Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = riverine heat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 18443 KiB  
Article
Revealing Land-Use Dynamics on Thermal Environment of Riverine Cities Under Climate Variability Using Remote Sensing and Geospatial Techniques
by Nazia Iftakhar, Fakhrul Islam, Mohammad Izhar Hussain, Muhammad Nasar Ahmad, Jinwook Lee, Nazir Ur Rehman, Saleh Qaysi, Nassir Alarifi and Youssef M. Youssef
ISPRS Int. J. Geo-Inf. 2025, 14(1), 13; https://doi.org/10.3390/ijgi14010013 - 31 Dec 2024
Cited by 4 | Viewed by 1576
Abstract
Urbanized riverine cities in southern Asian developing countries face significant challenges in understanding the spatiotemporal thermal impacts of land use/land cover (LULC) changes driven by rapid urbanization and climatic variability. While previous studies have investigated factors influencing land surface temperature (LST) variations, gaps [...] Read more.
Urbanized riverine cities in southern Asian developing countries face significant challenges in understanding the spatiotemporal thermal impacts of land use/land cover (LULC) changes driven by rapid urbanization and climatic variability. While previous studies have investigated factors influencing land surface temperature (LST) variations, gaps persist in integrating Landsat imagery (7 and 8), meteorological data, and Geographic Information System (GIS) tools to evaluate the thermal effects of specific LULC types, including cooling and warming transitions, and their influence on air temperature under variable precipitation patterns. This study investigates LST variations in Islamabad, Pakistan, from 2000 to 2020 using quantile classification at three intervals (2000, 2010, 2020). The thermal contributions of each LULC type across the LST-based temperature classes were analyzed using the Land Contribution Index (LCI). Finally, Warming and Cooling Transition (WCT) maps were generated by intersecting LST classes with 2000 as the baseline. Results indicated a rise in LST from 32.39 °C in 2000 to 45.63 °C in 2020. The negative LCI values revealed that vegetation and water bodies in lower temperature zones (Ltc_1 to Ltc_3) contributed to cooling effects, while positive LCI values in built-up and bare land areas in higher temperature zones (Ltc_5–Ltc_7) exhibited warming effects. The WCT map showed a general warming trend (cold-to-hot type) from 2000 to 2020, particularly in newly urbanized areas due to a 49.63% population increase, while cooling effects (hot-to-cold type) emerged in the newly developed agricultural lands with a 46.46% rise in vegetation. The mean annual air temperature gap with LST narrowed from 11.55 °C in 2000 to 2.28 °C in 2020, reflecting increased precipitation due to increasing yearly rainfall from 982.88 mm in 2000 to 1365.47 mm in 2020. This change also coincided with an expansion of water bodies from 2.82 km2 in 2000 to 6.35 km2 in 2020, impacting the local climate and hydrology. These findings highlight the importance of green spaces and water management to mitigate urban heat and improve ecological health. Full article
Show Figures

Figure 1

25 pages, 9978 KiB  
Article
Feasibility of Urban-Based Climate Change Adaptation Strategies in Urban Centers of Southwest Ethiopia: From Local Climate Action Perspective
by Tesfaye Dessu Geleta, Diriba Korecha Dadi, Weyessa Garedew and Adefires Worku
Atmosphere 2024, 15(5), 595; https://doi.org/10.3390/atmos15050595 - 14 May 2024
Cited by 1 | Viewed by 2328
Abstract
This study identified the practices of adaptation strategies to climate change in Jimma, Bedelle, Bonga, and Sokorru urban centers using a survey of 384 households, 55 key informant interviews, 4 focus group discussions, and field observations. A cross-sectional study design was employed from [...] Read more.
This study identified the practices of adaptation strategies to climate change in Jimma, Bedelle, Bonga, and Sokorru urban centers using a survey of 384 households, 55 key informant interviews, 4 focus group discussions, and field observations. A cross-sectional study design was employed from 2019 to 2021. The adaptive capacity of municipalities to reduce climate extreme events was rated as poor by the majority (51%), mostly reactive measures (76%). The climate hazards identified in four urban centers were riverine and flash floods, urban heat waves, landslides, and windstorms. The urban households practiced lifestyle modification, reduce paved surfaces, the use of air conditioner, planting trees, and multiple windows. The adaptation strategies practiced by municipalities include the relocation of prone areas, the support of basic amenities, the construction of protection walls, diversion ditches, the clearance of waterways and rivers, greenery, and park development. The adaptation actions were constrained by a lack of awareness, commitment, cooperation and coordination, adaptive capacity, and participation. Gray/physical infrastructures (costly but important) as adaptation actions were hampered by the low municipal capacity. We recommend that urban authorities should incorporate climate change adaptation strategies into urban planning and development proactively to ensure future resilient climate smart urban centers of southwest Ethiopia. Full article
Show Figures

