Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = ribonucleoside diphosphate reductase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4766 KB  
Article
Investigation of the General Molecular Mechanisms of Gallic Acid via Analyses of Its Transcriptome Profile
by Jiyeon Kim, Bo Kyung Kim, Sang Hyun Moh, Goo Jang and Jae Yong Ryu
Int. J. Mol. Sci. 2024, 25(4), 2303; https://doi.org/10.3390/ijms25042303 - 15 Feb 2024
Cited by 1 | Viewed by 2063
Abstract
Gallic acid (GA), a phenolic compound naturally found in many plants, exhibits potential preventive and therapeutic roles. However, the underlying molecular mechanisms of its diverse biological activities remain unclear. Here, we investigated possible mechanisms of GA function through a transcriptome-based analysis using LINCS [...] Read more.
Gallic acid (GA), a phenolic compound naturally found in many plants, exhibits potential preventive and therapeutic roles. However, the underlying molecular mechanisms of its diverse biological activities remain unclear. Here, we investigated possible mechanisms of GA function through a transcriptome-based analysis using LINCS L1000, a publicly available data resource. We compared the changes in the gene expression profiles induced by GA with those induced by FDA-approved drugs in three cancer cell lines (A549, PC3, and MCF7). The top 10 drugs exhibiting high similarity with GA in their expression patterns were identified by calculating the connectivity score in the three cell lines. We specified the known target proteins of these drugs, which could be potential targets of GA, and identified 19 potential targets. Next, we retrieved evidence in the literature that GA likely binds directly to DNA polymerase β and ribonucleoside-diphosphate reductase. Although our results align with previous studies suggesting a direct and/or indirect connection between GA and the target proteins, further experimental investigations are required to fully understand the exact molecular mechanisms of GA. Our study provides insights into the therapeutic mechanisms of GA, introducing a new approach to characterizing therapeutic natural compounds using transcriptome-based analyses. Full article
Show Figures

Figure 1

32 pages, 9181 KB  
Review
Inhibitors of the Cancer Target Ribonucleotide Reductase, Past and Present
by Sarah E. Huff, Jordan M. Winter and Chris G. Dealwis
Biomolecules 2022, 12(6), 815; https://doi.org/10.3390/biom12060815 - 10 Jun 2022
Cited by 34 | Viewed by 7834
Abstract
Ribonucleotide reductase (RR) is an essential multi-subunit enzyme found in all living organisms; it catalyzes the rate-limiting step in dNTP synthesis, namely, the conversion of ribonucleoside diphosphates to deoxyribonucleoside diphosphates. As expression levels of human RR (hRR) are high during cell replication, hRR [...] Read more.
Ribonucleotide reductase (RR) is an essential multi-subunit enzyme found in all living organisms; it catalyzes the rate-limiting step in dNTP synthesis, namely, the conversion of ribonucleoside diphosphates to deoxyribonucleoside diphosphates. As expression levels of human RR (hRR) are high during cell replication, hRR has long been considered an attractive drug target for a range of proliferative diseases, including cancer. While there are many excellent reviews regarding the structure, function, and clinical importance of hRR, recent years have seen an increase in novel approaches to inhibiting hRR that merit an updated discussion of the existing inhibitors and strategies to target this enzyme. In this review, we discuss the mechanisms and clinical applications of classic nucleoside analog inhibitors of hRRM1 (large catalytic subunit), including gemcitabine and clofarabine, as well as inhibitors of the hRRM2 (free radical housing small subunit), including triapine and hydroxyurea. Additionally, we discuss novel approaches to targeting RR and the discovery of new classes of hRR inhibitors. Full article
Show Figures

