Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = riparian hyporheic zone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3628 KiB  
Article
Influence of Dissolved Oxygen and Temperature on Nitrogen Transport and Reaction in Point Bars of River
by Xunchuan Song, Ying Liu, Jinghong Feng, Defu Liu, Qilin Yang, Ziyan Lu and Huazhen Xiao
Sustainability 2024, 16(18), 8208; https://doi.org/10.3390/su16188208 - 20 Sep 2024
Cited by 2 | Viewed by 1780
Abstract
Point bars are crucial elements of river systems, significantly enhancing the nitrogen cycle in riparian zones by facilitating hyporheic exchange between surface water and riparian zones. This study investigated the impact of dissolved oxygen (DO) concentration and temperature on nitrogen transport and reactions [...] Read more.
Point bars are crucial elements of river systems, significantly enhancing the nitrogen cycle in riparian zones by facilitating hyporheic exchange between surface water and riparian zones. This study investigated the impact of dissolved oxygen (DO) concentration and temperature on nitrogen transport and reactions in river point bars. A two-dimensional coupled surface water–groundwater model was developed to analyze nitrogen distribution, variations, and reaction rates in rivers with point bars. The model considered three chemical reactions controlling nitrogen transformation: aerobic respiration, nitrification, and denitrification, with DO and temperature as independent variables. The results indicated that DO variations have a limited effect on solute migration depth, whereas increased temperature reduces solute migration depth. At surface water DO concentrations of 0.1, 0.2, and 0.4 mol/m3, nitrate removal in the riparian zone was 0.022, 0.0064, and 0.0019 mol/m, respectively. At riparian temperatures of 5 °C, 15 °C, and 25 °C, nitrate removal was 0.012, 0.041, and 0.16 mol/m, respectively. Nitrogen removal is more sensitive to temperature variations than to changes in DO concentration. In this research, the decrease in DO concentrations and the temperature increase greatly enhanced the riparian zone’s denitrification effect. This study improves our understanding of how riparian zones impact nitrogen cycling under various environmental conditions. Full article
Show Figures

Figure 1

17 pages, 4637 KiB  
Article
Occurrence Characteristics of Inorganic Nitrogen in Groundwater in Silty-Clay Riparian Hyporheic Zones under Tidal Action: A Case Study of the Jingzi River in Shanghai, China
by Yi Cai, Jingwen Xing, Ruoyao Huang, Xike Ruan, Nianqing Zhou and Dongze Yi
Appl. Sci. 2022, 12(15), 7704; https://doi.org/10.3390/app12157704 - 30 Jul 2022
Cited by 2 | Viewed by 1841
Abstract
For comprehending the effect of tidal action on nitrogen cycle in silty-clay riparian hyporheic zones, the synchronous monitoring of water level and water quality was carried out along a test transect during a spring tidal period from 21 to 23 October 2021. Moreover, [...] Read more.
For comprehending the effect of tidal action on nitrogen cycle in silty-clay riparian hyporheic zones, the synchronous monitoring of water level and water quality was carried out along a test transect during a spring tidal period from 21 to 23 October 2021. Moreover, the permeability and chemical composition of soil samples from drilled holes were measured. Subsequently, the spatiotemporal variation of inorganic nitrogen concentrations in the groundwater in the riparian hyporheic zone was investigated during the study period, and the potential reason was discussed. It is shown that the delayed response time of groundwater level in the silty-clay riparian zone to the tide-driven fluctuation of the river stage increased with distance from the shore and reached 3.0 h at the position 3.83 m away from the shore. The continuous infiltration of the river water under tide action contributed to the aerobic and neutral riparian hyporheic zone conductive to nitrification. Within 4 m away from the bank, the dominant inorganic nitrogen form changed from NO3-N to NH4+-N, upon increasing the distance from the bank. Additionally, the removal of nitrogen could occur in the riparian hyporheic zone with aerobic and neutral environment under the conjoint control of nitrification, microbial assimilation, and aerobic denitrification. Full article
(This article belongs to the Special Issue Advances in Soil Pollution and Geotechnical Environment)
Show Figures

Figure 1

17 pages, 3659 KiB  
Article
Feasible Ways Promoting Nitrate Removal in Riparian Zone Downstream of a Regulated River
by Dongsheng Liu, Bei Zhu, Haoyu Zhu and Jian Zhao
Water 2020, 12(7), 2054; https://doi.org/10.3390/w12072054 - 20 Jul 2020
Cited by 1 | Viewed by 2389
Abstract
Set in the downstream riparian zone of Xin’an River Dam, this paper established a 2D transversal coupling flow and solute transport and reaction model by verification within situ groundwater level and temperature. The denitrifying methods and principles in the riparian zone from the [...] Read more.
Set in the downstream riparian zone of Xin’an River Dam, this paper established a 2D transversal coupling flow and solute transport and reaction model by verification within situ groundwater level and temperature. The denitrifying methods and principles in the riparian zone from the perspective of hyporheic exchange were explored, which provided a basis for the engineering techniques for river ecological restoration. Our studies have shown that under the condition of water level fluctuation, a biological method such as adding denitrifying bacteria biomass to a fixed degree (the same below) can greatly increase the denitrifying rate (1.52 g/d) in the riparian zone; chemical methods such as adding organic carbon into the surface water or groundwater can increase the total riparian nitrate removal (8.00–8.18 g) and its efficiency (19.5–20.0%) to a great extent; hydrogeological methods such as silt cleaning of the aquifer surface or local pumping around the contaminated area can increase the total riparian nitrate removal (1.06–14.8 g) to some extent, but correspondingly reduce the denitrifying efficiency (0.95–1.4%); physical methods such as designing the bank form into gentle slope or concave shape can slightly increase the total riparian nitrate removal (0.22–0.52 g) and correspondingly improve the denitrifying efficiency (0.25–0.85%). At the application level of river ecological restoration, integrated adopting the above methods can make the riparian denitrifying effect “fast and good”. Full article
(This article belongs to the Special Issue Hydrochemical Characteristics of Groundwater)
Show Figures