Figure 1

24 pages, 10403 KiB  
Article
Spatio-Temporal Variation in Landforms and Surface Urban Heat Island in Riverine Megacity
by Namita Gorai, Jatisankar Bandyopadhyay, Bijay Halder, Minhaz Farid Ahmed, Altaf Hossain Molla and Thomas M. T. Lei
Sustainability 2024, 16(8), 3383; https://doi.org/10.3390/su16083383 - 18 Apr 2024
Cited by 4 | Viewed by 2369
Abstract
Rapid urbanization and changing climatic procedures can activate the present surface urban heat island (SUHI) effect. An SUHI was considered by temperature alterations among urban and rural surroundings. The urban zones were frequently warmer than the rural regions because of population pressure, urbanization, [...] Read more.
Rapid urbanization and changing climatic procedures can activate the present surface urban heat island (SUHI) effect. An SUHI was considered by temperature alterations among urban and rural surroundings. The urban zones were frequently warmer than the rural regions because of population pressure, urbanization, vegetation insufficiency, industrialization, and transportation systems. This investigation analyses the Surface-UHI (SUHI) influence in Kolkata Municipal Corporation (KMC), India. Growing land surface temperature (LST) may cause an SUHI and impact ecological conditions in urban regions. The urban thermal field variation index (UTFVI) served as a qualitative and quantitative barrier to the SUHI susceptibility. The maximum likelihood approach was used in conjunction with supervised classification techniques to identify variations in land use and land cover (LULC) over a chosen year. The outcomes designated a reduction of around 1354.86 Ha, 653.31 Ha, 2286.9 Ha, and 434.16 Ha for vegetation, bare land, grassland, and water bodies, correspondingly. Temporarily, from the years 1991–2021, the built-up area increased by 4729.23 Ha. The highest LST increased by around 7.72 °C, while the lowest LST increased by around 5.81 °C from 1991 to 2021. The vegetation index and LST showed a negative link, according to the correlation analyses; however, the built-up index showed an experimentally measured positive correlation. This inquiry will compel the administration, urban planners, and stakeholders to observe humanistic activities and thus confirm sustainable urban expansion. Full article
(This article belongs to the Special Issue Regional Climate Change and Application of Remote Sensing)
Show Figures

