Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (159)

Search Parameters:
Keywords = rice herbicide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1659 KiB  
Article
Ricinus communis L. Leaf Extracts as a Sustainable Alternative for Weed Management
by Aline Mazoy Lopes, Lucas Kila Ribeiro, Maurício Ricardo de Melo Cogo, Lucas Mironuk Frescura, Marcelo Barcellos da Rosa, Alex Schulz, Flávio Dias Mayer, Ederson Rossi Abaide, Marcus Vinícius Tres and Giovani Leone Zabot
Sustainability 2025, 17(15), 6942; https://doi.org/10.3390/su17156942 - 30 Jul 2025
Viewed by 249
Abstract
Weeds pose a significant challenge to agricultural productivity, requiring control strategies that are both effective and environmentally sustainable. Therefore, this study evaluated the inhibitory potential of aqueous extracts from Ricinus communis L. leaves to manage the weeds Oryza sativa L. (weedy rice) and [...] Read more.
Weeds pose a significant challenge to agricultural productivity, requiring control strategies that are both effective and environmentally sustainable. Therefore, this study evaluated the inhibitory potential of aqueous extracts from Ricinus communis L. leaves to manage the weeds Oryza sativa L. (weedy rice) and Cyperus ferax. Extracts were obtained through pressurized liquid extraction using water as the solvent. Bioassays were conducted during pre- and post-emergence stages by foliar spraying 15 and 30 days after sowing (DAS). The effect of extraction time (1–30 min) on inhibitory efficacy was also assessed. Chemical profiles of the extracts were characterized using high-performance liquid chromatography. The extracts significantly inhibited seed germination, with suppression rates reaching 92.7%. Plant growth was also diminished, particularly with earlier treatments (at 15 DAS), resulting in reductions of up to 32% and 53% in shoot length, and 69% and 73% in total dry mass for O. sativa L. and C. ferax, respectively. Mortality rates of O. sativa L. and C. ferax reached 64% and 58%, respectively. Phenolic compounds were identified in the extracts, and higher concentrations were observed at shorter extraction times. These findings underscore the potential of R. communis L. leaf extracts as an ecologically sustainable alternative for weed management, providing an effective and natural approach that may reduce reliance on synthetic herbicides and mitigate their environmental impact. Full article
Show Figures

Figure 1

15 pages, 2312 KiB  
Article
The G311E Mutant Gene of MATE Family Protein DTX6 Confers Diquat and Paraquat Resistance in Rice Without Yield or Nutritional Penalties
by Gaoan Chen, Jiaying Han, Ziyan Sun, Mingming Zhao, Zihan Zhang, Shuo An, Muyu Shi, Jinxiao Yang and Xiaochun Ge
Int. J. Mol. Sci. 2025, 26(13), 6204; https://doi.org/10.3390/ijms26136204 - 27 Jun 2025
Viewed by 353
Abstract
Weeds present a pervasive challenge in agricultural fields. The integration of herbicide-resistant crops with chemical weed management offers an effective solution for sustainable weed control while reducing labor inputs, particularly in large-scale intensive farming systems. Consequently, the development of herbicide-resistant cultivars has emerged [...] Read more.
Weeds present a pervasive challenge in agricultural fields. The integration of herbicide-resistant crops with chemical weed management offers an effective solution for sustainable weed control while reducing labor inputs, particularly in large-scale intensive farming systems. Consequently, the development of herbicide-resistant cultivars has emerged as an urgent priority. In this study, we found that the G311E mutant gene of Arabidopsis MATE (multidrug and toxic compound extrusion) family transporter DTX6, designated DTX6m, confers robust resistance to bipyridyl herbicides paraquat and diquat in rice. DTX6m-overexpression lines exhibited marked resistance to these two herbicides, tolerating diquat concentrations up to 5 g/L, which is five-fold higher than the recommended field application dosage. Agronomic assessments demonstrated that grain yields of DTX6m-overexpressing plants were statistically equivalent to those of wild-type plants. Moreover, the plants displayed beneficial phenotypic changes, such as accelerated flowering and a slight reduction in height. Seed morphometric analysis indicated that in comparison with the wild-type control, DTX6m-transgenic lines exhibited altered grain dimensions while maintaining consistent 1000-grain weight. Nutritional assays further demonstrated that DTX6m increased the levels of free amino acids in seeds, while normal protein and starch contents were retained. Collectively, these results establish that DTX6m effectively boosts rice resistance to paraquat and diquat, validating DTX6m as a candidate gene for engineering plant herbicide resistance and also implying a potential role for DTX6m in amino acid homeostasis in plants. Full article
(This article belongs to the Special Issue Advanced Plant Molecular Responses to Abiotic Stresses)
Show Figures