Figure 1

16 pages, 3434 KB  
Article
Sorafenib Inhibits Ribonucleotide Reductase Regulatory Subunit M2 (RRM2) in Hepatocellular Carcinoma Cells
by Pei-Ming Yang, Li-Shan Lin and Tsang-Pai Liu
Biomolecules 2020, 10(1), 117; https://doi.org/10.3390/biom10010117 - 9 Jan 2020
Cited by 53 | Viewed by 5843
Abstract
The main curative treatments for hepatocellular carcinoma (HCC) are surgical resection and liver transplantation, which only benefits 15% to 25% of patients. In addition, HCC is highly refractory and resistant to cytotoxic chemotherapy. Although several multi-kinase inhibitors, such as sorafenib, regorafenib, and lenvatinib, [...] Read more.
The main curative treatments for hepatocellular carcinoma (HCC) are surgical resection and liver transplantation, which only benefits 15% to 25% of patients. In addition, HCC is highly refractory and resistant to cytotoxic chemotherapy. Although several multi-kinase inhibitors, such as sorafenib, regorafenib, and lenvatinib, have been approved for treating advanced HCC, only a short increase of median overall survival in HCC patients was achieved. Therefore, there is an urgent need to design more effective strategies for advanced HCC patients. Human ribonucleotide reductase is responsible for the conversion of ribonucleoside diphosphate to 2′-deoxyribonucleoside diphosphate to maintain the homeostasis of nucleotide pools. In this study, mining the cancer genomics and proteomics data revealed that ribonucleotide reductase regulatory subunit M2 (RRM2) serves as a prognosis biomarker and a therapeutic target for HCC. The RNA sequencing (RNA-Seq) analysis and public microarray data mining found that RRM2 was a novel molecular target of sorafenib in HCC cells. In vitro experiments validated that sorafenib inhibits RRM2 expression in HCC cells, which is positively associated with the anticancer activity of sorafenib. Although both RRM2 knockdown and sorafenib induced autophagy in HCC cells, restoration of RRM2 expression did not rescue HCC cells from sorafenib-induced autophagy and growth inhibition. However, long-term colony formation assay indicated that RRM2 overexpression partially rescues HCC cells from the cytotoxicity of sorafenib. Therefore, this study identifies that RRM2 is a novel target of sorafenib, partially contributing to its anticancer activity in HCC cells. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

13 pages, 450 KB  
Communication
Identification of Epstein-Barr Virus Replication Proteins in Burkitt’s Lymphoma Cells
by Chris Traylen, Sharada Ramasubramanyan, Jianmin Zuo, Martin Rowe, Rajaei Almohammad, Kate Heesom, Steve M. M. Sweet, David A. Matthews and Alison J. Sinclair
Pathogens 2015, 4(4), 739-751; https://doi.org/10.3390/pathogens4040739 - 29 Oct 2015
Cited by 16 | Viewed by 7218
Abstract
The working model to describe the mechanisms used to replicate the cancer-associated virus Epstein-Barr virus (EBV) is partly derived from comparisons with other members of the Herpes virus family. Many genes within the EBV genome are homologous across the herpes virus family. Published [...] Read more.
The working model to describe the mechanisms used to replicate the cancer-associated virus Epstein-Barr virus (EBV) is partly derived from comparisons with other members of the Herpes virus family. Many genes within the EBV genome are homologous across the herpes virus family. Published transcriptome data for the EBV genome during its lytic replication cycle show extensive transcription, but the identification of the proteins is limited. We have taken a global proteomics approach to identify viral proteins that are expressed during the EBV lytic replication cycle. We combined an enrichment method to isolate cells undergoing EBV lytic replication with SILAC-labeling coupled to mass-spectrometry and identified viral and host proteins expressed during the OPEN ACCESS Pathogens 2015, 4 740 EBV lytic replication cycle. Amongst the most frequently identified viral proteins are two components of the DNA replication machinery, the single strand DNA binding protein BALF2, DNA polymerase accessory protein BMRF1 and both subunits of the viral ribonucleoside-diphosphate reductase enzyme (BORF2 and BaRF1). An additional 42 EBV lytic cycle proteins were also detected. This provides proteomic identification for many EBV lytic replication cycle proteins and also identifies post-translational modifications. Full article
(This article belongs to the Special Issue Infection and Cancer)
Show Figures