Figure 1

13 pages, 6390 KiB  
Article
Molecular Dynamics Simulation Study on Adsorption Characteristics of Illite for Hg2+
by Zhengchao Guo, Biao Wang and Xin Tang
Atmosphere 2023, 14(10), 1503; https://doi.org/10.3390/atmos14101503 - 28 Sep 2023
Cited by 1 | Viewed by 1604
Abstract
The Three Gorges Reservoir area of the Yangtze River has formed vast riverine fallout zones as a result of its periodic water storage and flood discharge operations, and the main constituents of this area are quaternary loose clays. It is important to study [...] Read more.
The Three Gorges Reservoir area of the Yangtze River has formed vast riverine fallout zones as a result of its periodic water storage and flood discharge operations, and the main constituents of this area are quaternary loose clays. It is important to study the microscopic characteristics of clay minerals in these fallout zones and their adsorption properties of Hg2+ to guide the environmental safety of the fallout zones in the Three Gorges Reservoir area. In this context, the authors of this paper used X-ray diffraction (XRD) experiments to reveal the main clay mineral compositions in the fallout zones and then constructed the molecular model structures of the clay minerals based on molecular dynamics theory and studied the adsorption characteristics of these clay minerals with Hg2+ in depth. The results show that the main clay minerals in the Three Gorges Reservoir area fallout zone include illite, illite-mixed layer and green-mixed layer, in which the content of illite ranges from 21% to 54%. Taking illite as the study object, the heat of adsorption of Hg2+ in illite ranged from 14.83 kJ·mol−1 to 31.92 kJ·mol−1, which is a physical adsorption. The heat of adsorption was mainly affected by the water content and had little relationship with temperature. With the gradual increase in water content, the heat of adsorption gradually decreases. The adsorption amount of Hg2+, on the other hand, is jointly affected by water content and temperature and decreases with the increase in water content and temperature; under natural environmental conditions (P = 0.1 Mpa), the adsorption characteristics of Hg2+ in illite change with the change in water content. When the water content was between 0% and 6.95%, the increase in water content led to an increase in the interlayer spacing of illite, and the adsorption of Hg2+ in illite was in a monolayer state, with the adsorption peaks located from 4.5~5.5 Å. When the water content increased to 6.95% to 13.90%, the layer spacing of illite reached the maximum, and the adsorption of Hg2+ in illite transitioned from a monolayer to a bilayer, with the adsorption peaks located between 5 Å and 9~10 Å, respectively. When the water content was further increased to 13.90% to 20.85%, the increase in water content instead led to a slight decrease in the layer spacing of illite, showing a tendency of transitioning from a bilayer to a monolayer adsorption layer, which at the same time changed the number of adsorption layers of Hg2+; the study also revealed that the interaction between illite and Hg2+ was regulated by van der Waals and Coulomb forces, whereas the increase in temperature promoted the Hg2+ +diffusion, and an increase in water content inhibits the diffusion of Hg2+. In summary, these findings provide valuable theoretical support for solving the problem of Hg2+ pollution in the Three Gorges Reservoir Decline Zone. Full article
(This article belongs to the Special Issue Recent Developments in Carbon Emissions Reduction Approaches)
Show Figures

Figure 1

21 pages, 10286 KiB  
Article
The Effects of Discharge Changes in Siberian Rivers on Arctic Sea-Ice Melting
by Didi Hu, Min Xu, Shichang Kang, Jinlei Chen, Chengde Yang and Qian Yang
Remote Sens. 2023, 15(14), 3477; https://doi.org/10.3390/rs15143477 - 10 Jul 2023
Cited by 4 | Viewed by 2280
Abstract
Arctic river discharge is one of the important factors affecting sea-ice melting of Arctic shelf seas. However, such effects have not been given much attention. In this study, the changes in discharge of the Ob, Yenisei, and Lena Rivers and the sea ice [...] Read more.
Arctic river discharge is one of the important factors affecting sea-ice melting of Arctic shelf seas. However, such effects have not been given much attention. In this study, the changes in discharge of the Ob, Yenisei, and Lena Rivers and the sea ice of the Kara and Laptev Seas during 1979–2019 were analyzed. Substantial increases in discharge and heat from the discharge and decreases in sea ice concentration (SIC) were detected. The effects of changes in discharge and riverine heat on sea ice changes were investigated. The results showed that the influence of the discharge, accumulated discharge, heat, and accumulated heat on SIC mainly occurred at the beginning and final stages of sea-ice melting. Discharge accelerated the melting of sea ice by increasing the absorption of solar radiation as the impurities contained in the discharge washed to the sea ice surface during the initial and late stages of sea-ice melting. Changes in cumulative riverine heat from May to September greatly contributed to the SIC changes in the Kara and Laptev Seas at the seasonal scale. The SIC reduced by 1% when the cumulative riverine heat increased by 213.2 × 106 MJ, 181.5 × 106 MJ, and 154.6 × 106 MJ in the Lena, Yenisei, and Ob Rivers, respectively, from May to September. However, even in the plume coverage areas in the Kara and Laptev Seas, discharge changes from the three rivers had a limited contribution to the reduction in SIC at annual scales. This work is helpful for understanding the changes in Arctic sea ice. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