Figure 1

15 pages, 6945 KiB  
Review
Integrated Weed Seed Impact Mills for Southeast Asian Rice Systems: Could They Aid Sustainable Weed Management?
by Leigh Vial, Jhoana Opeña and Jaquie Mitchell
Agronomy 2025, 15(6), 1333; https://doi.org/10.3390/agronomy15061333 - 29 May 2025
Viewed by 527
Abstract
Weed management is a persistent challenge in Southeast Asian rice production, particularly in direct-seeded rice (DSR), due to the diversity of weed species and variable field and environmental conditions that can compromise weed control, necessitating innovative solutions. An integrated weed seed impact mill [...] Read more.
Weed management is a persistent challenge in Southeast Asian rice production, particularly in direct-seeded rice (DSR), due to the diversity of weed species and variable field and environmental conditions that can compromise weed control, necessitating innovative solutions. An integrated weed seed impact mill (iWSIM) reduces weed seed banks by destroying weed seeds during the harvest process. This mixed study is the first to fully explore the applicability of iWSIM technology in Southeast Asian rice systems, focusing on both combine harvester and iWSIM specifications and operation, determinants of efficacy, and field and harvest conditions. Weed seed bank reduction with an iWSIM depends on several factors, including weed seed retention and subsequent capture by the combine at harvest, weed seed separation into the chaff fraction, and the iWSIM’s efficacy against weed seeds captured in the chaff fraction. Observations from Southeast Asia indicate variable seed retention among key weed species, presenting challenges for harvesting strategies and iWSIM effectiveness. To optimize the iWSIM efficacy, recommendations include larger fields to reduce the weed seed produced on bunds, achieving complete early-season weed control, lowering the harvest header height to about 15 cm to capture more weed seeds, cleaning mechanism adjustments to ensure weed seeds are retained in the chaff fraction, and greater combine harvester engine power to allow a lower header height and power the iWSIM. The estimated weed control benefits of the iWSIM should also be weighed against additional equipment operating costs. iWSIM technology holds promise as part of a sustainable solution for weed control in Southeast Asian rice, contingent upon further region-specific research and adaptation. Full article
Show Figures

Figure 1

13 pages, 1296 KiB  
Article
Economic Assessment of Herbicide Use in Rice Under Different Establishment Methods in Northwest India
by Navjot Singh Brar, Parminder Singh Sandhu, Anil Kumar, Prabjeet Singh and Simerjeet Kaur
Agrochemicals 2025, 4(2), 7; https://doi.org/10.3390/agrochemicals4020007 - 20 May 2025
Viewed by 903
Abstract
Large weed infestation is a major problem in dry direct-seeded rice (DSR). Chemical weed control serves as a crucial component for integrated weed management in DSR. Over the last decade, herbicide use has increased from 42 to 55%, and the worldwide contamination of [...] Read more.
Large weed infestation is a major problem in dry direct-seeded rice (DSR). Chemical weed control serves as a crucial component for integrated weed management in DSR. Over the last decade, herbicide use has increased from 42 to 55%, and the worldwide contamination of water resources and food by herbicides is a major health issue. In the present study, the use of herbicides in three different establishment methods of rice was examined with the objective to present and discuss the herbicide use pattern and cost of weed control. For this, a field-wide survey was conducted over an area of 165.4 ha in eight villages of the Tarn Taran District of Punjab, India. For two DSR methods, during the initial stage of crop growth, the weed infestation was reported to be less in moist fields sown with direct seeding (soil moisture in the field capacity stage) after pre-sowing irrigation (DSR-PSI). The herbicide use and cost of weed control under DSR-PSI conditions were similar to that of puddled transplanted rice, but were significantly lower than that of direct seeding in dry fields (rice seeds are sown in dry fields, and irrigation is applied immediately after sowing), i.e., DSR-IAS. Therefore, the DSR-PSI method of rice establishment can ensure minimum dependence on herbicides, as well as other benefits of direct seeding. Thus, there is a need to promote the DSR-PSI method over the DSR-IAS method among farmers in order to reduce herbicide use in DSR and ensure environmental safety. Full article
Show Figures