Graphical abstract

28 pages, 5470 KiB  
Article
Dynamic Evapotranspiration Alters Hyporheic Flow and Residence Times in the Intrameander Zone
by James Kruegler, Jesus Gomez-Velez, Laura K. Lautz and Theodore A. Endreny
Water 2020, 12(2), 424; https://doi.org/10.3390/w12020424 - 5 Feb 2020
Cited by 4 | Viewed by 3943
Abstract
Hyporheic zones (HZs) influence biogeochemistry at the local reach scale with potential implication for water quality at the large catchment scale. The characteristics of the HZs (e.g., area, flux rates, and residence times) change in response to channel and aquifer physical properties, as [...] Read more.
Hyporheic zones (HZs) influence biogeochemistry at the local reach scale with potential implication for water quality at the large catchment scale. The characteristics of the HZs (e.g., area, flux rates, and residence times) change in response to channel and aquifer physical properties, as well as to transient perturbations in the stream–aquifer system such as floods and groundwater withdraws due to evapotranspiration (ET) and pumping. In this study, we use a numerical model to evaluate the effects of transient near-stream evapotranspiration (ET) on the area, exchange flux, and residence time (RT) of sinuosity-induced HZs modulated by regional groundwater flow (RGF). We found that the ET fluxes (up to 80 mm/day) consistently increased HZ area and exchange flux, and only increased RTs when the intensity of regional groundwater flow was low. Relative to simulations without ET, scenarios with active ET had more than double HZ area and exchange flux and about 20% longer residence times (as measured by the median of the residence time distribution). Our model simulations show that the drawdown induced by riparian ET increases the net flux of water from the stream to the nearby aquifer, consistent with field observations. The results also suggest that, along with ET intensity, the magnitude of the HZ response is influenced by the modulating effect of both gaining and losing RGF and the sensitivity of the aquifer to daily cycles of ET withdrawal. This work highlights the importance of representing near-stream ET when modeling sinuosity-induced hyporheic zones, as well as the importance of including riparian vegetation in efforts to restore the ecosystem functions of streams. Full article
(This article belongs to the Special Issue A Systems Approach for River and River Basin Restoration)
Show Figures

Figure 1

7 pages, 201 KiB  
Editorial
Groundwater–Surface Water Interactions: Recent Advances and Interdisciplinary Challenges
by Jörg Lewandowski, Karin Meinikmann and Stefan Krause
Water 2020, 12(1), 296; https://doi.org/10.3390/w12010296 - 19 Jan 2020
Cited by 69 | Viewed by 18176 | Correction
Abstract
The interactions of groundwater with surface waters such as streams, lakes, wetlands, or oceans are relevant for a wide range of reasons—for example, drinking water resources may rely on hydrologic fluxes between groundwater and surface water. However, nutrients and pollutants can also be [...] Read more.
The interactions of groundwater with surface waters such as streams, lakes, wetlands, or oceans are relevant for a wide range of reasons—for example, drinking water resources may rely on hydrologic fluxes between groundwater and surface water. However, nutrients and pollutants can also be transported across the interface and experience transformation, enrichment, or retention along the flow paths and cause impacts on the interconnected receptor systems. To maintain drinking water resources and ecosystem health, a mechanistic understanding of the underlying processes controlling the spatial patterns and temporal dynamics of groundwater–surface water interactions is crucial. This Special Issue provides an overview of current research advances and innovative approaches in the broad field of groundwater–surface water interactions. The 20 research articles and 1 communication of this Special Issue cover a wide range of thematic scopes, scales, and experimental and modelling methods across different disciplines (hydrology, aquatic ecology, biogeochemistry, environmental pollution) collaborating in research on groundwater–surface water interactions. The collection of research papers in this Special Issue also allows the identification of current knowledge gaps and reveals the challenges in establishing standardized measurement, observation, and assessment approaches. With regards to its relevance for environmental and water management and protection, the impact of groundwater–surface water interactions is still not fully understood and is often underestimated, which is not only due to a lack of awareness but also a lack of knowledge and experience regarding appropriate measurement and analysis approaches. This lack of knowledge exchange from research into management practice suggests that more efforts are needed to disseminate scientific results and methods to practitioners and policy makers. Full article
(This article belongs to the Special Issue Groundwater-Surface Water Interactions)
Back to TopTop