16 pages, 3411 KiB  
Article
Seasonal Changes in Upper Thermal Tolerances of Freshwater Thai Fishes
by Sampan Tongnunui, Treerat Sooksawat, Charoonroj Chotwiwatthanakun, Weerayuth Supiwong, Amnuay Wattanakornsiri and F. W. H. Beamish
Water 2023, 15(2), 350; https://doi.org/10.3390/w15020350 - 14 Jan 2023
Cited by 2 | Viewed by 3396
Abstract
Seasonal change inferred to climate change inevitably influences Critical thermal maximum (CTmax) of riverine fishes. In this study, we investigated CTmax as thermal tolerance for four common riverine fishes, i.e., Danio regina, Channa gachua, Rasbora caudimaculata and Mystacoleucus chilopterus, in the Kwae Noi [...] Read more.
Seasonal change inferred to climate change inevitably influences Critical thermal maximum (CTmax) of riverine fishes. In this study, we investigated CTmax as thermal tolerance for four common riverine fishes, i.e., Danio regina, Channa gachua, Rasbora caudimaculata and Mystacoleucus chilopterus, in the Kwae Noi river system in western Thailand. The acute thermal tolerance was lower in the wet season (mean river temperature ∼25 °C) and higher in the dry season (mean river temperature ∼23 °C) with medians of wet season-CTmax for those four fishes of 35.3 ± 0.4, 36.2 ± 0.5, 37.3 ± 0.5 and 37.5 ± 0.6 °C, respectively, and high values of dry season-CTmax of 37.4 ± 0.5, 38.3 ± 0.5, 38.7 ± 0.7 and 39.1 ± 0.5 °C, respectively. The variations of CTmax for all of the four species in this study, throughout the wet and dry seasons, attribute to their seasonal plasticity in response to the dynamics of thermal stress. Under climate variability and climate change with increasing the higher temperatures of air and river, and altering the habitat, R. caudimaculata and M. chilopterus had higher capacities to tolerate the acute heat stress across wet and dry seasons. Full article
Show Figures

Figure 1

31 pages, 15404 KiB  
Article
The Large Dendritic Morphologies in the Antoniadi Crater (Mars) and Their Potential Astrobiological Significance
by Fabio Vittorio De Blasio
Geosciences 2022, 12(2), 53; https://doi.org/10.3390/geosciences12020053 - 24 Jan 2022
Cited by 3 | Viewed by 3944
Abstract
Mars has held large amounts of running and standing water throughout its history, as evidenced by numerous morphologies attributed to rivers, outflow channels, lakes, and possibly an ocean. This work examines the crater Antoniadi located in the Syrtis Major quadrangle. Some parts of [...] Read more.
Mars has held large amounts of running and standing water throughout its history, as evidenced by numerous morphologies attributed to rivers, outflow channels, lakes, and possibly an ocean. This work examines the crater Antoniadi located in the Syrtis Major quadrangle. Some parts of the central area of the crater exhibit giant polygonal mud cracks, typical of endured lake bottom, on top of which a dark, tens of kilometers-long network of dendritic (i.e., arborescent) morphologies emerges, at first resembling the remnant of river networks. The network, which is composed of tabular sub-units, is in relief overlying hardened mud, a puzzling feature that, in principle, could be explained as landscape inversion resulting from stronger erosion of the lake bottom compared to the endured crust of the riverine sediments. However, the polygonal mud cracks have pristine boundaries, which indicate limited erosion. Furthermore, the orientation of part of the network is the opposite of what the flow of water would entail. Further analyses indicate the similarity of the dendrites with controlled diffusion processes rather than with the river network, and the presence of morphologies incompatible with river, alluvial, or underground sapping processes, such as overlapping of branches belonging to different dendrites or growth along fault lines. An alternative explanation worth exploring due to its potential astrobiological importance is that the network is the product of ancient reef-building microbialites on the shallow Antoniadi lake, which enjoyed the fortunate presence of a heat source supplied by the Syrtis Major volcano. The comparison with the terrestrial examples and the dating of the bottom of the crater (formed at 3.8 Ga and subjected to a resurfacing event at 3.6 Ga attributed to the lacustrine drape) contribute to reinforcing (but cannot definitely prove) the scenario of microbialitic origin for dendrites. Thus, the present analysis based on the images available from the orbiters cannot be considered proof of the presence of microbialites in ancient Mars. It is concluded that the Antoniadi crater could be an interesting target for the research of past Martian life in future landing missions. Full article
Show Figures