Figure 1

13 pages, 2914 KiB  
Article
Biochar Herbicide Protection Pods for Mitigating Herbicide Sensitivity in Tomato Plants
by Sandipan Sil, Fernanda Reolon de Souza, Bailey Bullard, Todd Mlsna and Te-Ming Tseng
Agronomy 2025, 15(5), 1188; https://doi.org/10.3390/agronomy15051188 - 14 May 2025
Viewed by 846
Abstract
Tomato is a major crop, and efforts are ongoing to enhance its resilience to biotic and abiotic stresses. Weed management remains a key challenge, prompting the search for sustainable alternatives to reduce the impact of excessive herbicide use. Biochar is a promising alternative, [...] Read more.
Tomato is a major crop, and efforts are ongoing to enhance its resilience to biotic and abiotic stresses. Weed management remains a key challenge, prompting the search for sustainable alternatives to reduce the impact of excessive herbicide use. Biochar is a promising alternative, as it enriches the soil, improves its water retention capacity, promotes its regeneration and increased fertility, delays nutrient leaching, and improves fertilizer use efficiency. This study aimed to investigate the efficiency of biochar use in mitigating stress caused by different herbicides. Two different biochar materials, Douglas fir and rice husk, were used. Tomato seeds were sown in pots and arranged in a randomized design. At the 4V stage (28 days after sowing), the herbicides S-metolachlor, metribuzin, and halosulfuron were applied. Plant length, injury, antioxidant enzyme activity, ascorbate peroxidase (APX), catalase (CAT), guaiacol peroxidase (GPOD), glutathione reductase (GR), and hydrogen peroxide content (H2O2) were assessed 7 and 14 days after herbicide application. Plants treated with biochar and submitted to herbicide treatments showed significantly higher growth parameters and fewer injuries when compared to plants treated with herbicides without biochar. The antioxidant response of the plants followed the same trend; smaller plants with more injuries showed greater H2O2 accumulation and significantly higher antioxidant enzyme activity. These findings highlight the protective effect of biochar, particularly Douglas fir biochar, as it effectively mitigated herbicide-induced oxidative stress and helped maintain plant growth and structural integrity under treatment conditions. Full article
Show Figures

Figure 1

13 pages, 906 KiB  
Article
Baseline Sensitivity of Echinochloa crus-galli (L.) P.Beauv. and Leptochloa chinensis (L.) Nees to Flusulfinam, a New 4-Hydroxyphenylpyruvate Dioxygenase (HPPD)-Inhibiting Herbicide in Rice, in China
by Zihao Li, Xinyu Sun, Shuo Yu, He Sun, Lei Lian, Xuegang Peng, Tao Jin, Weitang Liu and Hengzhi Wang
Plants 2025, 14(10), 1425; https://doi.org/10.3390/plants14101425 - 9 May 2025
Viewed by 541
Abstract
Flusulfinam is a 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicide applied post-emergence (POST) to control Echinochloa crus-galli (L.) P.Beauv., Leptochloa chinensis (L.) Nees, Digitaria sanguinalis (Linn.) Scop. and other annual weeds in directly seeded and transplanted paddy fields in China, registered in September 2024. Notably, compared [...] Read more.
Flusulfinam is a 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicide applied post-emergence (POST) to control Echinochloa crus-galli (L.) P.Beauv., Leptochloa chinensis (L.) Nees, Digitaria sanguinalis (Linn.) Scop. and other annual weeds in directly seeded and transplanted paddy fields in China, registered in September 2024. Notably, compared with other HPPD inhibitors in rice, flusulfinam exhibits consistently high safety in both japonica and indica rice varieties. Meanwhile, flusulfinam has no target-site cross-resistance with traditional acetolactate synthase (ALS)-inhibiting, acetyl-CoA carboxylase (ACCase)-inhibiting, and auxin herbicides. Moreover, as the only heterocyclic-amide-structured herbicide in the HPPD inhibitors, it poses a low risk of metabolic cross-resistance with the other HPPD inhibitors, making it a promising candidate for managing herbicide-resistant weeds in rice fields. In this study, the baseline sensitivity to flusulfinam of E. crus-galli and L. chinensis in paddy fields in China was established using dose–response assays between June and October 2023. Thirty-nine populations of E. crus-galli and forty-three populations of L. chinensis, collected from rice fields across various major rice-producing regions in China, exhibited susceptibility to flusulfinam. The GR50 values ranged from 0.15 to 19.39 g active ingredient (a.i.) ha−1 for E. crus-galli and from 7.82 to 49.92 g a.i. ha−1 for L. chinensis, respectively, far below the field recommended rate of flusulfinam. Meanwhile, the GR50 values of E. crus-galli and L. chinensis to flusulfinam were both distributed as a unimodal curve, with baseline sensitivity (GR50b) of 6.48 g a.i. ha−1 and 22.38 g a.i. ha−1, respectively. The SI50 value showed 129.27-fold and 6.38-fold variability in flusulfinam sensitivity among the 39 E. crus-galli field populations and 43 L. chinensis filed populations, while the variability declined to 2.99-fold and 2.23-fold when the SI50b value was used. This study substantiated the efficacy of flusulfinam against E. crus-galli and L. chinensis in Chinese paddy fields and furnished a benchmark for monitoring temporal variations in the susceptibility of field populations of E. crus-galli and L. chinensis to flusulfinam. Full article
(This article belongs to the Special Issue The Bioecology and Sustainable Management of Weeds)
Show Figures

