant regions such as vehicles, pedestrians, and traffic signals. At runtime, precomputed masks are adaptively fused with input images via sparse attention to generate semantic-aware representations that selectively preserve essential information while suppressing redundant background. Moreover, we introduce a further Bi-Level Routing Attention (BRA) module that hierarchically refines semantic features through global channel selection and local spatial attention, resulting in improved discriminability and compression efficiency. Experiments on the VOC2012 and nuPlan datasets under varying SNR levels show that OKBASC achieves higher semantic reconstruction quality than baseline methods, both quantitatively via the Structural Similarity Index Metric (SSIM) and qualitatively via visual comparisons. These results highlight the value of OKBASC as a communication-layer enabler that provides reliable perceptual inputs for downstream ITS applications, including cooperative perception, real-time traffic safety, and incident detection. Full article
Show Figures

Graphical abstract

38 pages, 27011 KB  
Article
Passable: An Intelligent Traffic Light System with Integrated Incident Detection and Vehicle Alerting
by Ohoud Alzamzami, Zainab Alsaggaf, Reema AlMalki, Rawan Alghamdi, Amal Babour and Lama Al Khuzayem
Sensors 2025, 25(18), 5760; https://doi.org/10.3390/s25185760 - 16 Sep 2025
Viewed by 1053
Abstract
The advancement of Artificial Intelligence (AI) and the Internet of Things (IoT) has accelerated the development of Intelligent Transportation Systems (ITS) in smart cities, playing a crucial role in optimizing traffic flow, enhancing road safety, and improving the driving experience. With urban traffic [...] Read more.
The advancement of Artificial Intelligence (AI) and the Internet of Things (IoT) has accelerated the development of Intelligent Transportation Systems (ITS) in smart cities, playing a crucial role in optimizing traffic flow, enhancing road safety, and improving the driving experience. With urban traffic becoming increasingly complex, timely detection and response to congestion and accidents are critical to ensuring safety and situational awareness. This paper presents Passable, an intelligent and adaptive traffic light control system that monitors traffic conditions in real time using deep learning and computer vision. By analyzing images captured from cameras at traffic lights, Passable detects road incidents and dynamically adjusts signal timings based on current vehicle density. It also employs wireless communication to alert drivers and update a centralized dashboard accessible to traffic management authorities. A working prototype integrating both hardware and software components was developed and evaluated. Results demonstrate the feasibility and effectiveness of designing an adaptive traffic signal control system that integrates incident detection, instantaneous communication, and immediate reporting to the relevant authorities. Such a design can enhance traffic efficiency and contribute to road safety. Future work will involve testing the system with real-world vehicular communication technologies on multiple coordinated intersections while integrating pedestrian and emergency vehicle detection. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

28 pages, 18957 KB  
Article
Radar-Based Road Surface Classification Using Range-Fast Fourier Transform Learning Models
by Hyunji Lee, Jiyun Kim, Kwangin Ko, Hak Han and Minkyo Youm
Sensors 2025, 25(18), 5697; https://doi.org/10.3390/s25185697 - 12 Sep 2025
Viewed by 589
Abstract
Traffic accidents caused by black ice have become a serious public safety concern due to their high fatality rates and the limitations of conventional detection systems under low visibility. Millimeter-wave (mmWave) radar, capable of operating reliably in adverse weather and lighting conditions, offers [...] Read more.
Traffic accidents caused by black ice have become a serious public safety concern due to their high fatality rates and the limitations of conventional detection systems under low visibility. Millimeter-wave (mmWave) radar, capable of operating reliably in adverse weather and lighting conditions, offers a promising alternative for road surface monitoring. In this study, six representative road surface conditions—dry, wet, thin-ice, ice, snow, and sludge—were experimentally implemented on asphalt and concrete specimens using a temperature and humidity-controlled chamber. mmWave radar data were repeatedly collected to analyze the temporal variations in reflected signals. The acquired signals were transformed into range-based spectra using Range-Fast Fourier Transform (Range-FFT) and converted into statistical features and graphical representations. These features were used to train and evaluate classification models, including Extreme Gradient Boost (XGBoost), Light Gradient-Boosting Machine (LightGBM), Convolutional Neural Networks (CNN), and Vision Transformer (ViT). While machine learning models performed well under dry and wet conditions, their accuracy declined in hazardous states. Both CNN and ViT demonstrated superior performance across all conditions, with CNN showing consistent stability and ViT exhibiting competitive accuracy with enhanced global pattern-recognition capabilities. Comprehensive robustness evaluation under various noise and blur conditions revealed distinct characteristics of each model architecture. This study demonstrates the feasibility of mmWave radar for reliable road surface condition recognition and suggests potential for improvement through multimodal sensor fusion and time-series analysis. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