Figure 1

31 pages, 3784 KiB  
Article
Marine Heatwaves in Siberian Arctic Seas and Adjacent Region
by Elena Golubeva, Marina Kraineva, Gennady Platov, Dina Iakshina and Marina Tarkhanova
Remote Sens. 2021, 13(21), 4436; https://doi.org/10.3390/rs13214436 - 4 Nov 2021
Cited by 23 | Viewed by 3743
Abstract
We used a satellite-derived global daily sea surface temperature (SST) dataset with resolution 0.25 × 0.25 to analyze interannual changes in the Arctic Shelf seas from 2000 to 2020 and to reveal extreme events in SST distribution. Results show that the second [...] Read more.
We used a satellite-derived global daily sea surface temperature (SST) dataset with resolution 0.25 × 0.25 to analyze interannual changes in the Arctic Shelf seas from 2000 to 2020 and to reveal extreme events in SST distribution. Results show that the second decade of the 21st century for the Siberian Arctic seas turned significantly warmer than the first decade, and the increase in SST in the Arctic seas could be considered in terms of marine heatwaves. Analyzing the spatial distribution of heatwaves and their characteristics, we showed that from 2018 to 2020, the surface warming extended to the northern deep-water region of the Laptev Sea 75 to 81N. To reveal the most important forcing for the northward extension of the marine heatwaves, we used three-dimensional numerical modeling of the Arctic Ocean based on a sea-ice and ocean model forced by the NCEP/NCAR Reanalysis. The simulation of the Arctic Ocean variability from 2000 to 2020 showed marine heatwaves and their increasing intensity in the northern region of the Kara and Laptev seas, closely connected to the disappearance of ice cover. A series of numerical experiments on the sensitivity of the model showed that the main factors affecting the Arctic sea-ice loss and the formation of anomalous temperature north of the Siberian Arctic seas are equally the thermal and dynamic effects of the atmosphere. Numerical modeling allows us to examine the impact of other physical mechanisms as well. Among them were the state of the ocean and winter sea ice, the formation of fast ice polynias and riverine heat influx. Full article
Show Figures

Figure 1

18 pages, 1203 KiB  
Article
Polycyclic Aromatic Hydrocarbons in the Estuaries of Two Rivers of the Sea of Japan
by Tatiana Chizhova, Yuliya Koudryashova, Natalia Prokuda, Pavel Tishchenko and Kazuichi Hayakawa
Int. J. Environ. Res. Public Health 2020, 17(17), 6019; https://doi.org/10.3390/ijerph17176019 - 19 Aug 2020
Cited by 10 | Viewed by 3224
Abstract
The seasonal polycyclic aromatic hydrocarbon (PAH) variability was studied in the estuaries of the Partizanskaya River and the Tumen River, the largest transboundary river of the Sea of Japan. The PAH levels were generally low over the year; however, the PAH concentrations increased [...] Read more.
The seasonal polycyclic aromatic hydrocarbon (PAH) variability was studied in the estuaries of the Partizanskaya River and the Tumen River, the largest transboundary river of the Sea of Japan. The PAH levels were generally low over the year; however, the PAH concentrations increased according to one of two seasonal trends, which were either an increase in PAHs during the cold period, influenced by heating, or a PAH enrichment during the wet period due to higher run-off inputs. The major PAH source was the combustion of fossil fuels and biomass, but a minor input of petrogenic PAHs in some seasons was observed. Higher PAH concentrations were observed in fresh and brackish water compared to the saline waters in the Tumen River estuary, while the PAH concentrations in both types of water were similar in the Partizanskaya River estuary, suggesting different pathways of PAH input into the estuaries. The annual riverine PAH mass flux amounted to 0.028 t/year and 2.5 t/year for the Partizanskaya River and the Tumen River, respectively. The riverine PAH contribution to the coastal water of the Sea of Japan depends on the river discharge rather than the PAH level in the river water. Full article
Show Figures