Figure 1

21 pages, 14536 KiB  
Article
Characterization of a Topramezone-Resistant Rice Mutant TZR1: Insights into GST-Mediated Detoxification and Antioxidant Responses
by Shiyuan Hu, Kai Luo, Tao Tang, Guolan Ma, Yajun Peng, Yuzhu Zhang, Yang Liu, Lang Pan and Sifu Li
Plants 2025, 14(3), 425; https://doi.org/10.3390/plants14030425 - 1 Feb 2025
Viewed by 849
Abstract
Mutagenesis breeding, combined with the application of corresponding herbicides to develop herbicide-resistant rice germplasm, provides great promise for the management of weeds and weedy rice. In this study, a topramezone-resistant rice mutant, TZR1, was developed from the indica rice line Chuangyu 9H (CY9H) [...] Read more.
Mutagenesis breeding, combined with the application of corresponding herbicides to develop herbicide-resistant rice germplasm, provides great promise for the management of weeds and weedy rice. In this study, a topramezone-resistant rice mutant, TZR1, was developed from the indica rice line Chuangyu 9H (CY9H) through radiation mutagenesis and topramezone selection. Dose–response curves revealed that the resistance index of TZR1 to topramezone was 1.94-fold compared to that of CY9H. The resistance mechanism of TZR1 was not due to target-site resistance. This resistance could be reversed by a specific inhibitor of glutathione S-transferase (GST). The activity of antioxidant enzymes was analyzed. SNPs and Indels were detected using whole-genome resequencing; differentially expressed genes were identified through RNA sequencing. Then, they underwent Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Key candidate genes associated with topramezone resistance were validated via a real-time quantitative PCR assay. Five GST genes, two UDP-glycosyltransferase genes, and three ATP-binding cassette transporter genes were identified as potential contributors to topramezone detoxification in TZR1. Overall, these findings suggest that GST enzymes possibly play an important role in TZR1 resistance to topramezone. This study will provide valuable information for the scientific application of 4-hydroxyphenylpyruvate dioxygenase inhibitors in paddy fields in future. Full article
(This article belongs to the Special Issue Physiological and Molecular Responses for Stress Tolerance in Rice)
Show Figures