Graphical abstract

21 pages, 1555 KB  
Article
Real-Time PCR Data Processing Shown by the Analysis of Colorectal Specific Candidate Genes, ERCC1, RRM1 and TS in Relation to β2M as Endogenous Control
by Melanie Demes, Holger Bartsch, Stefanie Scheil-Bertram, Ralph Mücke and Annette Fisseler-Eckhoff
Appl. Sci. 2012, 2(1), 139-159; https://doi.org/10.3390/app2010139 - 24 Feb 2012
Cited by 10 | Viewed by 10025
Abstract
Currently, quantitative real-time PCR (Q-PCR) of archival formalin-fixed, paraffin embedded (FFPE) tissue is a critical tool for research and is not well established in routine diagnostics. Therefore, continuous improvement in mathematics and statistics associated with interpreting final accurate and reproducible results are fundamental. [...] Read more.
Currently, quantitative real-time PCR (Q-PCR) of archival formalin-fixed, paraffin embedded (FFPE) tissue is a critical tool for research and is not well established in routine diagnostics. Therefore, continuous improvement in mathematics and statistics associated with interpreting final accurate and reproducible results are fundamental. This project describes and discusses specificity and sensitivity with respect to intra- and inter-assay variances by use of a commercial Human Reference RNA and individual RNA derived from colorectal cancer patients (n = 25). All patients were treated with 5-fluoruracil (5-FU) and a concomitant pelvic radiotherapy (50.4 Gy). Quality assessment of target tissue samples was evaluated by clinicopathological findings and optical density (OD) measurements. We analyzed the steady state messenger RNA (mRNA) expression level of a small panel of cancer relevant genes, excision repair cross-complementing group 1 (ERCC1), ribonucleoside-diphosphate reductase subunit M1 (RRM1), thymidylate synthase (TYMS) and ß-2microglobulin (ß-2M) as endogenous control. The mRNA of a Human Reference RNA, tumor and non-neoplastic material was reverse transcribed into its complementary DNA (cDNA). cDNA was amplified based on dual-labeled TaqMan real-time fluorescence measurements. The real-time efficiency and therefore the output data can be influenced through the kind of calibrator used, the amount and quality of used RNA and by the degree of individual assay variability. Each sample presents an individual amplification curve. Thus, confirmation of primer specificity, one or more invariant endogenous controls, RNA and cDNA quality, as well as real-time PCR amplification efficiencies and linearity calculations from individual slopes or R2-values must be included in each study. Full article
Show Figures

Figure 1

11 pages, 388 KB  
Article
Construction of a nrdA::luxCDABE Fusion and Its Use in Escherichia coli as a DNA Damage Biosensor
by Ee Taek Hwang, Joo- Myung Ahn, Byoung Chan Kim and Man Bock Gu
Sensors 2008, 8(2), 1297-1307; https://doi.org/10.3390/s8021297 - 22 Feb 2008
Cited by 19 | Viewed by 12480
Abstract
The promoter of nrdA gene which is related with DNA synthesis was used to construct a DNA damage sensitive biosensor. A recombinant bioluminescent E. coli strain, BBTNrdA, harboring a plasmid with the nrdA promoter fused to the luxCDABE operon, was successfully constructed. Its [...] Read more.
The promoter of nrdA gene which is related with DNA synthesis was used to construct a DNA damage sensitive biosensor. A recombinant bioluminescent E. coli strain, BBTNrdA, harboring a plasmid with the nrdA promoter fused to the luxCDABE operon, was successfully constructed. Its response to various chemicals including genotoxic chemicals substantiates it as a DNA damage biosensor. In characterization, three different classes of toxicants were used: DNA damaging chemicals, oxidative stress chemicals, and phenolics. BBTNrdA only responded strongly to DNA damaging chemicals, such as nalidixic acid (NDA), mitomycin C (MMC), 1-methyl-1-nitroso-N-methylguanidine (MNNG), and 4-nitroquinoline N-oxide (4-NQO). In contrast, there were no responses from the oxidative stress chemicals and phenolics, except from hydrogen peroxide (H2O2) which is known to cause DNA damage indirectly. Therefore, the results of the study demonstrate that BBTNrdA can be used as a DNA damage biosensor. Full article
Show Figures

Back to TopTop