Figure 1

12 pages, 2264 KiB  
Article
Part–Whole Relations: New Insights about the Dynamics of Complex Geochemical Riverine Systems
by Caterina Gozzi, Roberta Sauro Graziano and Antonella Buccianti
Minerals 2020, 10(6), 501; https://doi.org/10.3390/min10060501 - 30 May 2020
Cited by 13 | Viewed by 2339
Abstract
Nature is often characterized by systems that are far from thermodynamic equilibrium, and rivers are not an exception for the Earth’s critical zone. When the chemical composition of stream waters is investigated, it emerges that riverine systems behave as complex systems. This means [...] Read more.
Nature is often characterized by systems that are far from thermodynamic equilibrium, and rivers are not an exception for the Earth’s critical zone. When the chemical composition of stream waters is investigated, it emerges that riverine systems behave as complex systems. This means that the compositions have properties that depend on the integrity of the whole (i.e., the composition with all the chemical constituents), properties that arise thanks to the innumerable nonlinear interactions between the elements of the composition. The presence of interconnections indicates that the properties of the whole cannot be fully understood by examining the parts of the system in isolation. In this work, we propose investigating the complexity of riverine chemistry by using the CoDA (Compositional Data Analysis) methodology and the performance of the perturbation operator in the simplex geometry. With riverine bicarbonate considered as a key component of regional and global biogeochemical cycles and Ca2+ considered as mostly related to the weathering of carbonatic rocks, perturbations were calculated for subsequent couples of compositions after ranking the data for increasing values of the log-ratio ln(Ca2+/HCO3). Numerical values were analyzed by using robust principal component analysis and non-parametric correlations between compositional parts (heat map) associated with distributional and multifractal methods. The results indicate that HCO3, Ca2+, Mg2+ and Sr2+ are more resilient, thus contributing to compositional changes for all the values of ln(Ca2+/HCO3) to a lesser degree with respect to the other chemical elements/components. Moreover, the complementary cumulative distribution function of all the sequences tracing the compositional change and the nonlinear relationship between the Q-th moment versus the scaling exponents for each of them indicate the presence of multifractal variability, thus revealing scaling properties of the fluctuations. Full article
(This article belongs to the Special Issue Elemental and Isotope Geochemistry of the Earth’s Critical Zone)
Show Figures

Graphical abstract

13 pages, 4805 KiB  
Article
Analysis of VIA and EbA in a River Bank Erosion Prone Area of Bangladesh Applying DPSIR Framework
by Syed Hafizur Rahman, B. M. Refat Faisal, Md. Towfiqur Rahman and Toiaba Binta Taher
Climate 2016, 4(4), 52; https://doi.org/10.3390/cli4040052 - 14 Oct 2016
Cited by 10 | Viewed by 7645
Abstract
This study aims to set up a comprehensive approach to the Vulnerability and Impact Assessment (VIA) of river erosion and to suggest Ecosystem-based Adaptation (EbA) practices. Based on the analysis of vulnerability using the Driver-Pressure-State-Impact-Response (DPSIR) framework, this paper discusses some of the [...] Read more.
This study aims to set up a comprehensive approach to the Vulnerability and Impact Assessment (VIA) of river erosion and to suggest Ecosystem-based Adaptation (EbA) practices. Based on the analysis of vulnerability using the Driver-Pressure-State-Impact-Response (DPSIR) framework, this paper discusses some of the significant climatic (rainfall pattern, temperature, seasonal drift, cold wave and heat wave) and non-climatic (river erosion, repetitive death of field crops and agrochemicals) forces in the Kazipur Upazila (Sirajganj District)—a river erosion-prone area of Bangladesh. Both primary (Key Informants Interview, Household Survey, and Focus Group Discussion) and secondary (climatic, literature review) data have been used in revealing the scenario of climatic stress. The analysis revealed a slightly increasing trend of mean annual temperature, and a decreasing trend of total annual rainfall from 1981 to 2015, which have been supported by people’s perception. This study found that river erosion, the increase of temperature and the late arrival of monsoon rain, excessive monsoon rainfall, high use of agrochemicals, and flow alterations are major drivers in the riverine ecosystem. These drivers are creating pressures on agricultural land, soil fertility, water availability and livelihood patterns of affected communities. Hence, floating bed cultivation, integrated pest management, use of cover crops, reforestation, the introduction of an agro-weather forecasting system, and a new variety of flood tolerant species have been suggested as potential EbA to cope with river bank erosion and to increase the capacity of the affected ecosystem. Full article
Show Figures

Figure 1

Back to TopTop