Figure 1

16 pages, 7056 KiB  
Article
Silencing of the MP Gene via dsRNA Affects Root Development and Growth in the Invasive Weed Mikania micrantha
by Zhenghui Ou, Yuantong Zhang, Qiang Wu, Kangkang Wang, Guangzhong Zhang, Xi Qiao, Ying Yan, Wanqiang Qian, Fanghao Wan and Bo Liu
Int. J. Mol. Sci. 2024, 25(23), 12678; https://doi.org/10.3390/ijms252312678 - 26 Nov 2024
Viewed by 974
Abstract
Mikania micrantha (“mile-a-minute” weed) is a global invasive alien weed that can cause severe damage to agroforestry ecosystems and significant agricultural losses worldwide. Although chemical, manual, or mechanical control methods are widely used to control M. micrantha, RNA interference (RNAi)-based biocontrol methods [...] Read more.
Mikania micrantha (“mile-a-minute” weed) is a global invasive alien weed that can cause severe damage to agroforestry ecosystems and significant agricultural losses worldwide. Although chemical, manual, or mechanical control methods are widely used to control M. micrantha, RNA interference (RNAi)-based biocontrol methods have rarely been reported for this species. The MONOPTEROS (MP) gene, encoding an auxin response factor, plays an essential role in embryonic root initiation in Arabidopsis thaliana. In this study, we identified the MP gene from M. micrantha via orthologous gene analysis. A total of 37 MP orthologous genes was identified in 4 plants, including 9 MP candidate genes in M. micrantha, 13 in Helianthus annuus, 6 in Chrysanthemum nankingense, and 9 in Lactuca sativa. Phylogenetic analysis revealed that an MP candidate gene in M. micrantha (Mm01G000655, named MmMP) was clustered into one clade with the MP gene in A. thaliana (AtMP). In addition, both MmMP and AtMP contain a B3-DNA binding domain that is shared by transcription factors that regulate plant embryogenesis. To study gene function, dsRNA against MmMP (dsMmMP) was applied to the roots of M. micrantha. Compared with those of the controls, the expression of MmMP was reduced by 43.3%, 22.1%, and 26.2% on the first, third, and fifth days after dsMmMP treatment, respectively. The dsMmMP-treated plants presented several morphological defects, mostly in the roots. Compared with water-treated plants, the dsMmMP-treated plants presented reduced developmental parameters, including root length, number of adventitious roots, root fresh and dry weights, plant height, and aboveground biomass. Additionally, safety assessment suggested that this dsMmMP treatment did not silence MP genes from non-target plants, including rice and tomato; nor did it inhibit root growth in those species. Collectively, these results suggest that MmMP plays an important role in root development in M. micrantha and provides a potential target for the development of species-specific RNAi-based herbicides. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 4563 KiB  
Article
Exserohilum rostratum-Mediated Synthesis of Silver Nanoparticles: A Case Study on Their Bioherbicidal Activity Against Leptochloa chinensis (L.) Nees
by Ashrit Gulfraz, Yuquan Yuan, Qing Bu, Muhammad Shafiq, Zhiqiu Huang, Mingwei Li, Zhaoxia Dong, Jing An and Yong Chen
Agronomy 2024, 14(12), 2784; https://doi.org/10.3390/agronomy14122784 - 23 Nov 2024
Cited by 2 | Viewed by 1192
Abstract
The interdisciplinary progress in nanotechnology has yielded environmentally friendly and cost-effective strategies to enhance bioherbicidal efficacy. This study presents the biosynthesis of silver nanoparticles (M-AgNPs) using the fungus Exserohilum rostratum, specifically targeting the Leptochloa chinensis weed in paddy fields. The M-AgNPs were [...] Read more.
The interdisciplinary progress in nanotechnology has yielded environmentally friendly and cost-effective strategies to enhance bioherbicidal efficacy. This study presents the biosynthesis of silver nanoparticles (M-AgNPs) using the fungus Exserohilum rostratum, specifically targeting the Leptochloa chinensis weed in paddy fields. The M-AgNPs were characterized with an aqueous solution size of 107.9 nm and a zeta potential of −24.0 ± 0.20 mV, and their properties were analyzed by UV-Vis spectrophotometry, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The application of M-AgNP suspension at different concentrations of 70 µg∙mL−1, 80 µg∙mL−1, and 100 µg∙mL−1 to L. chinensis at the 3–4 leaf stage resulted in significant herbicidal effects. These nanoparticles induced oxidative stress and significantly reduced the activities of peroxidase, catalase, and superoxide dismutase in the weed seedlings. Meanwhile, M-AgNP treatments significantly increased the activity of cell wall-degrading enzymes, including polygalacturonase and cellulase, in L. chinensis leaves and caused organelle damage in plant leaf cells. Safety assessments showed no significant impact on rice growth after treatment with M-AgNP3 (100 µg∙mL−1) suspension. Our results suggest that M-AgNPs represent a sustainable and eco-friendly approach to weed control that is compatible with rice cultivation, thus supporting the adoption of green agricultural practices. Full article
(This article belongs to the Special Issue Free from Herbicides: Ecological Weed Control)
Show Figures