32 pages, 3201 KB  
Article
Real-Time Urban Congestion Monitoring in Jeddah, Saudi Arabia, Using the Google Maps API: A Data-Driven Framework for Middle Eastern Cities
by Ghada Ragheb Elnaggar, Shireen Al-Hourani and Rimal Abutaha
Sustainability 2025, 17(18), 8194; https://doi.org/10.3390/su17188194 - 11 Sep 2025
Viewed by 1617
Abstract
Rapid urban growth in Middle Eastern cities has intensified congestion-related challenges, yet traffic data-based decision making remains limited. This study leverages crowd-sourced travel time data from the Google Maps API to evaluate temporal and spatial patterns of congestion across multiple strategic routes in [...] Read more.
Rapid urban growth in Middle Eastern cities has intensified congestion-related challenges, yet traffic data-based decision making remains limited. This study leverages crowd-sourced travel time data from the Google Maps API to evaluate temporal and spatial patterns of congestion across multiple strategic routes in Jeddah, Saudi Arabia, a coastal metropolis with a complex road network characterized by narrow, high-traffic corridors and limited public transit. A real-time Congestion Index quantifies traffic flow, incorporating free-flow speed benchmarking, dynamic profiling, and temporal classification to pinpoint congestion hotspots. The analysis identifies consistent peak congestion windows and route-specific delays that are critical for travel behavior modeling. In addition to congestion monitoring, the framework contributes to urban sustainability by supporting reductions in traffic-related emissions, enhancing mobility equity, and improving economic efficiency through data-driven transport management. To our knowledge, this is the first study to systematically use the validated, real-time Google Maps API to quantify route-specific congestion in a Middle Eastern urban context. The approach provides a scalable and replicable framework for evaluating urban mobility in other data-sparse cities, especially in contexts where traditional traffic sensors or GPS tracking are unavailable. The findings support evidence-based transport policy and demonstrate the utility of publicly accessible traffic data for smart city integration, real-time traffic monitoring, and assisting transport authorities in enhancing urban mobility. Full article
Show Figures

Figure 1

18 pages, 4974 KB  
Article
Assessment of UAV Usage for Flexible Pavement Inspection Using GCPs: Case Study on Palestinian Urban Road
by Ismail S. A. Aburqaq, Sepanta Naimi, Sepehr Saedi and Musab A. A. Shahin
Sustainability 2025, 17(18), 8129; https://doi.org/10.3390/su17188129 - 10 Sep 2025
Viewed by 824
Abstract
Rehabilitation plans are based on pavement condition assessments, which are crucial to modern pavement management systems. However, some of the disadvantages of conventional approaches for road maintenance and repair include the time consumption, high costs, visual errors, seasonal limitations, and low accuracy. Continuous [...] Read more.
Rehabilitation plans are based on pavement condition assessments, which are crucial to modern pavement management systems. However, some of the disadvantages of conventional approaches for road maintenance and repair include the time consumption, high costs, visual errors, seasonal limitations, and low accuracy. Continuous and efficient pavement monitoring is essential, necessitating reliable equipment that can function in a variety of weather and traffic conditions. UAVs offer a practical and eco-friendly alternative for tasks including road inspections, dam monitoring, and the production of 3D ground models and orthophotos. They are more affordable, accessible, and safe than traditional field surveys, and they reduce the environmental effects of pavement management by using less fuel and producing less greenhouse gas emissions. This study uses UAV technology in conjunction with ground control points (GCPs) to assess the kind and amount of damage in flexible pavements. Vertical photogrammetric mapping was utilized to produce 3D road models, which were then processed and analyzed using Agisoft Photoscan (Metashape Professional (64 bit)) software. The sorts of fractures, patch areas, and rut depths on pavement surfaces may be accurately identified and measured thanks to this technique. When compared to field exams, the findings demonstrated an outstanding accuracy with errors of around 3.54 mm in the rut depth, 4.44 cm2 for patch and pothole areas, and a 96% accuracy rate in identifying cracked locations and crack varieties. This study demonstrates how adding GCPs may enhance the UAV image accuracy, particularly in challenging weather and traffic conditions, and promote sustainable pavement management strategies by lowering carbon emissions and resource consumption. Full article
Show Figures