Figure 1

11 pages, 774 KiB  
Review
Application of CRISPR/Cas9 Technology in Rice Germplasm Innovation and Genetic Improvement
by Jijin Chen, Zhening Miao, Deyan Kong, Anning Zhang, Feiming Wang, Guolan Liu, Xinqiao Yu, Lijun Luo and Yi Liu
Genes 2024, 15(11), 1492; https://doi.org/10.3390/genes15111492 - 20 Nov 2024
Cited by 3 | Viewed by 3940
Abstract
Improving the efficiency of germplasm innovation has always been the aim of rice breeders. Traditional hybrid breeding methods for variety selection rarely meet the practical needs of rice production. The emergence of genome-editing technologies, such as CRISPR/Cas9, provides a new approach to the [...] Read more.
Improving the efficiency of germplasm innovation has always been the aim of rice breeders. Traditional hybrid breeding methods for variety selection rarely meet the practical needs of rice production. The emergence of genome-editing technologies, such as CRISPR/Cas9, provides a new approach to the genetic improvement of crops such as rice. The number of published scientific papers related to “gene editing” and “CRISPR/Cas9” retrievable on websites both from China and other countries exhibited an increasing trend, year by year, from 2014 to 2023. Research related to gene editing in rice accounts for 33.4% and 12.3% of all the literature on gene editing published in China and other countries, respectively, much higher than that on maize and wheat. This article reviews recent research on CRISPR/Cas9 gene-editing technology in rice, especially germplasm innovation and genetic improvement of commercially promoted varieties with improved traits such as disease, insect, and herbicide resistance, salt tolerance, quality, nutrition, and safety. The aim is to provide a reference for the precise and efficient development of new rice cultivars that meet market demand. Full article
(This article belongs to the Special Issue Genetics Improvement and Breeding of Rice)
Show Figures

Figure 1

12 pages, 2218 KiB  
Article
Effects of a Novel Tripyrasulfone Herbicide on Key Soil Enzyme Activities in Paddy Rice Soil
by Penglei Sun, He Sun, Shuo Yu, Lei Lian, Tao Jin, Xuegang Peng, Xiangju Li, Weitang Liu and Hengzhi Wang
Plants 2024, 13(22), 3138; https://doi.org/10.3390/plants13223138 - 7 Nov 2024
Viewed by 1312
Abstract
Weeds significantly impact paddy yields, and herbicides offer a cost-effective, rapid, and efficient solution compared to manual weeding, ensuring agricultural productivity. Tripyrasulfone, a novel 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor developed by Qingdao Kingagroot Chemicals Co., Ltd., has demonstrated high efficacy when applied post-emergence, causing [...] Read more.
Weeds significantly impact paddy yields, and herbicides offer a cost-effective, rapid, and efficient solution compared to manual weeding, ensuring agricultural productivity. Tripyrasulfone, a novel 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor developed by Qingdao Kingagroot Chemicals Co., Ltd., has demonstrated high efficacy when applied post-emergence, causing characteristic foliar bleaching in susceptible weed species, distinct from conventional acetolactate synthase, acetyl-CoA carboxylase, and synthetic auxin herbicides. This study investigates the impact of tripyrasulfone on the activity of key soil enzymes (urease (UE), acid phosphatase (ACP), sucrase (SC), catalase (CAT), and dehydrogenase (DHA)) in paddy soils from Jilin Province and Shandong Province. Different doses of tripyrasulfone (0.1, 1.0, and 2.5 mg kg−1) were applied, and the enzymatic activities were measured. Results indicated that tripyrasulfone initially inhibited UE and ACP activities before activating them. On the 20th day after treatment, UE activity had returned to control levels, whereas ACP activity remained significantly higher, showing long-lasting activation. SC and CAT activities were inhibited but gradually recovered to control levels. Furthermore, DHA activity was activated with a sustained effect, remaining significantly higher than the control group even 20 days after treatment. Overall, the impact of tripyrasulfone on soil enzyme activities diminished over time, suggesting that tripyrasulfone posed minimal long-term ecological risk to soil health. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

15 pages, 4118 KiB  
Article
Antibacterial, Herbicidal, and Plant Growth-Promoting Properties of Streptomyces sp. STD57 from the Rhizosphere of Adenophora stricta
by Dan He, Congting Gao, Shen Zhao, Hongmin Chen, Peng Li, Xishan Yang, Deping Li, Tingting Zhao, Hong Jiang and Chongxi Liu
Microorganisms 2024, 12(11), 2245; https://doi.org/10.3390/microorganisms12112245 - 6 Nov 2024
Cited by 2 | Viewed by 1468
Abstract
Bacterial wilt triggered by the soil-borne pathogenic bacterium Ralstonia solanacearum is one of the most serious diseases in tomato plants, leading to huge economic losses worldwide. Biological control is considered an environmentally friendly and sustainable way to manage soil-borne diseases. In this study, [...] Read more.
Bacterial wilt triggered by the soil-borne pathogenic bacterium Ralstonia solanacearum is one of the most serious diseases in tomato plants, leading to huge economic losses worldwide. Biological control is considered an environmentally friendly and sustainable way to manage soil-borne diseases. In this study, Streptomyces sp. STD57 isolated from the rhizosphere of Adenophora stricta showed strong antibacterial activity against R. solanacearum. Pot experiments showed that strain STD57 exhibited a significant biocontrol effect (81.7%) on tomato bacterial wilt in the greenhouse environment. Furthermore, strain STD57 could inhibit the growth of weeds (Amaranthus retroflexus, Portulaca oleracea, and Echinochloa crusgalli) but promote the growth of crops (wheat, rice, and tomato). The plant growth-promoting substance was identified as indoleacetic acid (IAA) by high-pressure liquid chromatography–mass spectrometry and genome analysis. Coarse separation of the fermented extracts revealed that the antibacterial and herbicidal substances were mainly in the fermentation supernatant and belonged to different products. These findings suggested that strain STD57 may be a potential biocontrol and bioherbicide agent useful in agriculture. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

13 pages, 3951 KiB  
Article
Functional Characterization of the Ciliate Stylonychia lemnae Serotonin N-Acetyltransferase, a Pivotal Enzyme in Melatonin Biosynthesis and Its Overexpression Leads to Peroxidizing Herbicide Tolerance in Rice
by Kyungjin Lee and Kyoungwhan Back
Antioxidants 2024, 13(10), 1177; https://doi.org/10.3390/antiox13101177 - 27 Sep 2024
Cited by 1 | Viewed by 1351
Abstract
Serotonin N-acetyltransferase (SNAT) is a pivotal enzyme for melatonin biosynthesis in all living organisms. It catalyzes the conversion of serotonin to N-acetylserotonin (NAS) or 5-methoxytrypytamine (5-MT) to melatonin. In contrast to animal- and plant-specific SNAT genes, a novel clade of archaeal [...] Read more.
Serotonin N-acetyltransferase (SNAT) is a pivotal enzyme for melatonin biosynthesis in all living organisms. It catalyzes the conversion of serotonin to N-acetylserotonin (NAS) or 5-methoxytrypytamine (5-MT) to melatonin. In contrast to animal- and plant-specific SNAT genes, a novel clade of archaeal SNAT genes has recently been reported. In this study, we identified homologues of archaeal SNAT genes in ciliates and dinoflagellates, but no animal- or plant-specific SNAT homologues. Archaeal SNAT homologue from the ciliate Stylonychia lemnae was annotated as a putative N-acetyltransferase. To determine whether the putative S. lemnae SNAT (SlSNAT) exhibits SNAT enzyme activity, we chemically synthesized and expressed the full-length SlSNAT coding sequence (CDS) in Escherichia coli, from which the recombinant SlSNAT protein was purified by Ni2+ affinity column chromatography. The recombinant SlSNAT exhibited SNAT enzyme activity toward serotonin (Km = 776 µM) and 5-MT (Km = 246 µM) as substrates. Furthermore, SlSNAT-overexpressing (SlSNAT-OE) transgenic rice plants showed higher levels of melatonin synthesis than wild-type controls. The SlSNAT-OE rice plants exhibited delayed leaf senescence and tolerance against treatment with the reactive oxygen species (ROS)-inducing herbicide butafenacil by decreasing hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels, suggesting that melatonin alleviates ROS production in vivo. Full article
Show Figures