Figure 1

23 pages, 7556 KB  
Article
On-Site Monitoring and a Hybrid Prediction Method for Noise Impact on Sensitive Buildings near Urban Rail Transit
by Yanmei Cao, Yefan Geng, Jianguo Chen and Jiangchuan Ni
Buildings 2025, 15(17), 3227; https://doi.org/10.3390/buildings15173227 - 7 Sep 2025
Viewed by 807
Abstract
The environmental noise impact on sensitive buildings and residents, generated by urban rail transit systems, has attracted increasing attention from the public and various levels of management. Owing to the diversity of building types and the complexity of noise propagation paths, the accurate [...] Read more.
The environmental noise impact on sensitive buildings and residents, generated by urban rail transit systems, has attracted increasing attention from the public and various levels of management. Owing to the diversity of building types and the complexity of noise propagation paths, the accurate prediction of noise levels adjacent to structures through traditional experimental or empirical formula-based methods is challenging. In this paper, on-site multi-dimensional noise monitoring of the noise source affecting the sensitive buildings was first carried out, and a hybrid prediction method combining normative formulas, numerical simulations, and experimental research is proposed and validated. This approach effectively addresses the shortcomings of traditional prediction methods in terms of source strength determination, propagation path distribution, and accuracy of results. The results show that, while predicting or assessing the noise impact on sensitive buildings and interior residents, it is important to properly consider the impact of background noise (such as road traffic) as well as vibration radiation noise of bridge structures. The predicted results obtained by using this method closely match the measured results, with errors controlled within 3 dB(A). The noise prediction error in front of buildings is controlled within 2 dB(A), fully meeting the requirements for environmental noise assessment. Full article
Show Figures

Figure 1

17 pages, 2128 KB  
Article
Vision-Based Highway Lane Extraction from UAV Imagery: A Deep Learning and Geometric Constraints Approach
by Jin Wang, Guangjun He, Xiuwang Dai, Feng Wang and Yanxin Zhang
Electronics 2025, 14(17), 3554; https://doi.org/10.3390/electronics14173554 - 6 Sep 2025
Viewed by 607
Abstract
The rapid evolution of unmanned aerial vehicle (UAV) technology and low-altitude economic development have propelled drone applications in critical infrastructure monitoring, particularly in intelligent transportation systems where real-time aerial image processing has emerged as a pressing requirement. We address the pivotal challenge of [...] Read more.
The rapid evolution of unmanned aerial vehicle (UAV) technology and low-altitude economic development have propelled drone applications in critical infrastructure monitoring, particularly in intelligent transportation systems where real-time aerial image processing has emerged as a pressing requirement. We address the pivotal challenge of highway lane extraction from low-altitude UAV perspectives by applying a novel three-stage framework. This framework consists of (1) a deep learning-based semantic segmentation module that employs an enhanced STDC network with boundary-aware loss for precise detection of roads and lane markings; (2) an optimized polynomial fitting algorithm incorporating iterative classification and adaptive error thresholds to achieve robust lane marking consolidation; and (3) a global optimization module designed for context-aware lane generation. Our methodology demonstrates superior performance with 94.11% F1-score and 93.84% IoU, effectively bridging the technical gap in UAV-based lane extraction while establishing a reliable foundation for advanced traffic monitoring applications. Full article
Show Figures

Figure 1

20 pages, 3410 KB  
Article
Model Development for the Real-World Emission Factor Measurement of On-Road Vehicles Under Heterogeneous Traffic Conditions: An Empirical Analysis in Shanghai
by Yu Liu, Wenwen Jiang, Xiaoqiang Zhang, Tsehaye Adamu Andualem, Ping Wang and Ying Liu
Sustainability 2025, 17(17), 8014; https://doi.org/10.3390/su17178014 - 5 Sep 2025
Viewed by 881
Abstract
Global warming is attributed to anthropogenic emissions of CO2 and the contribution from the transport sector is significant. Estimating on-road vehicle CO2 emission factors is essential for guiding carbon-reduction efforts in transportation. In order to accurately calculate carbon emission factors from [...] Read more.
Global warming is attributed to anthropogenic emissions of CO2 and the contribution from the transport sector is significant. Estimating on-road vehicle CO2 emission factors is essential for guiding carbon-reduction efforts in transportation. In order to accurately calculate carbon emission factors from vehicles, this study built a multi-scenario model for open, semi-enclosed, and enclosed road environments based on Fick’s second law and the law of conservation of mass. During the model optimization phase, it was found that the model’s applicability domain effectively encompassed most urban roadway scenarios, making it suitable for estimating urban traffic CO2 emissions. The spatiotemporal heterogeneity analysis of field measurements indicated that this method can effectively distinguish variations in CO2 emission factors across different road types and time periods. The method proposed in this study offers an effective solution for the real-time monitoring of large-scale on-road vehicle carbon emissions. Full article
Show Figures

Figure 1

Back to TopTop