Figure 1

16 pages, 10976 KiB  
Article
Multiomics Analysis of the Mechanism by Which Gibberellin Alleviates S-Metolachlor Toxicity in Rice Seedlings
by Cong Wang, Haona Yang, Zhixuan Liu, Lianyang Bai, Lifeng Wang and Shangfeng Zhou
Plants 2024, 13(17), 2517; https://doi.org/10.3390/plants13172517 - 7 Sep 2024
Viewed by 1049
Abstract
S-metolachlor is a selective pre-emergence herbicide used in dryland. However, it is challenging to employ in paddy fields due to its phytotoxic effects on rice. As a common phytohormone, Gibberellin-3 (GA3) is inferred to have the ability to alleviate herbicide phytotoxicity. [...] Read more.
S-metolachlor is a selective pre-emergence herbicide used in dryland. However, it is challenging to employ in paddy fields due to its phytotoxic effects on rice. As a common phytohormone, Gibberellin-3 (GA3) is inferred to have the ability to alleviate herbicide phytotoxicity. This study first quantitatively verified the phytotoxicity of s-metolachlor to rice and then demonstrated the mitigative effect of GA3 on these adverse reactions. Furthermore, a transcriptome of rice seedlings subjected to different treatments was constructed to assemble the reference genes, followed by comparative metabolomics and proteomics analyses. Metabolomics revealed an enrichment of flavonoid metabolites in the group of adding GA3, and these flavonoids can eliminate ROS in plants. Proteomics analysis indicated that differential proteins were enriched in the phenylpropanoid biosynthesis pathway responsible for the synthesis of flavonoids and that the functions of most differential proteins are associated with peroxidase. The proteome, combined with the transcriptome, revealed that the expressions of proteins and genes was related to the POD activity in the group of adding GA3. It was speculated that the elimination of ROS is key to alleviating the stress of s-metolachlor on rice growth. It was inferred that the mechanism of GA3 in alleviating the phytotoxicity of the substance s-metolachlor is by increasing the activity of the POD and influencing the growth of rice seedlings through the restoration of flavonoid synthesis. In this study, we screened GA3 as a safener to alleviate the phytotoxicity of s-metolachlor on rice. On this basis, the mechanism of alleviating phytotoxicity was studied. The application range of s-metolachlor might be expanded, providing a new supplementary method for weed control and herbicide resistance management. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

23 pages, 5101 KiB  
Article
Intelligent Rice Field Weed Control in Precision Agriculture: From Weed Recognition to Variable Rate Spraying
by Zhonghui Guo, Dongdong Cai, Juchi Bai, Tongyu Xu and Fenghua Yu
Agronomy 2024, 14(8), 1702; https://doi.org/10.3390/agronomy14081702 - 2 Aug 2024
Cited by 6 | Viewed by 3575
Abstract
A precision agriculture approach that uses drones for crop protection and variable rate application has become the main method of rice weed control, but it suffers from excessive spraying issues, which can pollute soil and water environments and harm ecosystems. This study proposes [...] Read more.
A precision agriculture approach that uses drones for crop protection and variable rate application has become the main method of rice weed control, but it suffers from excessive spraying issues, which can pollute soil and water environments and harm ecosystems. This study proposes a method to generate variable spray prescription maps based on the actual distribution of weeds in rice fields and utilize DJI plant protection UAVs to perform automatic variable spraying operations according to the prescription maps, achieving precise pesticide application. We first construct the YOLOv8n DT model by transferring the “knowledge features” learned by the larger YOLOv8l model with strong feature extraction capabilities to the smaller YOLOv8n model through knowledge distillation. We use this model to identify weeds in the field and generate an actual distribution map of rice field weeds based on the recognition results. The number of weeds in each experimental plot is counted, and the specific amount of pesticide for each plot is determined based on the amount of weeds and the spraying strategy proposed in this study. Variable spray prescription maps are then generated accordingly. DJI plant protection UAVs are used to perform automatic variable spraying operations based on prescription maps. Water-sensitive papers are used to collect droplets during the automatic variable operation process of UAVs, and the variable spraying effect is evaluated through droplet analysis. YOLOv8n-DT improved the accuracy of the model by 3.1% while keeping the model parameters constant, and the accuracy of identifying weeds in rice fields reached 0.82, which is close to the accuracy of the teacher network. Compared to the traditional extensive spraying method, the approach in this study saves approximately 15.28% of herbicides. This study demonstrates a complete workflow from UAV image acquisition to the evaluation of the variable spraying effect of plant protection UAVs. The method proposed in this research may provide an effective solution to balance the use of chemical herbicides and protect ecological safety. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop